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Plant secondary metabolites and their biosynthesis have attracted great

interest, but investigations of the activities of hidden intermediates remain

rare. Gossypol and related sesquiterpenes are the major phytoalexins in

cotton. Among the six biosynthetic intermediates recently identified,

8-hydroxy-7-keto-d-cadinene (C234) crippled the plant disease resistance

when accumulated upon gene silencing. C234 harbours an a,b-unsaturated

carbonyl thus is a reactive electrophile species. Here, we show that C234

application also dampened the Arabidopsis resistance against the bacterial

pathogen Pseudomonas syringae pv. maculicola (Psm). We treated Arabidopsis
with C234, Psm and (PsmþC234), and analysed the leaf transcriptomes.

While C234 alone exerted a mild effect, it greatly stimulated an over-response

to the pathogen. Of the 7335 genes affected in the (PsmþC234)-treated leaves,

3476 were unresponsive without the chemical, in which such functional

categories as ‘nucleotides transport’, ‘vesicle transport’, ‘MAP kinases’,

‘G-proteins’, ‘protein assembly and cofactor ligation’ and ‘light reaction’

were enriched, suggesting that C234 disturbed certain physiological

processes and the protein complex assembly, leading to distorted defence

response and decreased disease resistance. As C234 is efficiently metab-

olized by CYP71BE79, plants of cotton lineage have evolved a highly

active enzyme to prevent the phytotoxic intermediate accumulation during

gossypol pathway evolution.

This article is part of the theme issue ‘Biotic signalling sheds light on

smart pest management’.
1. Introduction
As sessile organisms, plants protect themselves from herbivores and pathogens

by synthesizing structurally diversified secondary (specialized) metabolites,

many of which exert defence function by their cytotoxicity [1]. However,

these compounds could be harmful to host cells too, and plants have evolved

sophisticated mechanisms to avoid self-toxicity of these metabolites [2]. It is

well acknowledged that the toxic metabolites can be accumulated and stored

in specific structures, such as the glandular trichome, laticifer, or transformed

into a non-toxic form by modification such as glycosylation, representing physical

and chemical strategies the plant has developed to overcome self-toxicity [3].

The biosynthesis of defence compounds in plants mostly involves inter-

mediates, which may also have biological activities. There is growing

evidence to indicate that over-accumulation of intermediates in plants could

result in disturbance of plant growth and development [4,5]. However, until

now elucidation of the molecular basis of the activities of toxic intermediates

has been rare.
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Figure 1. The gossypol biosynthetic intermediate 8-hydroxy-7-keto-d-cadinene (C234) affects plant disease resistance. (a) Structures of six gossypol biosynthetic
intermediates. The a,b-unsaturated carbonyl group in C234 is indicated in red; (b) GC-MS of the respective metabolites in the hypocotyl-root junction of the control
and the R. solani-inoculated plants. The intermediates are represented with the m/z (mass-to-charge ratio) values shown in (a); (c) LC-MS of the metabolites in the
hypocotyl-root junction of the control and the plants inoculated with R. solani: 8-hydroxy-7-keto-d-cadinene was detected after CYP71BE79 silencing (VIGS-
CYP71BE79), but not in control and R. solani-inoculated samples; (d ) pathogen growth. Leaves of the four-week-old Arabidopsis were inoculated with Psm
ES4326 (OD600 ¼ 0.0001). The in planta bacterial titres were determined at 3 dpi colony forming units (c.f.u.). Data represent the mean of six independent samples
with standard deviation (**p , 0.02, ***p , 0.001, Student’s t test). Experiments were repeated three times with similar results.
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Sesquiterpenoids, biosynthesized from the 15-carbon

farnesyl diphosphate (FDP), constitute one of the largest

families of natural products of plants, many of which func-

tion as signalling molecules in bio-interactions or as defence

compounds (phytoalexins) to safeguard the plants [1].

Some sesquiterpenes are volatile, others are stored in plants

as derivatives decorated by subsequent reactions. The sesqui-

terpenoid phytoalexins, such as gossypol, capsidiol and

zealexin in cotton, tobacco and maize (Zea mays) plants,

respectively, have been investigated in depth [6–8]. Cotton

species belong to the genus Gossypium, family Malvaceae.

In cotton plants gossypol and related sesquiterpene alde-

hydes are the major phytoalexins against pathogens and

pests. They are generally toxic [9,10] and stored in pigmented

glands of aerial organs and in epidermal layers of roots [6].

