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Abstract

Recent studies have used a variety of analytical methods to identify genes targeted by selection in high-altitude populations
located throughout the Tibetan Plateau. Despite differences in analytic strategies and sample location, hypoxia-related
genes, including EPAS1 and EGLN1, were identified in multiple studies. By applying the same analytic methods to genome-
wide SNP information used in our previous study of a Tibetan population (n = 31) from the township of Maduo, located in
the northeastern corner of the Qinghai-Tibetan Plateau (4200 m), we have identified common targets of natural selection in
a second geographically and linguistically distinct Tibetan population (n = 46) in the Tuo Tuo River township (4500 m). Our
analyses provide evidence for natural selection based on iHS and XP-EHH signals in both populations at the p,0.02
significance level for EPAS1, EGLN1, HMOX2, and CYP17A1 and for PKLR, HFE, and HBB and HBG2, which have also been
reported in other studies. We highlight differences (i.e., stratification and admixture) in the two distinct Tibetan groups
examined here and report selection candidate genes common to both groups. These findings should be considered in the
prioritization of selection candidate genes in future genetic studies in Tibet.
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Introduction

Native highlanders have specific traits that enable their survival

despite the stress imposed by decreased oxygen availability at

altitude. Several regions of the genome, including those that

harbor hypoxia-sensing and -regulated genes, were recently

identified as putative targets for high-altitude adaptation in

Tibetans [1–11]. Two of these regions contain genes involved in

hypoxia sensing and response: the EPAS1 gene, which encodes the

hypoxia inducible factor (HIF)-2a subunit, and the EGLN1gene,

which encodes a proline hydroxylase, PHD2, that regulates

hypoxia-induced factors in an oxygen-dependent manner. Vari-

ation in the EPAS1 region is associated with hemoglobin

concentration ([Hb]) in Tibetan populations examined in two

separate studies [2,10], and haplotypes at loci containing EGLN1

and PPARA (peroxisome proliferator activated receptor alpha) are

associated with [Hb] in Tibetans from the Maduo township in the

northeast section of the Qinghai-Tibetan Plateau [7] and in a

sample of Tibetans located throughout the Plateau [12]. EPAS1

and PPARA haplotypes in Tibetans from the Tuo Tuo River

examined here are associated with elevated serum lactate and free

fatty acid concentrations, respectively, providing further support

for important biological roles [13]. In addition to these phenotype-

associated selection targets, many other genes have been reported

as strong targets of selection in other studies and are likely

associated with additional adaptive traits in Tibetan populations

[6]. Here we highlight selection signals identified at the p,0.02

empirical significance level in previously examined Maduo [7] and

Tuo Tuo River [13] Tibetan populations using the same analytical

strategies.

Tibetans inhabit a vast area of the Qinghai-Tibetan Plateau,

which spans approximately 1.5 million square km (0.96 million

square miles). At least three major Tibetan dialects are spoken

among these geographically distinct groups (Amdo, U-Tsang, and

Kham in the northeastern, southwestern, and southeastern regions

of the Plateau, respectively [14]), suggesting potential genetic

isolation among different Tibetan populations. The demographic

history of these populations is, however, highly debated. Archae-

ological evidence suggests that the ancestors of present-day

Tibetan groups migrated to the Qinghai-Tibetan Plateau at

various times, ranging from 25,000 to 5,000 years ago [15].

Patterns of genome-wide SNPs support a single-route migration

into this region [8], although analyses of mitochondrial DNA
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variation suggest that different migrations, dating to pre- and post-

Last Glacial Maximum, contributed to genetic variation observed

among present-day inhabitants [16,17]. Neighboring populations

have also mixed with various Tibetan groups located on the

periphery of the plateau, contributing to present-day levels of

variation in these regions [8].

While various studies have focused on a few select candidate

gene regions [1,4,5], many genetic loci have probably been

targeted by selection in high-altitude populations (see review [6]).

