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1  |  INTRODUC TION

Periodic limb movements (PLMs) are involuntary motor events 
mainly involving legs, characterized by the flexion of toe, foot and 
knee, occurring during wakefulness (PLMW) and mainly during sleep 
(PLMS), especially non-rapid eye movement (NREM) sleep. PLMs are 
a frequent phenomenon, being present in the majority of patients 

with restless legs syndrome (RLS), and in a significant percentage 
of patients with other sleep or neurological disorders; they can also 
be an isolated finding in otherwise healthy subjects, especially after 
the age of 40 years (Ferri, 2012; Pennestri et al., 2006). PLMs are 
detected by recording both tibialis anterior muscles by means of sur-
face electromyography in the context of polysomnography (PSG). 
Based on standard scoring criteria (American Academy of Sleep 
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Summary
The aim of this study was to assess, with numerical simulations, if the complex mecha-
nism of two (or more) interacting spinal/supraspinal structures generating periodic 
leg movements can be modelled with a single-generator approach. For this, we have 
developed the first phenomenological model to generate periodic leg movements in-
silico. We defined the onset of a movement in one leg as the firing of a neuron inte-
grating excitatory and inhibitory inputs from the central nervous system, while the 
duration of the movement was defined in accordance to statistical evidence. For this 
study, polysomnographic leg movement data from 32 subjects without periodic leg 
movements and 65 subjects with periodic leg movements were used. The proportion 
of single-leg and double-leg inputs, as well as their strength and frequency, were cali-
brated on the without periodic leg movements dataset. For periodic leg movements 
subjects, we added a periodic excitatory input common to both legs, and the distribu-
tions of the generator period and intensity were fitted to their dataset. Besides the 
many simplifying assumptions – the strongest being the stationarity of the generator 
processes during sleep – the model-simulated data did not differ significantly, to a 
large extent, from the real polysomnographic data. This represents convincing pre-
liminary support for the validity of our single-generator model for periodic leg move-
ments. Future model extensions will pursue the ambitious project of a supportive 
diagnostic and therapeutic tool, helping the specialist with realistic forecasting, and 
with cross-correlations and clustering with other patient meta-data.
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Medicine, 2014; Ferri et al., 2016), PLMs consist of a series of at 
least four consecutive candidate leg movements (CLMs) separated 
by inter-movement intervals (IMIs; from the onset of a CLM to the 
onset of the next) in the range of 10–90 s. CLMs are leg movements 
(LMs) with duration longer than 0.5 s and shorter than 10 s if mono-
lateral; shorter than 15 s if bilateral and composed of at most four 
LMs with duration within 0.5–10 s. When two (or more) LMs occur-
ring in different legs overlap or are separated (from offset to onset) 
by an interval shorter than 0.5 s, they are considered as one bilat-
eral LM, otherwise as distinct monolateral movements (Ferri et al., 
2016). PLMs might hence involve one or both legs. PLM series are 
interrupted by either a non-candidate LM or an IMI out of the range 
10–90 s.

The severity of PLMS is usually quantified with the PLMS index, 
which indicates the number of PLMS per hour of recording, and 
is considered abnormal when it exceeds the value of 15 in adults 
(American Academy of Sleep Medicine, 2014). Despite still being 
under debate, PLMS might affect sleep quality for their association 
with cortical arousals and, in the long term, the cardiovascular sys-
tem, because of their associated repetitive phasic increases in heart 
rate and blood pressure (Ferri et al., 2017).

The mechanism and the neuroanatomical pathways behind PLMs 
are unknown, as well as the origin of their periodicity. In the last 
two decades, PLMs have become an interesting topic under the 
magnifying glass of sleep researchers, representing today one of the 
most intriguing and unsolved mysteries in the field of sleep-related 
movement disorders. In particular, what most attracts the interest 
of researchers is the mechanism underlying the periodicity of these 
motor events, which advocates the existence of a biological “pace 
maker”, whose anatomical location or distribution and structure are, 
however, unknown.