The biosynthesis of gossypol starts with the conversion of

FDP into (þ)-d-cadinene, catalysed by the sesquiterpene

cyclase (þ)-d-cadinene synthase [11,12]. We recently reported

the characterization of five hydroxylation/oxidation steps

that modify the (þ)-d-cadinene skeleton [13]. After virus-

induced gene silencing (VIGS) of the corresponding enzymes,

six intermediates were isolated [13]. One of them, 8-hydroxy-

7-keto-d-cadinene (C234), bears an a,b-unsaturated carbonyl

adjacent to a hydroxyl group (figure 1a). Compounds con-

taining the a,b-unsaturated carbonyl or other reactive

electrophilic atom groups are classified as reactive electro-

phile species (RES) [14]. When the CYP71BE79 expression

was repressed by VIGS, C234 accumulated and the plant

developed brown sunken lesions covering the hypocotyl-root

junction [13]. Furthermore, the enzyme CYP71BE79 exhibited

an exceptionally high activity in C234 hydroxylation and

is evolutionally more conserved than other enzymes of
the gossypol pathway [13]. Therefore, C234 has interesting

biological activities worthy of further investigation.

In this research, we used Arabidopsis thaliana to explore the

biologic activities of C234 in plant defence. Pseudomonas
syringae pv. maculicola (Psm) ES4326 is a bacterial pathogen of

cruciferous plants, including A. thaliana. We examined the plant

responses to C234, Psm and both (PsmþC234). The global

changes of the Arabidopsis transcriptomes analysed by RNA-

sequencing (RNA-seq) provide a broader view of the interplay

between C234 and plant immunity, and the possible mechanism

of interfering disease resistance by the RES metabolite.
2. Material and methods
(a) Plant materials and growth conditions
Plants of upland cotton, Gossypium hirsutum cv. R15, were grown

in a greenhouse at 28+ 28C under a 14 h light photoperiod, and

plants of A. thaliana (ecotype Col-0) were grown at 228C and 16 h

light photoperiod.

(b) Pathogen infection and plant treatments
Rhizoctonia solani was cultured on potato dextrose agar medium

at 288C for 48 h. The 3-week old cotton plants grown in sterilized

soil were inoculated with R. solani as described [15], and

analysed at indicated days post inoculation (dpi).

The 4-week old plants of A. thaliana were infected with Psm
ES4326 (OD600 ¼ 0.0001), as described [16]. The compound

C234 (8-hydroxy-7-keto-d-cadinene), dissolved in dimethyl sulf-

oxide (DSMO), was added to buffer (10 mM MgSO4) or the

bacterial solution to a final concentration of 20, 50 and 200 mM,

respectively, before infiltration into two rosette leaves (leaf
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numbers 5–6). The same exogenous application of DMSO in

buffer served as mock (control treatment). For each independent

experiment, at least 20 replicate leaves from 10 plants per treat-

ment were measured before performing a statistical analysis.

All pathogen experiments depicted in the figures were repeated

several times with similar results.

(c) RNA isolation, RNA-sequencing and transcriptome
analysis

Total RNAs were isolated using the RNAprep Pure Plant Kit

(Tiangen) from the treated leaf tissues of the mock and the trea-

ted plants with three biological replicates for each treatment,

according to the manufacturer’s instructions. Library construc-

tion and sequencing were carried out using NEBNextw UltraTM

RNA Library Prep Kit for Illuminaw (NEB, USA). The mRNA

was prepared by using oligo (dT) magnetic beads and inter-

rupted into short fragments (125 bp) in the fragmentation

buffer. The first-strand cDNA was synthesized by random hex-

amers (mRNA fragments as templates). After second-strand

cDNA synthesis and adaptor ligation, the cDNA fragments of

150–200 bp were isolated with AMPure XP system (Beckman

Coulter, Beverly, USA), followed by purification and polymerase

chain reaction (PCR)-enrichment to create the final cDNA library.

After quality checking by an Agilent 2100 Bioanalyzer, the

samples were sequenced on a Hiseq X Ten platform (Illumina)

at Novogene Bioinformatics Institute, Beijing, China.

For each sample, we obtained approximately 50 million raw

reads, which were processed through in-house perl scripts to

remove the adapter sequences, reads containing ploy-N and

low-quality bases to generate the clean data (clean reads).

