
sensors

Article

Skin Lesion Detection Algorithms in Whole Body Images

Michał H. Strzelecki 1,* , Maria Strąkowska 1, Michał Kozłowski 1,2 , Tomasz Urbańczyk 3,4 ,
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Abstract: Melanoma is one of the most lethal and rapidly growing cancers, causing many deaths
each year. This cancer can be treated effectively if it is detected quickly. For this reason, many
algorithms and systems have been developed to support automatic or semiautomatic detection of
neoplastic skin lesions based on the analysis of optical images of individual moles. Recently, full-body
systems have gained attention because they enable the analysis of the patient’s entire body based
on a set of photos. This paper presents a prototype of such a system, focusing mainly on assessing
the effectiveness of algorithms developed for the detection and segmentation of lesions. Three
detection algorithms (and their fusion) were analyzed, one implementing deep learning methods
and two classic approaches, using local brightness distribution and a correlation method. For fusion
of algorithms, detection sensitivity = 0.95 and precision = 0.94 were obtained. Moreover, the values
of the selected geometric parameters of segmented lesions were calculated and compared for all
algorithms. The obtained results showed a high accuracy of the evaluated parameters (error of area
estimation <10%), especially for lesions with dimensions greater than 3 mm, which are the most
suspected of being neoplastic lesions.

Keywords: skin lesion detection; whole body system; algorithm fusion

1. Introduction

Melanoma is a malignant skin tumor and is considered the deadliest of skin can-
cers. The reason for this is its rapid growth and ease of metastasis. In 2018, more than
100,000 people died of skin cancer. Although in developed countries the number of deaths
from this type of cancer is decreasing (in the USA there has been an average decrease in
death rate in years 2013–2017 by 6.3%), the number of cases is still growing (e.g., in Poland
there has been an increase from 1600 cases in 1999 to 3600 in 2018). Melanoma is almost
100% curable if detected quickly. For this reason, it is very important to increase preventive
measures aimed at promoting behaviors that prevent the formation of this cancer and
awareness of the importance of screening. It is very important to popularize mobile ap-
plications that allow independent tests to be conducted of a suspected naevi detected on
the body. Such an analysis, carried out based on a photo taken with a smartphone, allows
obtaining information about the potential risk of detecting a neoplastic lesion, which must
of course be verified by a dermatologist. Mobile applications developed for skin cancer
detection recently gained popularity; the thorough analysis provided in [1] reports 43 such
applications. However, only two of these are both currently available and were analyzed
and evaluated in scientific publications. These are SkinVision [2] and SpotMole [3]. The
first implements conditional generative adversarial neural network segmentation and SVM
for mole classification, resulting in sensitivity in the range of 57–72% and specificity of
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27–50% [4]. The second application employs the ABCD rule, providing sensitivity and
specificity equal to 43% and 80%, respectively [4]. Such parameters show that reliability
of verified mobile applications, despite significant development skin lesion detection and
classification algorithms, is still far from clinical standards. However, mobile phones are
implemented as a part of teledermatological systems that are now becoming a reality. The
comparison of four different teledermatological workflows reported in [5] demonstrated
that teledermatology is efficient in diagnosis, reaching a sensitivity greater than 90% and a
specificity greater than 80%. One of the limitations of such systems is the image acquisition
device that defines the quality of the captured lesion images: a system equipped with a
dermoscope outperformed these based on smartphones by achieving a greater probability
of correct cancer detection and lower probability of unnecessary biopsy [5].

Other approaches implemented for melanoma detection are full-body (or whole-,
total-body) systems (FBS). Contrary to classic investigations, where the attention is focused
on a particular lesion and a single image is taken using a dermoscope or a high-quality
camera, FBS captures a number of photographs of the whole body. Such a system allows
not only lesion detection, but also the possibility of comparing images acquired at different
times. In this manner, it is possible to detect lesions that evolve in time and to find new
lesions that appeared since the previous examination. Both types of changes are suspected
to be malicious. The objective of this paper is to present and compare three algorithms
aimed at detection and further segmentation of moles in whole body optical images. Such
algorithms will be a part of a future FBS that allows fast scanning of a patient’s body, and
detection and registration of lesions, because some parts of the body overlap in a number of
acquired images. This FBS would be intended as a device of dermatology clinics enabling
fast and accurate analysis of the whole body to detect suspicious lesions. Due to its fast
examination, the system could be implemented for screening or epidemiological studies.