Differently from PLMW, some fundamental aspects of PLMS 
are now more clear and well accepted by the scientific community: 
PLMS are strongly suppressed by low doses of dopamine agonists 
(DAs; Manconi et al., 2007) and are triggered by dopamine antago-
nists; PLMS occur also in patients with complete transverse spinal 
cord lesions, indicating that the spinal cord contains the fundamen-
tal network to generate them (Ferri et al., 2015; Salminen et al., 
2013); the cortical arousals and the autonomic fluctuations usually 
accompanying PLMS can persist when PLMS are pharmacologically 
suppressed (Manconi et al., 2012). The latter aspect is against the 
existence of a direct causal relationship between PLMS, cortical 
arousals and autonomic activations. Moreover, taking into account 
that the temporal association between these oscillating phenom-
ena is lost in a patient with transverse spinal lesion (Ferri et al., 
2015; Salminen et al., 2013), it might be postulated that these sys-
tems are under the influence of multiple “pace makers” that syn-
chronize with each other by a reciprocal and dynamic drag effect 
(Ferri, 2006).

To solve the puzzle of PLMs is not a sterile exercise of speculative 
minds, but has potential implications for the clinical practice, espe-
cially on the fundamental decision to treat PLMs or not (Figorilli et al., 
2017). Moreover, a significant part of the current understanding 

comes from the use of animal models (Allen et al., 2017), so that an 
in-silico PLM model would have indisputable advantages from both 
the ethical and economic viewpoints. The primary aim of this study 
was to assess, with numerical simulations, if the complex mechanism 
of two (or more) interacting spinal/supraspinal structures generating 
PLMs can be explained with a single-generator approach, i.e. by a 
model calibrated on subjects without PLMs with the only addition of 
a single periodic excitatory generator.

Our model is the first generating LMs in-silico. However, it is 
functional to the aim of the study, and therefore preliminary for clin-
ical applications. First of all, it is a phenomenological model, hence 
describing the LM phenomenon, not the underlying neurophysiol-
ogy. But more importantly, it assumes, for simplicity, the stationarity 
of the involved neurological processes, which are known to signifi-
cantly vary during the sleep cycle and along the night.

2  |  METHODS

2.1  |  The model

With the aim of designing a phenomenological model of PLMs, we 
simplified the underlying physiology and assumed that each leg is 
controlled by a single motor neuron, representative of the central 
nervous system (CNS) complex pathways, ultimately determin-
ing contractions of the leg muscles. This hypothesis may seem 
drastic, but indeed the PSG recordings are sensitive only to a few 
motor neurons and measure their average activity, which we de-
scribe qualitatively with a single virtual neuron. The two neurons 
were mathematically described by the well-known Stein model of an 
integrate-and-fire neuron (Stein, 1965; see Section S1 for a techni-
cal description; see Burkitt, 2006, for a review on integrate-and-fire 
neuron models).

The integrate-and-fire mechanism is quite simple. The neuron 
state is characterized by its membrane potential, which evolves ac-
cording to the neuron's synaptic inputs. Excitatory/inhibitory inputs 
increase/decrease the potential, while a time constant τ rules the 
potential decay toward a resting value V0 in the absence of inputs 
(charge leakage). When the membrane potential reaches a threshold 
Vth, an output spike is generated – the firing of the neuron – which 
causes the potential to reset at a basal value that, for simplicity, we 
set to coincide with the resting value V0. The output spike represents, 
in our model, the LM onset, while the duration of the movement is 
obtained from a distribution fitted on clinical data (see ‘Calibration’).

As schematically represented in Figure 1, each of the two neu-
rons (with membrane potentials vL(t) and vR(t) at time t) receives 
excitatory/inhibitory inputs from the physiological activity of the 
CNS (physiological inputs in the following), a proportion p of which 
equally affect both legs (common inputs; magenta in the figure), 
while the remaining fraction (1 − p) is leg-specific (left and right in-
puts; red and blue, respectively). For subjects showing significant 
PLMs, we added a periodic input common to both legs, representing 
our single periodicity generator (gold). The period and intensity of 
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the periodicity generator are patient-specific and describe the dis-
ease severity.