Using the tool of bowtie/tophat2 (http://tophat.cbcb.umd.

edu/), about 93% of the useful reads could be uniquely

mapped to the A. thaliana TAIR10.20 coding sequence. Gene

annotation was referred to databases of Ensembl (http://www.

ensembl.org/), KEGG (http://www.genome.jp/kegg/), and

eggnog (http://eggnog.embl.de/). Gene expressions were nor-

malized and calculated as readcount values for each gene with

the DESeq package [17]. The significantly differentially expressed

genes (fold change . 1.5 or , 0.67; p adjusted value , 0.05) were

selected by pairwise comparison, clustered by CLUSTER 3.0 with

Pearson distance and pairwise centred-linkage as clustering or

hierarchical clustering methods, and viewed by TREEVIEW. The

Arabidopsis transcripts were annotated with descriptions from

TAIR10 and functional annotations from MAPMAN. To determine

the proportions of the C234 and Psm responsive genes in gene

families (http://www.arabidopsis.org/), MAPMAN categories

and the respective gene sets were aligned to the RNA-seq datasets

using Microsoft EXCEL [18].

(d) Quantitative reverse transcriptase PCR
The cDNAs were synthesized from 2 mg RNAs by genomic DNA

removal and cDNA synthesis kit (Transgene, Beijing), followed

by amplification with gene-specific primers designed according

to National Center for Biotechnology Information (NCBI)

Primer-Blast (www.ncbi.nlm.nih.gov/tools/primer-blast/). The

quantitative reverse transcriptase PCR (qRT-PCR) was performed

on a Bio-Rad CFX Connect Real-Time PCR system (Bio-Rad, USA)

using SYBR green PCR Mix (TAKARA), according to the manufac-

turer’s instructions for standard two-step amplification programme.

Arabidopsis thaliana UBIQUITIN 5 (UBQ5) was used as an internal

reference. Primers used in this investigation are listed (see the

electronic supplementary material, table S1).

(e) Analysis of metabolites
Fresh plant tissues, 0.1 g, were ground in liquid nitrogen,

extracted with 1.5 ml hexane containing 2 ng ml21 nonyl acetate
as an internal standard with shaking at 25 Hz for 30 min. Extracts

were analysed by gas chromatography-mass spectrometry (GC-

MS) on an Agilent 6890 Series GC System coupled to an Agilent

5973 Network Mass Selective Detector, using the following pro-

gramme: initial temperature 608C (5 min hold), increase to

1808C at 108C min21, to 2408C at 208C min21, and ramp to

2808C at 308C min21 (5 min hold). The flow rate of the carriage

gas (He) was 1 ml min21. Split injection (split ratio 5 : 2). The

MS data between m/z 30-550 were recorded.

For liquid chromatography mass spectrometry (LC-MS) analy-

sis, samples were extracted with 1 ml methanol and analysed by

reversed-phase LC on an Agilent 1200 high performance liquid

chromatography, using a Thermo Syncronis C18 analytical

column (150 � 4.6 mm, 5 mm). Water with 0.1% formic acid (A)

and acetonitrile with 0.1% FA (B) (positive ion mode) were used

as the mobile phase components at a flow rate of 1 ml min21

with the following 10 min gradient: 0–3 min, 20–70% B;

3–5 min, 70–80% B; 5–7 min, 80–84% B; 7–8 min, 84–100% B;

8–10 min, 100–20% B. A coupled Agilent 6120 Quadrupole

LC/MS spectrometer collected the MS data in positive ion

mode (parameters: mass range: 100–1000 m/z; drying gas: 3508C,

12 l min21; nebuliser: 50 psig; capillary: 5000 V; fragmentor:

70 V). Each run of the first 2 min was discarded to avoid

contamination of the apparatus.

( f ) Accession numbers
The sequencing data have been deposited in the NCBI (https://

www.ncbi.nlm.nih.gov/) under the accession numbers of

SRR7686004–SRR7686015.
3. Results
(a) The gossypol biosynthetic intermediate C234

reduces plant disease resistance
As reported previously, cotton plants showed enhanced sus-

ceptibility to the soil-borne necrotrophic fungus R. solani
following CYP71BE79-sliencing, which caused the accumu-

lation of the substrate C234 (8-hydroxy-7-keto-d-

cadinene), particularly in the hypocotyl and root (electronic

supplementary material, figure S1). Biosynthesis of gossypol

in cotton is markedly induced upon pathogen infection or

elicitor treatments [19]. To examine the effect of R. solani
infection on the accumulation of gossypol biosynthetic inter-

mediates, we compared the metabolites of leaf extracts from

the R. solani-inoculated and the control (buffer-treated)

cotton plants. GC-MS and LC-MS analyses showed

that most of the intermediates were undetectable in the

hypocotyl-root junction of the cotton plants; however, after

inoculation with R. solani, several metabolites became detect-

able and their levels elevated (figure 1b). A notable exception

was C234, which remained undetectable after the pathogen

inoculation (figure 1c). These results demonstrated that the

C234 was detectable only after the CYP71BE79 gene silen-

cing. As silencing other genes of gossypol biosynthesis did

not promote the R. solani infection and symptom develop-

ment [13], the accumulation of C234 should be responsible

for reduced disease resistance of the cotton plant. We hypoth-

esized that the metabolites induced to accumulate might have

little or positive effect on plant defence against R. solani,
whereas C234 affected disease resistance negatively.