In order to evaluate whether our previously reported selection

targets [7] are significant in a different Tibetan group [13], we

carried out genome-wide SNP-based selection scans in a

linguistically distinct population from a different region of the

Qinghai-Tibetan Plateau. Several of the same haplotypes exhibit

extreme signals of selection in this second population, highlighting

genomic regions that warrant further investigation in genetic

studies of high-altitude adaptation in Tibet. We also determined

which regions with extreme selection signals contain hypoxia-

associated microRNAs. We report differences in the prevalence of

admixture and prevalence of mitochondrial haplogroups in two

distinct Tibetan groups, highlighting the value of studying different

Tibetan groups and accounting for varied genetic backgrounds.

Results

Stratification of Tibetan populations
We used pair-wise allele sharing distances to calculate FST [18]

among Tibetan populations and neighboring Asian groups. The

two Tibetan populations exhibit the least amount of genetic

differentiation from each other (FST = 0.004) compared to other

Asian populations (HapMap Chinese [CHB] and Japanese [JPT]

[19], and Buryat and Deedu Mongolians [20,21]. Tuo Tuo River

and Maduo Tibetans are similarly differentiated from the Hap

Map CHB (FST = 0.014 and 0.012, respectively), which are

commonly used for genetic comparisons (Table S1).

To determine the extent of population structure among

Tibetans and neighboring populations, we used the program

Admixture [22] to examine the group-specific proportion of each

individual’s genome (Figure 1). Each of the Tibetan populations,

as well as Buryat Mongolians, Deedu Mongolians, HapMap CHB,

and HapMap JPT populations, form a distinct group. As

previously reported, Maduo Tibetans exhibit components associ-

ated with Han Chinese (CHB), suggesting either recent admixture

or may reflect different founder populations in this group [7].

Individuals from the Tuo Tuo River population do not, however,

exhibit this signal, likely reflecting the more insulated geographic

location of this group (Figure 1).

High-altitude selection candidate genes identified in two
distinct Tibetan populations

We employed the same analytic strategies (iHS [23] and XP-

EHH [24] statistics) used in our previous study of a Tibetan high-

altitude adaptation to identify mutual targets of selection in a

second linguistically distinct Tibetan population. By applying the

same analytical methods in both populations, we provide further

evidence for positive selection in each of two distinct Tibetan

populations at the p,0.02 significance level for EPAS1, EGLN1,

HMOX2, and CYP17A1 gene regions (Table 1) and further support

for adaptation involving PKLR, HFE, and HBB and HBG2 genes

identified in other recent studies. The first population described

[7] is a group of Qinghai-Tibetans from Maduo who speak the

Amdo Tibetan dialect (one of the three major Tibetan dialects

spoken on the Qinghai-Tibetan Plateau); the second population

examined, who speak the Kham dialect, are from the Tuo Tuo

River area [13] (Figure 1). In order to identify high-altitude

specific selection candidates, genomic regions with iHS signifi-

cance levels at p,0.02 identified in our other Asian populations

were excluded from analysis as described previously [7]. Of the

selection candidate genes reported in our previous study of Maduo

Tibetans [7], seven were identified at the p,0.02 significance level

in Tuo Tuo River Tibetans and/or have been reported as strong

selection candidates in other studies of Tibetan adaptation to

altitude (Table 1).

Genotype-phenotype analysis of hemoglobin
concentration

The putatively adaptive EPAS1 genomic region is associated

with [Hb] in two independent studies of high-altitude adaptation

in Tibetans [2,10]. While an extreme signal of selection near the

EPAS1 gene was detected in both the Maduo and Tuo Tuo River

Tibetan populations, the EPAS1 haplotype did not exhibit an

association with [Hb] in Maduo Tibetans as previously reported

[7], nor was there a significant association in Tuo Tuo River

Tibetans (n = 36) examined here (Table S3; Figure S1). It is likely

that our modest sample size yields reduced power to detect

phenotype-genotype associations (Figure S2).

In our previous study of Maduo Tibetans, we identified

associations between EGLN1 and PPARA selected regions and

[Hb] [7]. There is no association between the EGLN1 and PPARA

haplotypes and [Hb] in the 36 Tuo Tuo River Tibetans examined

here (Table S3; Figure S1). We speculate that genetic heteroge-

neity may influence genotype-phenotype relationships as a result

of the genetic admixture that was detected in Maduo but not Tuo

Tuo River Tibetans (Figure 2). It will be important to test, in a

larger sample, whether admixture differences underlie reduced

power to detect a signal in this modest sample (Figure S2).