As typical when using the integrate-and-fire neuron model, we 
describe the physiological inputs as a series of synaptic current 

spikes, with Poisson-distributed arrival times, each causing the 
membrane potential to instantaneously step up or down by a small 
amount controlled by parameter a. We denoted by λE and λI the ar-
rival rates – average number of spikes per second – of excitatory (E) 

F I G U R E  1 Schematic representation of the model. The left and right motor neurons (red and blue circular nodes) implement the 
integrate-and-fire model, with membrane potentials vL(t) and vR(t) at time t and same rest potential V0 and fire threshold Vth. Leg-specific 
and common physiological inputs from the central nervous system (CNS; red, blue and magenta rectangular source nodes) are modelled by 
spikes of synaptic current causing steps of equal amplitude a in the membrane potentials (positive/negative steps for excitatory/inhibitory 
spikes; Poissonian arrival rates are indicated next to the input arrow). The single periodicity generator (gold) produces a T-periodic train 
of excitatory spikes with potential step amplitude A. If tk and tk+1 are the arrival times of two consecutive spikes (not necessarily of the 
same type) and vX(tk) is the membrane potential reached by the neuron just after the contribution of the k-th spike (X = L, R), the potential 
evolution in the time interval tk, tk+1 [up to but not including the contribution of the (k+1)-th spike] is an exponential decay toward V0 with 
time-constant τ (see Eq. [S2]). At the arrival of the (k+1)-th input spike, the decayed potential at time tk+1 is updated by adding/subtracting 
the spike contribution. This results in the simulation scheme detailed in Section S1

TA B L E  1 Summary of the model parameters and their calibration

Parameter Value/distribution (µ σ) Description

V0 0 Neuron membrane resting potential

Vth 1 Neuron membrane threshold potential

a 0.1 Amplitude of physiological input spikes

LM duration Non-parametric 2.47 2.43 LM duration

λE GEV 4.73 3.14 Arrival rate of excitatory input spikes

λI N 1.031λE + 0.118 + 0.002 λE 2 0.05 Arrival rate of inhibitory input spikes

p Beta 0.93 0.07 Proportion of common inputs

T GEV 24.42 5.16 Period of the periodicity generator

A LogN 0.72 0.60 Amplitude of the periodic input spikes

Abbreviations: GEV, generalized extreme value; LM, leg movement.
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and inhibitory (I) inputs, divided into common (rates p λE and p λI) and 
leg-specific (same rates (1−p) λE and (1−p) λI for both legs; Figure 1). 
The three arrival processes (common and left-/right-specific) are in-
dependent. The periodicity generator is also assumed to produce a 
series of synaptic current spikes, with period T, each spike causing an 
upward potential step controlled by parameter A.

2.2  |  Calibration

Table 1 summarizes the list of the model parameters, together with 
their calibrated values; for those that are subject-specific, the mean 
and standard deviation of the identified probability distributions are 
reported (see Section S2 for details on the calibration procedures). 
Dataset summary information is provided in Section S3 (including 
ethical approval statement). All parameters were supposed to re-
main constant during the simulation period.

Parameters V0, Vth and a are essentially scaling parameters and 
do not need calibration (see Section S2.1). We set V0 = 0, Vth =1 and 
a = 0.1 (10% of the rest-to-fire interval). This conventional choice, 
however, affects the calibration of the arrival rates λE and λI.

The duration of single-LMs was fitted on all LM durations re-
corded in the noPLMs dataset (32  subjects characterized by nor-
mal PLMs and unimodal IMI distribution, mean age 48.03 years [SD 
20.75] and 56.25% women; see Section S3). Because no common 
parametric distribution showed statistical agreement with the LM 
duration data, we used a non-parametric technique (kernel density 
estimation; Ferri et al., 2006; Gramacki, 2018; see Section S2.2). 
According to the resulting distribution, we independently obtained 
the duration of all simulated LMs at the movement onset (i.e. at the 
firing of the leg neuron). Because no significant correlation is docu-
mented between the subjects’ LM duration and PLM index, we used 
the same distribution to generate also the LM durations of virtual 
PLM subjects. This choice is in line with the primary aim of the study.

The arrival rates λE and λI of physiological input spikes, the pro-
portion parameter p between common and leg-specific inputs, and 
the membrane time constant τ characterize noPLM subjects and 
were calibrated using the noPLM dataset (see Sections S2.3–S2.5). 
The result is a τ-dependent statistical fitting for λE, λI and p, that we 
used to generate a virtual population of noPLM subjects. Specifically, 
we calibrated τ to match the shape of the IMI distribution observed 
in the noPLM dataset. The corresponding distributions identified for 
λE and p turned out to be a generalized extreme value (GEV) and a 
Beta. For the rate of inhibitory inputs λI, we identified a nearly linear 
correlation with λE.