To test whether the influence of C234 on plant defence is

general or specific to cotton, we examined its activity on

Arabidopsis. We found that treatment with C234 rendered

http://tophat.cbcb.umd.edu/
http://tophat.cbcb.umd.edu/
http://tophat.cbcb.umd.edu/
http://www.ensembl.org/
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the A. thaliana plants significantly more susceptible to the

bacterial pathogen Psm ES4326, and the susceptibility

increased with the C234 concentrations ranging from 20 to

200 mM (figure 1d ). On the other hand, when added to

culture medium it had no obvious effect on bacterial

growth in our culture conditions (electronic supplementary

material, figure S2), indicating that this keto-bearing com-

pound does not inhibit the bacterial growth directly.

Together, these data suggest that the gossypol pathway

intermediate C234 dampens plant disease resistance in a

way that appears general and independent of the gossypol

biosynthesis.

(b) C234 overstimulates the transcriptome changes
during plant defence

To further assess the impacts of C234 on plant defence, we

treated the Arabidopsis plants with C234 infiltration and

Psm inoculation, and analysed the responses in leaves two

days later by RNA-seq. We directly compared the transcrip-

tional changes after C234 treatment and Psm-inoculation,

i.e. the response of leaves towards a localized inoculation

(figure 2a). Compared to the control, there were 120

genes upregulated and 65 genes downregulated in the

C234-treated samples, much less than the genes affected

by Psm-infection (2080 upregulated and 2069 downregu-

lated). This drastic difference suggests a narrower

physiological response of the plant to the compound C234

than to the pathogen Psm.

To examine the consequence of C234 treatment on plant

defence response to the pathogen, we added C234 to the

Psm solution and analysed the transcriptional changes of

the plants in response to (PsmþC234). Compared to the con-

trol, there is a total of 7335 genes differentially expressed in

the (PsmþC234)-treated samples (3603 (PsmþC234)þ and

3732 (PsmþC234)2), much more than the genes affected by

the Psm inoculation alone (figure 2b–d). By Venn diagram,

we compared (PsmþC234)þ with Psmþ, (PsmþC234)2 with

Psm2, respectively. Of the 3603 (PsmþC234)þ genes, 1654

responded to (PsmþC234) but not to Psm (PCþ-P), and, on

the other side, 1822 of the (PsmþC234)2 genes were not

repressed by Psm (PC2-P). The significant increase in gene

numbers of PCþ/2-P than those of Psmþ/2 suggested that

the compound C234 greatly broadened the plant response

to the pathogen. We then focused on the differentially regu-

lated genes, particularly those extended by C234, to gain

insights into the functionality of C234 in plant defence.

(c) C234 affects multiple physiological processes in a
pathogen-challenged plant

We next examined the C234 responsive genes significantly

enriched or depleted in particular MAPMAN categories and

Arabidopsis gene families (http://www.arabidopsis.org/).

Among the main MAPMAN bins, the categories of ‘biotic

stress’ and ‘abiotic stress’ showed the greatest enrichment

among the C234þ genes (electronic supplementary material,

figure S3). These terms were also enriched among the Psmþ

genes (electronic supplementary material, figure S3). A

number of the C234-inducible genes have been shown to

act in plant defence, including, for instance, genes involved

in the biosynthesis of floral homoterpene volatiles (terpene

synthase 04 (TPS04) and CYP82G1) [20,21] and the
phytoalexin camalexin (CYP71B15) [22,23], and in disease

resistance such as pathogenesis-related PR1 [24]. In our

RNA-seq data these genes were also responsive to Psm and

showed stronger response in the (PsmþC234)-inoculated

plants (electronic supplementary material, table S2). These

results are consistent with the previous observations that the

a,b-unsaturated carbonyl-containing compounds are highly

active and potent stimulators of the pathogenesis-related

genes [25,26].