Non-protein coding regions of the genome highlighted
in both Tibetan groups

In order to determine whether non-genic microRNAs not

previously examined as a priori candidates are contained within our

top selection candidates, we examined the intersection between the

top two percent of iHS and XP-EHH selection candidate regions

and genomic locations that contain any of 54 hypoxia-related

miRNAs [25]. Interestingly, the PPARA selection candidate region

identified in our previous study contains a hypoxia-associated

miRNA (Table S2) that may be involved in high-altitude response,

although this region was not identified as a top selection candidate

in the Tuo Tuo River Tibetans. A recent report of adaptation in

Ethiopian highlanders also reports an extreme signal of selection

near PPARA [26], although it is unclear whether the hypoxia-

related miRNA in this region is involved in adaptation of either

Tibetan or Ethiopian highland groups.

Mitochondrial DNA analyses highlight variation in Maduo
and Tuo Tuo River Tibetan populations

Entire mtDNA control region sequence and genotyping of

present-day inhabitants of the Tibetan Plateau indicate distinct

patterns of variation among Tibetan groups [16,27]. In order to

determine whether the two Tibetan populations exhibit differ-

ences in mitochondrial DNA (mtDNA) haplogroups, we geno-

typed 12 haplotype-defining SNPs in18 and 40 individuals from

Maduo and Tuo Tuo River (Figure 1), respectively. Consistent

with previously reported frequencies for Tibeto-Burman groups,

the most common major mtDNA haplogroup is M (94% and

67.5% for Maduo and TTR, respectively), although a small

proportion of haplogroup N is also detected in our samples. M9,

Altitude Adaptation in Distinct Tibetan Groups
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which is found at elevated frequency at high-altitude inhabitants

in Tibet and India [28], is predominant in both Maduo and Tuo

Tuo River populations (Table 2). The sub-M haplogroups D4,

M9E, and M8 are most prevalent among Maduo Tibetans,

whereas M9E and G are the most common mtDNA haplogroups

within the TTR sample. Haplogroup A, which exhibits greater

diversity in the southern region of the Qinghai-Tibetan Plateau

[17], is detected among Tibetan inhabitants of the Tuo Tuo

River area (8%) and Maduo Tibetans who reside further north

(7%). Haplogroup B, a major group common among Native

American populations, is also present in Tuo Tuo River Tibetans

(TTR: 10%). The power to detect mtDNA variants at marginal

frequencies (,10%) is limited in our modest sample of mtDNA

from the Maduo population, and additional sample collection will

be necessary to place these samples in the context of global

mtDNA variation and determine precise genetic relationships

among these populations.

Discussion

Recent reports of high-altitude adaptation in Tibetans are based

on a range of analytical methods applied to different Tibetan

populations located throughout the Qinghai-Tibetan Plateau [1,4–

6]. While some of the selection candidate genes reported by these

studies are the same, there are also selection targets unique to each

study. This could be due in part to differences in analytical

methods, which range from sequence-based examination of allele-

frequency differences between Tibetan and non-Tibetan groups to

genome-wide analyses of extended SNP haplotype variation [1,4–

6].

Highly differentiated SNPs in the EPAS1 gene region are related

to relatively lower [Hb] in two independent studies of high-altitude

adaptation in Tibet [2,10], and recent sequencing efforts have

identified two variants in the first exon of EGLN1 that are highly

differentiated in Tibetans [12,29]. Another study of the EGLN1

region shows that two polymorphisms within the first intron are

found at elevated frequency (71%) in a high-altitude population

from India and are associated with EGLN1 expression and high-

altitude pulmonary edema (HAPE) in this population [30]. These

SNPs are in complete linkage disequilibrium (r2 = 1.0) with the

putatively adaptive selected haplotypes identified in both of the

Tibetan populations examined here, providing additional evidence

for an adaptive role of EGLN1 across the Qinghai-Tibetan Plateau.

Interestingly, EGLN1 was identified as a target of selection in

Andean highlanders, although it is unclear whether the putatively

adaptive variants are the same as those reported in Tibetan

highlanders [3,31]. A study of highland Daghestani populations

also indicates highly differentiated intronic SNPs in a well-

conserved region of EGLN1 [32].