The distributions of the two parameters, period T and amplitude 
A, of the periodicity generator were then fitted using the PLM data-
set (65 subjects, mainly affected by RLS, characterized by abnormal 
PLM index and bimodal IMI distribution, mean age 58.52 years [SD 
13.09] and 66.15% women; see Section S3). The period sample dis-
tribution was built by visual inspection, looking at the second peak 
of the subject's IMI distribution (Section S2.6), which is known to 
characterize the temporality of the PLM phenomenon (Ferri et al., 

2006). The corresponding sample of amplitude A was optimized to 
match, on average, the subject's LM index (Section S2.7). The sample 
distributions of T and A were best fitted by a GEV and a LogNormal 
distribution, respectively.

Note the twofold use of the statistical fitting for λE, λI and p. They 
were used to generate several τ -dependent virtual populations of 
noPLM subjects during the calibration of the time constant τ and 
also, for the calibrated value of τ, to generate single subject profiles 
for the calibration of the amplitude A of the periodicity generator. 
Indeed, recall that a virtual PLM subject is obtained by simply adding 
the periodicity generator to a noPLM profile.

2.3  |  Statistics

To validate our model, we compared the principal indicators derived 
from the real and simulated LM activity at the population level (one 
sample for each real and each virtual subject). We tested the LM 
index (number of LMs per hr), the PLM index (number of PLM per 
hr), the periodicity index (PI = PLM index/LM index), and short-, 
mid- and long-IMI indexes (hourly number of CLMs with IMI < 10 s, 
within the range 10–90  s, and > 90  s; Table 2). We also included 
in the comparison the principal features of monoliteral and bilateral 
LMs (Table 3). For each indicator, we looked at the Cohen's d effect 
size, a measure (based on means difference) of the discrepancy be-
tween the real and the simulated data (0.2–0.5–0.8 is indicative of a 
small–medium–large effect size). Moreover, we considered the 95% 
confidence interval (CI) of the indicator sample mean on both real 
and simulated data, and we computed their overlap. Finally, to show 
the goodness of the model as a generator of in-silico data, we used 
the Mann–Whitney U-test to statistically test the hypothesis that 
real and simulated data come from the same probability distribution.

3  |  RESULTS

Tables 2 and 3 summarize the main LM features in real and simu-
lated data, together with their comparison (see Section S1 for the 
detailed selection and simulation procedures for virtual noPLM and 
PLM subjects). We found small effect size, good CI overlap, and no 
statistically significant differences between real and simulated data 
for LM index, short-IMI index and mid-IMI index for both noPLM and 
PLM subjects (Table 2). On the contrary, data differed significantly in 
PLM index and PI, for both noPLM and PLM subjects, and in long-IMI 
index, for PLM subjects only (Table 2). Incidence and characteristics 
of monolateral and bilateral LMs were generally similar between real 
and simulated data, for both noPLM and PLM subjects (Table 3), with 
the exception of the max bilateral LM duration, for PLM subjects.

Figure 2 shows the IMI distributions of the noPLM (top panels) 
and PLM (bottom panels) groups, for both real (left) and simulated 
(right) data; a higher number of long IMIs is clearly evident in the 
comparison between real and simulated PLM data, in agreement 
with the findings reported in Table 2.
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Finally, Figure 3 shows a 5-min example of an in-silico LM series 
generated by a randomly selected virtual PLM subject.

4  |  DISCUSSION

Leg movements during sleep and, in particular, their periodic portion, 
are under the attention of clinical researchers for their potential reper-
cussions on the health status of patients suffering from conditions asso-
ciated to them, such as RLS in the first place (Ferri, 2012). There is little 
doubt that this motor phenomenon is associated with significant elec-
troencephalographic and cardiovascular transient changes which, when 
repeated every night for years, might lead to a series of neurological and 
cardiovascular sequelae. However, the assessment of their real clinical 
meaning is still under debate, and made difficult by their inter-individual 
and intra-individual (nigh-to-night) variability (Ferri et al., 2017; Figorilli 
et al., 2017). In this perspective, the arrangement of a reliable model of 
PLMs would be welcome by the scientific community because of the 
possibility to better control their variability and put forward hypotheses 
and, maybe, new ideas for their assessment and treatment.