When the plants were treated with both the bacterial patho-

gen and the compound C234, the functional categories of

‘signalling’, ‘transport’ and ‘hormone metabolism’ were signifi-

cantly enriched among the PCþ-P genes (figure 2e); on the

other hand, among PC2-P genes the significantly enriched cat-

egories were ‘photosynthesis’, ‘tetrapyrrole synthesis’, ‘DNA’

and ‘RNA’ (figure 2f ). To acquire a better representation of

the C234 effect on plant response to the pathogen, we analysed

the MAPMAN bins enriched in the 1654 PCþ-P genes and the

1822 PC2-P genes form the Psmþ and Psm2 genes, respect-

ively, i.e. the responsive genes extended from Psm-infection

owing to C234 application. We found that the categories of

‘nucleotides transport’, ‘vesicle transport’, ‘MAP kinases’, ‘G-

proteins’, ‘glycosylation’ and ‘vacuolar-sorting protein SNF7’

showed significant enrichments among the PCþ-P genes

(figure 3a; electronic supplementary material, figure S4),

whereas the ‘protein assembly and cofactor ligation’, ‘chroma-

tin structure. histone’, ‘deoxynucleotide metabolism’ and

‘light reaction’ categories were significantly enriched among

the PC-P2 genes compared to the Psm2 genes (figure 3b).

These results suggested that the compound C234 disturbed

multiple physiological processes, including metabolism, photo-

synthesis, transport and protein complex assembly, which, as a

result, exacerbated the plant disease development.

Glutaredoxins are anti-oxidant enzymes and involved in

reactive oxygen species scavenging [27]. Notably, the C234

treatment repressed the expression of a cluster of glutare-

doxin genes, including GRXS3 (AT4G15700), GRXS4
(AT4G15680), GRXS5 (AT4G15690), GRXS7 (AT4G15670)

and GRXS8 (AT4G15660) which, together with ROXY10
(AT5G18600), encode the CC-type glutaredoxin family pro-

teins and were significantly enriched in the C2342 genes

(electronic supplementary material, table S3). Further analy-

sis by qRT-PCR confirmed the downregulation of the six

glutaredoxin genes in the Psm- and (PsmþC234)-treated

samples (figure 4). Moreover, the mean-fold transcriptional

change (0.18, C234/CK) of the five clustered glutaredoxin

genes (AtGRXS3/4/5/7/8) was considerably lower than that

(0.54) of the remaining genes, thus they were among the

most strongly downregulated genes in the C234-treated

samples. This result is consistent with the previous finding

that At3g62950, a glutaredoxin-like protein was downregu-

lated in vitamin e2 (vte2) mutant, in which there was a

massive increase in the levels of the nonenzymatic lipid per-

oxidation products [26]. It has been reported that AtGRXS3/4/
5/7/8 are negative regulators of plant primary root growth

in response to nitrate [28,29]. However, expression of

glutaredoxin genes in Arabidopsis could be induced by malon-

dialdehyde, an RES produced by non-enzymatic lipid

oxidation reactions [14]. Together, these data suggest that

the RESs may affect the glutaredoxin genes with different

yet unidentified mechanisms; alternatively, the changed glu-

taredoxin levels are merely a result of the distorted cellular

redox status induced by the RES.

http://www.arabidopsis.org/
http://www.arabidopsis.org/
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4. Discussion
In the current study, the transcriptome analysis compared the

genes differentially expressed in response to C234, Psm and

(PsmþC234). The genes induced by all three treatments are

mainly involved in responses to biotic/abiotic stresses.
Interestingly, the (PsmþC234) treatment affected many

more genes than the Psm-inoculation alone. Investigation

into the PCþ/2-P genes demonstrated that, in addition to

the defence responses elicited by Psm, application of C234

during Psm infection led to an over-response of the plant,

bringing disturbance in various physiological processes,
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including particularly, protein transport and protein complex

assembly (figure 2e,f ). These abnormalities revealed by the

extended and dramatic transcriptional changes may account

for the increased susceptibility to pathogen infection and

faster symptom development. C234, bearing an a,b-unsatu-

rated keto group, is a member of the RES compounds.