While EPAS1 [2,3,7,9–11], EGLN1 [3,7,9–11,31], and PPARA

[7,26] have been identified as selection candidates in one or more

studies of altitude adaptation and/or are associated with Tibetan

putatively adaptive phenotypes, several other selection candidates

have also been identified in multiple studies. The HMOX2 gene, a

heme oxygenase involved in HIF-independent hypoxia sensing,

was a top selection candidate in our Maduo and Tuo Tuo River

populations and was also reported as a selection candidate in a

pooled sample of 50 Tibetan samples collected from various

regions of the Qinghai-Tibetan Plateau [11]. Furthermore, PKLR

and HBB/HBG2, respectively identified in the Tuo Tuo River and

Figure 1. Map of two sample locations and mtDNA haplogroup frequencies from Maduo (represented by the furthest northeast)
and Tuo Tuo River regions. Numbers 1 and 2 represent sample locations for Maduo [7] and Tuo Tuo River sample locations, respectively.
doi:10.1371/journal.pone.0088252.g001
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Maduo Tibetan populations at the p,0.02 level, were also

reported as top selection candidates in an independent examina-

tion of genetic variation in 50 Tibetan exomes [10]. Variants in

the CYP17A1 gene, contained within a top selection candidate

region identified in both Maduo and Tuo Tuo River populations,

are associated with hypertension in European and Asian

populations [33–35]. While these selection candidates have not

been associated with the phenotypes measured thus far, they

should be considered as strong candidates for future studies of

genetic and physiological adaptations.

Considering the lack of differentiation detected through analysis

of the protein-coding regions of Han Chinese and Tibetan samples

[10], it is also possible that many genetic targets of selection are in

non-coding, regulatory regions of the genome. Our analyses

suggest natural selection on a miRNA near the PPARA gene,

highlighting regulatory variation as a potential factor underlying

adaptive advantages within Tibetan genomes.

Differences among studies published to date could also result

from variation in the genetic background of Tibetan groups. Such

factors could influence the extent to which selection signals are

captured (the early stages of a selection sweep versus those that are

fixed or nearly fixed in the population) or the potential for

selection events to occur in different groups. In order to better

understand differences in Tibetan adaptation to altitude, it will be

necessary to fully characterize population histories in various

Tibetan groups, determine the precise functional variants and

timing of selection events, and evaluate additional phenotypic

differences related to adaptive functional variants.

Conclusions
Selection and association signals identified in Tibetan popula-

tions may be influenced by the demographic history of these

groups and by the choice of analytic methods. Despite genetic

heterogeneity between Tibetan groups as shown here, several

putatively adaptive genetic variants are common to Maduo and

Tuo Tuo River Tibetans. Further genetic and phenotypic

characterizations of physiological traits (e.g., oxygen transport,

maternal/fetal responses during pregnancy) are required to

determine if the remaining selection targets highlighted here are

of biological significance, whether they are related to or

Table 1. Selection signals identified at the empirical top 2% significance level in Tibetans from Maduo (as reported in Simonson et
al. 2010) and Tuo Tuo River Tibetans and/or reported in other studies of human adaptation to high altitude as referenced.

Gene Chromosome 200 kb Bin P value Selection scan References for candidate genes

EGLN1 Chr1 1147 1.23E-03 XP-EHH Maduo [3,7,8,9,10,11,12]

1148 1.54E-04 XP-EHH Maduo

9.83E-03 iHS Maduo

9.45E-03 iHS Tuo Tuo River

EPAS1 Chr2 231 1.54E-03 XP-EHH Maduo [1,3,7,8,9,10]

232 1.03E-02 XP-EHH Maduo

4.09E-03 iHS Tuo Tuo River

PPARA Chr22 224 9.00E-03 iHS Maduo [7,25]

CYP17A1 Chr10 522 7.09E-03 iHS Maduo [7]

1.40E-02 iHS Tuo Tuo River

HMOX2 Chr16 22 1.29E-03 iHS Maduo [7,11]

7.08E-04 iHS Tuo Tuo River

1.24E-03 XP-EHH Tuo Tuo River

PKLR Chr1 767 4.33E-03 iHS Tuo Tuo River [10]