Our calibrated model can be used to generate and simulate vir-
tual (in-silico) populations of both noPLM and PLM subjects. We 
chose to create populations of size equal to the corresponding data-
sets used for the model calibration (32 noPLM and 65 PLM subjects), 

and we compared the typical features calculated on the simulated 
LM data with those obtained from real PSG data.

A limitation of this study is that we used for the assessment of 
the model performance the same datasets available for calibration. 
However, our model is not aimed at forecasting the LM activity of 
new subjects. Our primary aim was to test the single-generator hy-
pothesis behind PLMs, a goal for which the dataset splitting into cal-
ibration and validation is not necessary. Moreover, the comparison 
was not done at the level of the single subject, but at group level. 
Indeed, we used the data on the real LM activity not to reproduce 
the real patients, but to calibrate the distributions of the model pa-
rameters from which we randomly generated groups of virtual sub-
jects. This made the comparison between the average LM activity in 
the real and virtual populations reliable.

Remarkably, the small effect size and good CI overlap among real 
and simulated data validate our model for both noPLM and PLM sub-
jects. Moreover, the absence of a statistical difference between real 
and simulated data confirms the good performance of the model. As 
expected, the agreement is very evident for the monolateral LM fea-
tures of the noPLM group, as the distribution of LM duration is fitted 
on all single-LMs in the noPLM dataset (see calibration in Section 
2.2). Remarkably, we did not find significant differences either for 
the bilateral LM features; this further supports the goodness of the 
model for noPLM subjects.

TA B L E  2 LM features in real and virtual (simulated) noPLM and PLM subjects

Recording Simulation Statistics

Mean (SD) 95% CI Mean (SD) 95% CI p-value Cohen's d CI overlap (%)

noPLM subjects (32)

LM index 13.44 (6.29) 11.3–15.6 13.54 (6.38) 11.3–15.8 0.957 0.016 95.6

CLM index 12.88 (5.58) 11.0–14.8 13.00 (6.12) 10.9–15.1 0.804 0.022 90.5

PLM index 1.54 (1.59) 0.99–2.09 0.65 (0.73) 0.40–0.91 0.019 −0.719 0

PI 0.13 (0.14) 0.08–0.18 0.04 (0.05) 0.02–0.06 0.005 −0.856 0

Short-IMI 
index

2.71 (2.15) 1.96–3.46 2.84 (1.66) 2.26–3.42 0.468 −0.034 77.3

Mid-IMI index 4.89 (2.71) 3.95–5.83 4.40 (2.34) 3.59–5.21 0.658 −0.324 56.3

Long-IMI 
index

4.55 (1.75) 3.94–5.16 5.02 (1.70) 4.43–5.61 0.405 0.291 45.5

PLM subjects (65)

LM index 56.90 (46.22) 45.7–68.1 60.69 (45.15) 49.7–71.7 0.328 0.082 70.8

CLM index 55.31 (42.67) 44.9–65.7 57.52 (42.21) 47.2–67.8 0.565 0.052 80.8

PLM index 29.17 (19.78) 24.4–30.0 14.21 (22.1) 8.66–19.8 < 0.001 −0.701 0

PI 0.55 (0.20) 0.49–0.60 0.25 (0.21) 0.19–0.30 < 0.001 −1.463 0

Short-IMI 
index

12.45 (24.69) 6.45–18.4 17.15 (11.67) 14.3–20.0 0.257 0.243 30.3

Mid-IMI index 37.12 (22.10) 31.7–42.5 35.08 (31.61) 27.4–42.8 0.390 −0.076 70.1

Long-IMI 
index

4.05 (1.76) 3.62–4.48 8.58 (2.85) 7.89–9.27 < 0.001 1.913 0

Statistical comparison by means of the Mann–Whitney U-test, the Cohen's d effect size, and the sample mean CI overlap.
Abbreviations: CI, confidence interval; CLM, candidate leg movement; IMI, inter-movement interval; LM, leg movement; PI, periodicity index; PLM, 
periodic limb movement.
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Regarding PLM subjects, we similarly found a good agreement 
(small effect size and good CI overlap; no significant statistical differ-
ence) between real and simulated data for both the monolateral and 
bilateral LM features. In particular, the model well captures the increase 
of the proportion of bilateral LMs in PLM subjects. These results pro-
vide preliminary support for the view of the single periodicity generator.