FBSs are not very common in the literature. The vast majority of research focuses
on detection and classification of single lesion images. There are a plethora of different
approaches developed for this task—good surveys regarding recent advancements in
melanoma detection can be found in [6,7]. Among various techniques one should pay
attention to deep neural networks, a tool widely used in different biomedical image
analysis tasks. Efficiency of DNNs in dermoscopic image segmentation and analysis was
also previously demonstrated—recent applications of various deep learning systems for
skin diagnosis are presented in [8–11]. An FBS for detection of new melanocytic lesions is
described in [12]. It implements 3D stereo capture system with 22 acquisition units and
LoG filtering for lesion segmentation, resulting in 90% recall. Another FBS is presented
in [13,14]. It is based on a cabin equipped with 21 high resolution cameras that capture
the patient’s body in 24 turnable positions. In [15], wide body images are analyzed to
detect suspicious pigmented lesions. Larger lesions (diameter > 3 mm) were manually
segmented, and ABCD features were then calculated for each lesion. The logistic regression
classifier provided over 84% sensitivity and 75% accuracy in detection of suspicious lesions.
An ACNN-based approach to detection and classification of suspicious lesions in whole
body images is presented in [16]. The blob detection algorithm was implemented for
lesion identification, whereas various CNN architectures were applied for classification
of detected lesions into six classes (including nonsuspicious and suspicious lesions). The
presented system was tested on a large number of lesions (over 33,000) and reached 80%
average accuracy for suspicious classification endpoints. The developed CNN algorithm
also obtained good agreement with dermatologists’ assessment. None of the above systems
was tested in a dermatological clinic.

In our system we implemented two novel lesion detection and segmentation algo-
rithms. In contrast to previously implemented solutions, based on global image filter-
ing [12,17], these algorithms make use of local lesion properties, related to their gray-level
distribution and shape, that allow lesion discrimination from the skin.

• The first approach is based on local skin modelling and analysis of histograms of
selected color components. When an analyzed image fragment contains a lesion,
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it is reflected in its histogram. Analysis of histogram shapes enable efficient lesion
segmentation (Section 2.2.1).

• The second algorithm assumes that the vast majority of lesions present in the whole-
body image can be modelled by a finite number of lesion patterns. Two-dimensional
cross-correlation functions are calculated for such patterns and the analyzed image.
Functions’ maxima indicate the lesion position in the image. Detected lesions’ regions
are further segmented by the active contour approach to detect the lesion shape
(Section 2.2.2).

Another novelty of this paper lies in an efficiency comparison of the above algorithms
that implement classic image processing approaches with a deep network model (YOLOv3)
adopted for analysis of whole-body skin images (Section 2.2.3). Moreover, a fusion of these
three algorithms was performed to check if a combination of two different object detection
paradigms (the classic one, based on the selection of predetermined object features such
as its shape and intensity, and deep learning-based approach, where object features are
determined by the network internally) gives better results than either of them separately.