2.00E-02 iHS Maduo [7]

HBB and HBG2 Chr11 26 0.0158 [7,10]

HFE Chr6 131 1.37E-02 iHS Tuo Tuo River [10]

The 200 kb bin refers to the genomic position on the chromosome listed in the second column (positions based on Hg18) from which the selection signal emanates.
The empirical p value of this region, which contains the selection candidate gene, is based on the selection analysis performed in the population specified.
doi:10.1371/journal.pone.0088252.t001

Figure 2. Population structure of Tibetans and neighboring
populations. Individual grouping inferred by Admixture with k = 6,
arranged by population. Each vertical bar represents an individual’s
genome. The colors correspond to the proportion of an individual’s
ancestry derived from one of the k groups.
doi:10.1371/journal.pone.0088252.g002
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independent of [Hb], and how combinations of such factors

influence the overall physiology of native highlanders living in the

Tibetan Plateau.

Materials and Methods

DNA sample collection
We extracted DNA from whole blood samples obtained from 85

highland natives (non-smokers, no chronic diseases) residing in the

Tuo Tuo River township in Qinghai Province (,4,500 m).

Ethics Statement
Participants provided written agreement as indicated by a

signature or mark on a sheet of paper that described the study in

their native language. Consent was obtained for all participants,

and this study was approved by the Institutional Review Board at

the High Altitude Medical Research Institute (Xining, Qinghai,

People’s Republic of China).

SNP genotyping
We employed the Affymetrix 6.0 SNP Array technology

(.900,000 SNPs) to genotype 70 DNA samples at Capital Bio

Corporation (Beijing, China). Default parameters for the Birdseed

algorithm (version 2) were used to determine genotypes for all

samples (Affymetrix, Santa Clara, CA, USA). Genotypic data were

analyzed using the Affymetrix Genotyping Console 3.1 (Affyme-

trix) and included all autosomes but excluded the X and Y

chromosomes and the mitochondrial genome.

Estimates of relatedness
We attempted to exclude all first-degree relatives who visited the

clinic from our study. We used the ERSA software package [36] to

determine genetic relatedness among all individuals examined and

excluded one member of any pair exhibiting relatedness closer

than second cousins. Based on these criteria, a total of 46 unrelated

individuals were included in the analyses. The genotype data of

the 46 individuals are available at http://jorde-lab.genetics.utah.

edu/ under published data.

Principal components analysis
We performed principal components analysis on genetic

distances as previously reported [21]. This analysis included two

Tibetan populations from distinct regions and other Asian groups

such as the HapMap CHB and JPT populations (CHB = Chinese

in Beijing, China; JPT = Japanese in Tokyo, Japan). The CEU

(U.S. Utah residents with ancestry from northern and western

Europe) and YRI (YRI = Yoruba in Ibadan, Nigeria) HapMap

populations provide context for the patterns of variation observed

among these populations [19].

Functional candidate gene list
We had previously generated a list of genes likely related to

high-altitude adaptation based on Gene Ontology and Panther

Pathway categories as described in [7] and examined the

intersection between these candidates and selection candidate

genes identified at the p,0.02 level. Potential candidate genes

identified in the mitochondrial genome and on the X chromosome

were not considered for this study.

Admixture analysis
A model-based algorithm implemented in ADMIXTURE [22]

was used to determine the genetic ancestries of each individual in a

given number of populations without using information about

population designation. To eliminate the effects of SNPs that are

in linkage disequilibrium (r2 = 1.0), we first filtered out SNPs that

had r2.0.2 within 100 kb using PLINK [37], as recommended by

the authors of ADMIXTURE.

Selection analyses
We performed the iHS [23] and XP-EHH [24] tests of selection

on phased data estimated by the Beagle software package as

previously described [7]. These tests are based on extended

haplotype homozygosity and measure the reduction in haplotype

diversity based on the probability that, as distance from a focal

SNP increases, two extended haplotypes are the same. XP-EHH

compares across populations (in this case, Tuo Tuo River Tibetans

and HapMap Han Chinese and Japanese); iHS compares within-

population profiles based on the focal SNP’s ancestral state

(derived or ancestral).