Conversely, significant differences were found for the parameters 
requiring some temporal structure among LMs. This is the case of the 
PLM index (Ferri et al., 2016) and PI (Table 2). The PLM index considers 
only sequences of at least four consecutive CLMs separated by IMIs of 
between 10 s and 90 s, and interrupted by either a non-candidate LM 
or an IMI out of the range 10–90 s. The reason for the disagreement is 
therefore rooted in the stationarity of the model parameters during the 
simulated night, in contrast to the different time structure of the real LM 
activity expressed during the different sleep stages and wakefulness. 
Indeed, looking at the numbers of IMIs in each of the three characteris-
tic intervals, i.e. < 10 s (short-IMI, characteristic of noPLM individuals), 
10–90 s (mid-IMI characteristic of PLM subjects) and > 90 s (long-IMI), 

without requiring sequencing, we found good agreement between re-
corded and simulated data (see Table 2, last block of rows). Only the 
number of long-IMIs is larger in our simulations, but this is, again, to be 
considered an artefact of the model stationarity. Indeed, there is evi-
dence that PLMs decrease along the night (Ferri, 2012), so that mid-IMIs 
are concentrated at the beginning of the night. However, calibrating a 
stationary periodicity generator that matches, on average, the number 
of real LMs (see ‘Calibration’) gives several long IMIs in lieu of few very 
long ones, the latter corresponding to night phases with essentially no 
LM activity; the number of long-IMIs is therefore overestimated.

4.1  |  Future research

It is always difficult to establish the value of a first in-silico model 
of a physiopathological phenomenon, such as PLMs, and to predict 
the possible future use of such a model. However, in order to at 
least partially address this concern, we have tried to speculate on 

TA B L E  3 Monolateral and bilateral LM features in real and virtual (simulated) noPLM and PLM subjects

Recording Simulation Statistics

Median (IQR) 95% CI Median (IQR) 95% CI p-value Cohen's d CI overlap (%)

noPLM subjects (32)

Bilateral LM

# single LM, min 2.0 (2.00–2.00) 2.00–2.00 2.0 (2.00–2.00) 2.00–2.00 1 — 100

Max 3.0 (2.00–3.00) 2.52–3.10 3.0 (2.00–3.00) 2.41–2.83 0.916 0 44.9

Median 2.0 (2.00–2.00) 2.00–2.00 2.0 (2.00–2.00) 2.00–2.00 1 — 100

Duration (s), min 1.01 (0.82–1.13) 0.92–1.14 0.96 (0.81–1.22) 0.99–1.48 0.973 0.323 26.8

Max 9.19 (8.26–9.69) 8.27–9.21 9.67 (8.37–11.8) 8.81–10.2 0.134 0.356 21.2

Median 3.34 (2.98–3.91) 3.21–3.87 3.28 (2.85–3.74) 3.12–3.68 0.462 0.147 54.7

Bilateral LM (%) 31.4 (23.5–40.0) 28.9–39.4 30.9 (15.4–43.7) 24.8–33.7 0.875 0.034 33.1

Monolateral LM

Duration (s), min 0.53 (0.51–0.57) 0.52–0.64 0.52 (0.51–0.55) 0.51–0.55 0.918 0.096 23.1

Max 8.50 (6.42–9.72) 7.04–8.56 8.69 (7.53–9.29) 7.77–8.67 0.655 0.087 48.5

Median 1.59 (1.29–1.70) 1.41–1.65 1.54 (1.46–1.69) 1.46–1.61 0.468 0.147 62.5

PLM subjects (65)

Bilateral LM

# single LM, min 2.0 (2.00–2.00) 2.00–2.00 2.0 (2.00–2.00) 2.00–2.00 1 — 100

Max 3.0 (3.00–4.00) 2.94–3.44 4.0 (3.00–4.00) 3.24–3.66 0.131 0.235 27.8

Median 2.0 (2.00–2.00) 2.00–2.00 2.0 (2.00–2.00) 2.00–2.00 1 — 100

Duration (s), min 0.92 (0.73–1.10) 0.89–1.06 0.83 (0.73–1.22) 0.93–1.11 0.115 −0.299 59.1