2. Materials and Methods
2.1. Image Acquisition System

The constructed device is presented in Figure 1. To capture the pictures of the whole
area of the skin, the device is equipped with a system which automatically changes posi-
tion of an RGB digital camera in two directions: vertically and around the person being
photographed (see 3 and 4 in Figure 1). As an imaging device in the constructed system,
a commercially available digital camera (SONY DSC RX100) was used (see 2 in Figure 1).
This digital camera is equipped with a 20 MP (5488 × 3664 pixels) back illuminated CMOS
sensor and a lens with focal length in the range of 8.8–25.7 mm and up to 2.9× optical
zoom. During examination the patient stands on a motionless platform at the center of the
device (see 1 in Figure 1). The boom to which the camera is attached gradually rotates and
stops at a selected number (usually 8) of equidistant angular positions. At each angular
position the camera is moved vertically and stops at a selected number of positions (usually
5 equidistant positions: ranging from 35 to 165 cm above the level of platform at the center
of device). For each stop of the camera in its vertical movement the camera captures a
picture. Usually, the examination contains 32 overlapping pictures which cover the whole
area of skin of the photographed person; however, the number of photos can be easily
modified by changing the parameters of examination. The construction of the device allows
modification of the distance between the camera and the axis of rotation of the boom (in
range from 60 to 120 cm); however, in most conducted examinations the optimal 80 cm
distance between the camera lens and rotation axis was used. To provide sufficiently strong
and homogeneous illumination of the photographed person, a system of four vertical LED
strips with diffusers is used. The LED strips are attached to the rotating boom on both
sides of the camera (see 5 in Figure 1). The color temperature of the LEDs is 4000 K (so-
called neutral-white [18]) and the total luminous power of the systems is over 8000 lumens.
The choice of these parameters was rather arbitrary and resulted from the experiments
performed. The chosen color temperature was also best perceived by the patients. The
device is also equipped with a gray background (see 6 in Figure 1), which rotates with
the camera boom. Due to this set-up, for each position of the camera the background is
situated behind the person being photographed. To reduce the total examination time, the
device can be equipped with up to four additional digital cameras. In that case the number
of stops in vertical movement is significantly reduced.

2.2. Skin Image Analysis

Using the acquisition system described in Section 2.1, 480 skin images for 15 patients
were collected, of which the 50 with the highest number of lesions were selected for further
analysis. These images represent different fragments of the human body. All these images
were preprocessed to detect the skin region only. Different color spaces were tested to find
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the optimum separation of the body from the background; finally, it was decided to use
RGB space and modified skin detection algorithm described in [19]. Next, a hair-removal
algorithm was applied, based on the dull razor approach [20]. Preprocessed images under-
went segmentation with use of three algorithms, as described in the following sections. 
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Figure 1. The device used for capturing pictures of whole area of human skin. 1—The motionless 
platform on which the photographed person stands; 2—the Sony DSC RX100 digital camera; 3—
illustration of camera movement in vertical direction; 4—illustration of camera movement around 
the photographed person; 5—LED strips providing strong and homogenous illumination; 6—gray 
background. 
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Figure 1. The device used for capturing pictures of whole area of human skin. 1—The motion-
less platform on which the photographed person stands; 2—the Sony DSC RX100 digital cam-
era; 3—illustration of camera movement in vertical direction; 4—illustration of camera movement
around the photographed person; 5—LED strips providing strong and homogenous illumination;
6—gray background.

2.2.1. Local Skin Model Based Approach

Overall, human skin is not homogeneous. It has various structures that are to a
greater or lesser extent visible in partial human body images acquired in visible light. Such
structures may include subcutaneous blood vessels, pathological and benign melanocytic
lesions, hemangiomas, wounds, scars, discolorations, hair follicles, hairs, anatomical
structures such as the nipples and the navel, and many others. Some of these structures are
more or less visible depending on the parameters and properties of the image acquisition
system, such as resolution, type and brightness of lighting, sensitivity of optical sensor,
focal length, and lens aperture. Despite the heterogeneity, small fragments of healthy skin
are characterized by clustered near-Gaussian intensity histograms of the three primary
colors (Figure 2).

The above property is used by the melanocytic lesion detection algorithm we propose.
Analyzing the histograms of skin fragments with melanocytic nevi, we found that this
type of nevus causes the formation of a kind of “tail” on the side of low brightness values,
especially in the histograms for the green and blue components (Figure 3). Identification
of pixels belonging to the “tails” for green and blue components leads to melanocytic
lesion discovery.

To identify intensities belonging to the tail, one should identify histogram distribution
for the healthy skin. This is possible if the nevus is a smaller part of the analyzed fragment
of the image and the remaining part is healthy skin. In such a situation most of the
histograms resemble a Gaussian distribution. Because the “tail” is present only for the
lower intensity side, the border between normal skin and the lesion intensities can be
estimated as the mode (highest point) of histogram, minus the width of the Gaussian
distribution, which in turn can be estimated as the maximum histogram value minus
the mode.
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Figure 2. Example of healthy skin fragments with corresponding brightness histograms for the three color components—red,
green, and blue.
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Figure 3. Example of a skin fragment with a melanocytic change with corresponding brightness histograms for the three
color components—red, green, and blue.