Although many RESs are non-enzymatic fatty acid oxygen-

ation products [26], some are derived from enzymatic

catalysis. The RES structure is widely encountered in phyto-

hormone compounds or secondary metabolites, such as

abscisic acid, oxophytodienoic acid, 5-deoxystrigol, tomatid-

4-en-3-one (an intermediate of tomatidine biosynthesis) [30]

and strictosidine (a central monoterpene indole alkaloid

intermediate) [31], in addition to lipid peroxidation products

[26]. Investigations of the enzymatic RES, especially the bio-

synthetic intermediates, are of special interests as they are

usually hidden or in low content in plant tissues. Accumu-

lations of these compounds arose commonly during

investigation when the respective biosynthetic pathways

were interrupted genetically or biochemically, which may

provide fresh insight into the regulatory mechanism of

plant secondary metabolism and help find new active natural

products. For example, in Catharanthus roseus the nitrate/

peptide family (NPF) transporter CrNPF2.9 plays a key role

in the monoterpene indole alkaloid biosynthesis by exporting

the cytotoxic intermediate strictosidine from the vacuole;

silencing of CrNPF2.9 induced the strictosidine accumulation

and subsequently caused the extensive tissue death [31].

In cotton plants the gossypol pathway intermediate C234

was undetectable both before and after R. solani inoculation,

although at the same time other intermediates were induced

to accumulate by the pathogen (figure 1b,c). This is consistent

with the fact that the P450 monooxygenase CYP71BE79 is

catalytically highly efficient in transforming C234 into

8,11-dihydroxy-7-keto-d-cadinene, and its maximum activity

is more than ten times higher than that of the other identi-

fied enzymes of the gossypol pathway [13]. Although

other gossypol pathway intermediates may also contain the
a,b-unsaturated carbonyl, to date only C234 is found to

have the activity in enhancing pathogen susceptibility, prob-

ably owing to its specific structure. The toxicity of C234 may

have exerted a selection pressure on the regulation of gossy-

pol biosynthesis, and cotton plants have evolved a highly

active P450 enzyme to prevent the accumulation of the

cytotoxic intermediate.

The working mechanism of electrophile perception of

RES has been partly elucidated in mammals, in which the

Kelch-like ECH-associated protein 1 (Keap1) and nuclear

factor-erythroid 2-related factor 2 (Nrf2) play a critical role

[32]. A more recent report demonstrated that itaconate,

which contains an electrophilic a,b-unsaturated carboxylic

acid, directly alkylates the protein Keap1, enabling Nrf2 to

promote downstream gene expressions [33]. However, the

Nrf2 homologues have not been found in plants and whether

a similar signalling pathway exists in plants remains an open

question. At present we cannot distinguish between direct (e.g.

specific binding to a receptor) and the indirect (e.g. perturbation

of membranes by oxidative stress) effects. Nevertheless, compre-

hensive analysis of the global changes in gene expressions

induced by C234 during pathogen infection should help identify

factors that contribute to plant defence and shed new light on

the evolution of the biosynthetic pathway of specialized

metabolites in plants.

Data accessibility. Additional data are provided as the electronic sup-
plementary material.

Authors’ contributions. X.-Y.C., X.T. and X.F. wrote the manuscript. X.-Y.C.,
X.T. and Y.-B.M. designed and X.T. performed the experiments. X.T.,
X.F., X.-Y.C., J.-Q.H. and L.-J.W. contributed to the data analysis. All
authors discussed the results.

Competing interests. We declare we have no competing interests.

Funding. This project was supported by the Chinese Academy of Sciences
(XDB11030000, QYZDY-SSW-SMC026 and 153D31KYSB20160074),
and the National Natural Science Foundation of China (31690092,
31788103).

Acknowledgements. We are grateful to DY Chen, ZW Chen, YQ Liu for
transcriptome analysis and WL Hu for GC-MS and LC-MS analysis.
References
1. Dixon RA. 2001 Natural products and plant disease
resistance. Nature 411, 843 – 847. (doi:10.1038/
35081178)

2. Smith CJ. 1996 Accumulation of phytoalexins:
defence mechanism and stimulus response system.
New Phytol. 132, 1 – 45. (doi:10.1111/j.1469-8137.
1996.tb04506.x)

3. Wink M. 2003 Evolution of secondary metabolites
from an ecological and molecular phylogenetic
perspective. Phytochemistry 64, 3 – 19. (doi:10.
1016/S0031-9422(03)00300-5)

4. Kemen AC, Honkanen S, Melton RE, Findlay KC,
Mugford ST, Hayashi K, Haralampidis K, Rosser SJ,
Osbourn A. 2014 Investigation of triterpene
synthesis and regulation in oats reveals a role for
beta-amyrin in determining root epidermal cell
patterning. Proc. Natl Acad. Sci. USA 111,
8679 – 8684. (doi:10.1073/pnas.1401553111)
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