Max 9.71 (9.47–9.91) 9.42–9.72 12.9 (11.5–13.8) 12.2–13.4 < 0.001 2.129 0

Median 3.32 (2.84–3.96) 3.23–3.61 3.18 (2.86–3.74) 3.10–3.33 0.118 0.182 19.6

Bilateral LM (%) 39.6 (28.1–53.9) 37.5–47.6 37.6 (29.9–50.5) 37.4–44.6 0.697 0.098 69.6

Monolateral LM

Duration (s), min 0.51 (0.51–0.53) 0.51–0.55 0.51 (0.51–0.52) 0.51–0.53 0.594 0 50.0

Max 9.30 (7.35–9.77) 8.00–8.84 9.42 (8.78–9.74) 8.54–9.28 0.431 0.120 23.4

Median 1.69 (1.40–2.14) 1.67–1.93 1.51 (1.42–1.57) 1.45–1.75 0.227 −0.477 16.6

Statistical comparison as in Table 2.
Abbreviations: CI, confidence interval; IQR, interquartile range; LM, leg movement; PLM, periodic limb movement.
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possible future applications of our model. If this model will be con-
firmed to be able to simulate realistically the time structure of true 
PLMs, it might be practically useful for the following purposes. 

•	 Developing more complex and realistic models that can answer 
critical and clinical questions. For example, by including cortical 
and autonomic oscillations in the future models, it will be possible 
to better understand the relationship between these systems.

•	 Understanding the complexity of the network behind the period-
icity of PLMs.

•	 Produce countless simulations of virtual recordings, reducing the 
high costs associated with PSG and the relative burden for the 
patients.

•	 Simulate the effect of external interventions (perturbations) on 
the system, such as the effect of particular drugs on PLMs, thus 
improving safety for patients potentially exposed to side-effects. 
For instance, by comparing the results between recordings after 
administration of DAs in real patients and the virtual data, after 
switching off the virtual oscillator, we might help understanding 

if DAs act by turning off the periodic generator or by working on 
another network. Similarly, we can compare the two datasets in 
other pharmacological contexts, such as using published data on 
the effect of sedatives that we know have a scarce effect on PLMs.

•	 The parameters “A” (oscillator amplitude) and “T” (oscillator pe-
riod) could be used as new indicators of the “severity” and “tem-
porality” of PLMs, respectively, to be used in parallel with the 
recently introduced parameters, like the “PI”.

•	 Considering also the patients’ metadata, it will be possible to per-
form cluster analyses for the model parameters, favouring the im-
portant and still missing mission of PLM phenotyping.

5  |  CONCLUSION

Recalling that, in our model, a virtual PLM subject is nothing but a 
virtual noPLM subject with the addition of the periodicity genera-
tor, and that the generator is calibrated by fitting LM indexes, rather 
than PLM indicators, we conclude that the agreement we found 

F I G U R E  2 Inter-movement interval (IMI) distribution in noPLM real (top-left panel) and simulated (top-right panel) subjects, and in PLM 
real (bottom-left panel) and simulated (bottom-right panel) subjects. PLM, periodic limb movement
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between real and simulated data supports the single-generator hy-
pothesis behind PLMs.

Indeed, the Cohen's d effect size between the indicators calcu-
lated on real and simulated data and the overlap between the CI of 
the indicators sample means validate the model (Tables 2 and 3). 
Moreover, the absence of a statistically significant difference be-
tween real and simulated LM features, the incidence of bilateral LMs 
in particular, is evidence of a good performance.

The quantitative agreement was not obtained on the indicators re-
quiring a temporal structure among LMs (PLM index and PI). This, how-
ever, does not contradict our conclusion, because the disagreement is 
well explained by the simplicity of the model – the parameters station-
arity in particular – which, in turn, is what makes our model appealing.

Overall, the results exposed in this paper are definitely encour-
aging and represent a solid basis for the refinement of the model 
here presented. In particular, with more data available (including 
several recordings for each subject), specific calibrations could be 
obtained for the different sleep stages and during wakefulness, aim-
ing at a more quantitative model ready for clinical applications.
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