To improve mode estimation histogram smoothing, an averaging filter can be applied
(see Figure 4). The performed experiments demonstrated that such filtering reduces the
relative error in determining the area of the nevus by a few percent.

The lesion detection procedure is described below as Algorithm 1. This algorithm
must be applied to overlapping fragments all over the patient’s body. Pixels identified as
background, underwear, or hair are excluded from the analysis.
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Algorithm 1 Segmentation method based on local skin model

Function GetLesionMaskSkinModel
Data: JSKIN—input RGB image
Result: LM—lesion mask
Divide input image into overlapping tiles: JTile ← JSKIN
Create empty lesion mask LM having the size of JSKIN
foreach JTile in JSKIN

Extract green and blue channels from tile: G, B← JTile Determine a histogram for the
green and blue color components. Smooth the histograms with the averaging filter.
Find mode and maximum value for both histograms. Find the threshold values for the
green and blue components

thG = modeG − (maxG −modeG)
thB = modeB − (maxB −modeB)

Find the lesion mask

LM(x, y) =

{
1 f or (G(x, y) < thG)&(B(x, y) < thB)

0 otherwise
end
Label lesion mask in the way that each separate lesion will have a unique numerical
identifier

End

2.2.2. Correlation-Based Approach

This method assumes that there are a finite number of mole patterns that dominate in
the whole-body images. Thus, proper identification of such patterns allows detection of
the majority of skin moles based, e.g., on a correlation method. Masks that contain most
typical mole patterns (selected based on analysis on acquired images) move across the
image to estimate a set of correlation functions. The normalized cross-correlation between
the image and the template is estimated by the formula:

γ(u, v) = ∑
x,y

[
f (x, y) − f u,v

][
t(x− u, y− v) − t

]
{

∑x,y

[
f (x, y) − f u,v

]2
∑x,y

[
t(x− u, y− v] − t

]2 }0.5 (1)

where

f(x,y)—is the image,
t(x,y)—is the lesion template,
t is the mean of template,
f u,v—is the mean of f(x,y) in the region under the template.

Next, spots are detected in the coordinates of the correlation matrix where it reaches
local maxima. A set of discriminated spots is a combination of partial results separately
obtained for correlation with each mask.

These spots that contribute to the pattern set were validated by a medical doctor as
“for inspection”. The choice of the proper spot masks is the essential factor of the developed
algorithm. Due to this, several masks with the patient’s spots were extracted from the
images and the cross-correlation was calculated. The masks that lead to the high value
of correlation maxima, and to a large number of maxima should be considered as mole
patterns. Such masks are characterized with the biggest similarity to the greatest number
of other spots. Thus, they are good candidates for finding similar types of spots in other
images (including those that are not a part of currently analyzed set). An exemplary set of
masks is shown in the Figure 5.



Sensors 2021, 21, 6639 7 of 18Sensors 2021, 21, x FOR PEER REVIEW 4 of 7 
 

 

 
(a) 

 
(b) 
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Figure 4. Smoothed version of histograms: (a) a healthy skin fragment (from Figure 2) (b) skin
fragments with a melanocytic change (from Figure 3).

Sensors 2021, 21, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 5. Exemplary masks with the spots. 

The correlation matrix is generated for every mask and the processed image. Search-

ing the spots is based on finding the local maxima values in the correlation matrix (shown 

in Figure 6a). A few steps must be performed to delete unnecessary artefacts (Figure 6b). 

First, the areas where the correlation is less than zero are deleted (Figure 6c). Second, a 

binary image is created by thresholding the correlation matrix. Finally, searching for spots 

that are bigger than 1 mm and smaller (or equal) than the biggest mask image takes place. 

The rest are rejected (Figure 6d). The combination of all spots detected by each mask gen-

erates the final image with detected spots, as shown in Figure 6e. 

 

Figure 6. Subsequent steps of spot detection (one mask analysis). (a) correlation matrix, (b) sup-

pressed local maxima’s below threshold, (c) artefacts removed, (d) spots detected for given 

mask,(e) combined results for all masks. 