We focused on the selection candidate genes contained within

200 kb regions significant at the p,0.02 level in either test. We

further excluded regions where the iHS test was significant at this

level in neighboring populations as previously described [7].

Phenotype collection
Hemoglobin concentration, hematocrit, and percent oxygen

saturation were determined from venous blood samples using the

Mindray Hematology Analyzer (BC-2300, Shenzhen, People’s

Republic of China) and the Pulse Oximeter (Ohmeda 3700 Pulse

Oximeter, Datex-Ohmeda, Boulder, Colorado, USA), respective-

ly.

Genotype-phenotype association
We identified the putatively advantageous haplotypes as

previously described [7] and tested whether the three-SNP allele

haplotype exhibiting the most extreme iHS scores within each

200 kb genomic region were associated with [Hb] in each

population and both populations combined. Stepwise linear

regression (MATLAB R2010a) was used to detect significant

relationships between these genotypes and [Hb].

Table 2. Mitochondrial DNA haplogroup allele frequencies in Maduo and Tuo Tuo River Tibetans.

MtDNA
Haplogroup M M8 M9E C D4 D5 G N A B F H R

TTR Tibetan 0.10 0.15 0.05 0.20 0.05 0.13 0.03 0.08 0.10 0.05 0.03 0.05

Maduo
Tibetan

0.22 0.28 0.39 0.06 0.06

doi:10.1371/journal.pone.0088252.t002
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Supporting Information

Figure S1 The relationships between EPAS1, EGLN1,
and PPARA haplotypes and [Hb] for Tuo Tuo River
Tibetans (shown in open circles) and Maduo Tibetans
(closed circles). The number of PPARA haplotype copies,

previously associated with [Hb] in Maduo Tibetans (p,0.0005;

Simonson et al. 2010), is associated with [Hb] when data from

both populations are combined (p,0.02).

(TIF)

Figure S2 Statistical power to detect an association of
[Hb] with a haplotype. Simulated data sets were constructed

with varying sample size (n = 30–500), assuming that the putatively

selected haplotype at one locus decreases [Hb] by e g/dl when

present in two copies and e/2 if present in one copy (additive

model, e = 0.5, 1.0, 2.0). [Hb] was simulated as a normally-

distributed variable with mean 19.6 and standard deviation of

1.6 g/dl, as observed in the Tuo Tuo River sample, and the effect

of adaptive haplotype copies was added to that variate for each

individual. The frequency f of the adaptive haplotype was set at

0.65, 0.75 or 0.85, per the legend. To mirror the actual tests

performed, haplotypes with no effect on [Hb] were simulated for

two additional loci (haplotype frequency of 0.65 for both).

Genotypes were assigned in Hardy-Weinberg equilibrium. Ages

were assigned from a normal distribution, mean 37 years and

standard deviation 11.5, then truncated to the range of 18–68,

mirroring the observed distribution. Sex was assigned randomly

with a 50/50 ratio. Multiple stepwise linear regression was

performed using the five simulated predictors: age, sex and

haplotype copies at three loci (as used in Table S3). Power to

detect a significant association of [Hb] with the simulated adaptive

haplotype was estimated as the fraction of 1000 iterations for each

parameter set that yielded a significant result at the alpha = 0.5

level. Effect size e has the largest impact on statistical power.

Haplotype frequency has a modest influence (Tuo Tuo River

EGLN1, EPAS1, and PPARA frequencies = 0.68, 0.81, and 0.77,

respectively). Considering our modest sample size, it will be

necessary to collect more data from the Tuo Tuo River population

to achieve greater power to detect genotype-phenotype associa-

tions.

(TIF)

Table S1 FST for Tibetans and neighboring Asian
populations examined.

(DOCX)

Table S2 Intersection of selection candidate regions
and hypoxia-related miRNAs.

(DOCX)

Table S3 Multiple stepwise linear regression including
age, sex, and three haplotypes previously identified as
selection candidates in Tibetans (EGLN1, PPARA, and
EPAS1) in Tuo Tuo River Tibetans. Gender was the only

significant (p,0.01) predictor in this analysis (F = 14.82,

P,0.0005).

(DOCX)
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