Finally, detected spots are segmented using the Active Contour (AC) method [21] 

using the Y channel of YCbCr color space. Centers of the masks are the starting points for 

the AC function for region expansion. Sample segmentation results are presented in Fig-

ure 7. The method’s operation is summarized by Algorithm 2. 

 

Figure 7. Exemplary masks 1 and its segmentation 2—by dermatologist, 3—by the software. 

Algorithm 2: Spot detection based on cross-correlation between mask and the image. 

Function spotDetectionCCorrelation 

Figure 5. Exemplary masks with the spots.



Sensors 2021, 21, 6639 8 of 18

The correlation matrix is generated for every mask and the processed image. Searching
the spots is based on finding the local maxima values in the correlation matrix (shown in
Figure 6a). A few steps must be performed to delete unnecessary artefacts (Figure 6b). First,
the areas where the correlation is less than zero are deleted (Figure 6c). Second, a binary
image is created by thresholding the correlation matrix. Finally, searching for spots that are
bigger than 1 mm and smaller (or equal) than the biggest mask image takes place. The rest
are rejected (Figure 6d). The combination of all spots detected by each mask generates the
final image with detected spots, as shown in Figure 6e.

Finally, detected spots are segmented using the Active Contour (AC) method [21]
using the Y channel of YCbCr color space. Centers of the masks are the starting points
for the AC function for region expansion. Sample segmentation results are presented in
Figure 7. The method’s operation is summarized by Algorithm 2.

Algorithm 2 Spot detection based on cross-correlation between mask and the image.

Function spotDetectionCCorrelation
Data: JSKIN—input RGB image

MS—list of model spots (masks)
Result: FDS—detected spots (location, area, MaxFeretDiameter)
Selecting green channel from images: JG ← JSKIN, MSG ←MS
foreach msi in MSG

Cross-correlation calculation: cci = crossCorrelation(JG, msi)
Spots detection: dsi = maximaDetection(cci, sensit)
Adding detected spots to the list: DS = DS + dsi

end
Removing duplicated spots: DS = removeDuplications(DS,minDist)
Removing spots close to background: DS = removeCloseToBG(DS,JG)
Detected spots segmentation: FDS = spotsSegmentation(DS)

end
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2.2.3. Deep Learning-Based Approach

Another approach we propose is based on the method of object detection (indicating
their place in an image with their height and width) using the YOLO model [22]. This is an
object detector that uses functions learned by the deep convolutional neural network to
detect an object. Improved versions have since been released, including the one we used
in this approach. YOLOv3 uses several modifications to improve training and increase
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performance, including better skeleton classifier and multi-scale predictions, which are
fully described in [23]. This model is characterized by extremely fast operation, and can
even be used in devices that process images in real time, especially if it uses the computing
power of the GPU (graphics processing unit).

In this study, the YOLOv3 model was implemented based on the Darknet [24] frame-
work. This model makes use of only convolutional layers, making it a fully convolutional
network (FCN). It has 53 convolutional layers with skip connections and upsampling layers
(see Figure 8 for details).
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Minor modifications were made to adapt the architecture to the problem under study.
The main element was the limitation of decision classes. We are looking for skin lesions,
and the rest of the image should be ignored (background), so the class is limited to one.
The input layer size was 416 × 416 pixels. The usual approach is to reduce the dimensions
of the original image to the size of the input layer, but then we would lose information
about small skin lesions.

Therefore, we decided to cut the original image into frames that overlap (as shown in
Figure 9) to avoid frames with border object location. The mean width of the overlapping
was 118 pixels.

The obtained frames are characterized by small (compared to the background area)
regions of interest. That is why only frames with skin lesions were used in the process
of training the network. In total, for 32 analyzed images, 945 frames with lesions were
obtained. They were divided into training (67% frames) and validation (33% frames) sets.
To increase the number of training samples, data augmentation was applied. This was
undertaken by adding 8 different copies of the frame (4 × flip, 3 × rotate and transpose).
To improve the network accuracy, during the learning process, the saturation and exposure
were changed randomly by up to 20% [25]. Network validation was performed using
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three-fold cross-validation to assess its generalization. The division of frames into the test
and training set was made in such a manner that the overlapping areas of the frames did
not duplicate in both sets. Network performance parameters were calculated as mean
values of these obtained for each of the three validation schemes.
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Neural network training was performed using the Darknet framework, using an
NVIDIA GF RTX 2080 Ti GPU with 11 GB VRAM and 4352 CUDA cores. To reduce the
possibility of overfitting the data, a transfer learning technique was used: each convolu-
tional layer was initiated from the Darknet-53 model pre-trained in ImageNet, a dataset
containing 1.5 million natural images of various origins in 1000 classes [26]. The training
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The boundary box containing the highest probability values represents a model deci-
sion that locates the object of interest. Next, the center point, dimensions along the vertical
and horizontal axes, and the confidence prediction of the lesion were calculated. Finally,
all detected lesions were marked in the full resolution image. The problem of dupli-
cate detections appearing due to overlapping image frames was solved by applying the
Non-Maximum Suppression (NMS) method [27]. Next, the skin lesion segmentation was
performed within each previously detected bounding box. For this purpose, the Otsu
method [28,29] was used preceded by median filtration (kernel size equal to 5 pixels) to
reduce the noise in the box. The method’s operation is summarized by Algorithm 3. Sample
segmentation results are presented in Figure 11.

Algorithm 3 Spot detection based on CNN

Function spotDetectionCNN
Data: JSKIN—input RGB image

MW—weights of the trained model
MC—net configuration

Result: FDS—detected spots (location, area, confidencePrediction)
Cut the original image into overlapping frames: JFRAMES ← JSKIN
foreach jFRAME in JFRAMES

Run network and gather predictions lists:
NETOUT = netDetections(jFRAME, MW, MC)
Add detection to list: NET += netOUT

end
Removing duplicated detections: NET = removeDuplicationsNMS(NET)
foreach net in NET

Detected spots segmentation: FDS = spotsSegmentation(net)
end

end
where:
netDetections (jFRAME, MW, MC)—the DNN model processes the image frame returning the
detections in the form of a bounding box.
removeDuplicationsNMS(NET)—Non Maximum Suppression method.
spotsSegmentation(net)—processing areas of interest using the Otsu method and median filtering.
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3. Results and Discussion

Lesion detection reliability was evaluated by comparing the obtained segmentation
results for each method with ground truth images where lesions were marked by a der-
matologist. Analysis was performed for three lesion size groups: 1–2 mm, 2–5 mm and
>5 mm.

Summarized results obtained for all datasets are presented in Table 1. T (true) is the
number of reference lesions marked manually by experienced dermatologist. TP (true
positives) is the number of real lesions identified by the given method, FN (false negatives)
is the number of lesions not recognized by the method and FP (false positives) is the



Sensors 2021, 21, 6639 12 of 18

number of detected image objects by the given method which do not represent lesions (FP
represent, e.g., artifacts). The differences in the T numbers between the methods is caused
by small differences in preprocessing stages between the methods, mainly in background
and underwear detection. False positives were calculated only for all cases because the
actual size of lesion were assessed based on annotated lesions.

Table 1. Lesion counts for 3 segmentations methods and for results obtained by considering all method outcomes.

Size
[mm] Histogram Correlation CNN Fusion

(Majority Voting)

T TP FN FP T TP FN FP T TP FN FP T TP FN FP

1–2 626 578 48 635 523 112 619 559 60 623 575 48

2–5 725 705 20 728 704 24 715 700 15 725 712 13

>5 25 24 1 25 24 1 25 24 1 25 24 1

All 1376 1307 69 854 1388 1251 137 292 1359 1283 76 75 1373 1311 62 157

Sensitivity and precision as measures of lesion detection quality are presented in
Table 2. These measures are defined as follows:

sensitivity =
TruePositives

TruePositives + FalseNegatives
(2)

precision =
TruePositives

TruePositives + FalsePositives
(3)

Table 2. Lesion detection quality measurements for 3 segmentation methods and for results obtained by considering all
method outcomes.

Size [mm]
(# Lesions) Histogram Correlation CNN Fusion

(Majority Voting)

Sensitivity Precision Sensitivity Precision Sensitivity Precision Sensitivity Precision

1–2 (628) 0.92 0.82 0.90 0.92

2–5 (726) 0.97 0.97 0.98 0.98

>5 (25) 0.96 0.96 0.96 0.96

All (1379) 0.95 0.60 0.90 0.81 0.94 0.94 0.96 0.91

Precision was calculated for all cases because the actual size of lesions was assessed
based on annotated lesions and no false positives count was available for size classes.

Three lesion sizes (1–2 mm, 2–5 mm, >5 mm) were assumed for checking of detection
accuracy for all these ranges. The reason for separately analyzing the biggest lesions
(>5 mm) is that we wanted to check if their detection did not deteriorate for some cases.
If this occurred, the developed methods would not correctly detect large nevi which are
potential neoplastic changes. This table also presents results for an approach that considers
a fusion of all methods. In these data, a lesion is considered as detected when is indicated by
at least two methods. Resulting images constructed based on results of three segmentation
methods (using “majority voting” rule) are compared with ground truth images and the
same parameters are calculated to assess the combined method efficiency.

It is clearly seen from Table 1 that the best results in terms of precision value were
obtained for the CNN-based approach. Even with a relatively small training dataset
the network was able to minimize the number of FP cases, while also failing to detect
a relatively small number of lesions (FN). Most errors generated by this approach were
caused by untypical shadows located in specific body fragments (like in the auricle) which
disturbed the appearance of the lesion. The histogram-based method represents the
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opposite behavior. It performs well in not missing true lesions. However, the price paid for
this is high detection of objects that do not represent lesions at all. This was mainly caused
by jewelry (worn by some patients), head hair and underwear segmentation problems,
skin folds, men’s warts, and shadows in the image. The approach based on correlation
resulted in precision compared to the other two methods, while the sensitivity was slightly
lower. The reason for errors in this case was shadows in the image due to uneven lighting.
This caused many false detections. This algorithm also failed when the lesion was placed
near the edge of the patient’s figure or close to the underwear. The content of the mask
is also very important. Masks must be characterized by a large gradient between the
lesion and the background, otherwise, many areas where there is no lesion are detected.
The masks must also have an even background. If not, shaded areas are detected which
do not contain moles at all. Promising results were obtained for the “majority voting”
method. This provided highest sensitivity whereas precision was smaller than given by the
CNN. This was caused by the large amount of FP for both histogram and correlation-based
approaches. Thus, the resulting number of FP after applying the merging rule was also
high. Importantly, all methods worked well for larger lesions (size >2 mm), which may
represent potential neoplastic changes. Segmentation results provided by the four methods
are illustrated in Figure 12.
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green areas represent non-lesion objects identified by one of detection methods (FP), light blue objects represent the correctly
detected lesions (TP). For the sake of clarification, an example of FN is additionally marked by a black circle on (c).

The obtained results were also compared to these reported in literature. Two full-body
systems described in [12] were used as a reference. In the previous study, a sensitivity of 0.9
was achieved for lesions, with a precision of 0.5 in the case of small (3 mm) lesions and 0.8
for larger new lesions (5 and 7 mm). In our study we demonstrated higher sensitivity for all
algorithms; the highest was obtained for the fusion method (0.96). Precision for all lesions
in our case was lowest for the histogram-based approach, whereas it was significantly
higher for CNN and fusion approaches (0.94 and 0.91, respectively). Thus a “majority
voting” method outperformed both sensitivity and precision of the described system,
justifying the correctness of the adopted segmentation methods and opening the way
for further tests. In [17], a system for lesion detection in optical images of larger body
fragments (arm, forearm) was presented. The detection algorithm used there is based on
difference-of-Gaussian (DoG) filters followed by an SVM classifier. The reported results
show sensitivity in the range of 0.80–0.85 and accuracy in the range of 0.76–0.79, depending
on the SVM working conditions. A comparison of the results is shown in Table 3. For the
second FBS [13,14], quality measures were provided for lesion matching procedures only.
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The accuracy of the detection of lesions was summarized by the statement that the system
detects almost 100% of the skin moles, which, however, makes it impossible to compare
the obtained results with our solution. The other systems described in [15,16] are oriented
for detection and classification of suspicious lesions in whole-body images; thus, detection
results presented there cannot be compared with ours.

Table 3. Comparison of systems’ performance.

Reference Size
[mm] Sensitivity Precison

Bogo et al. [12] 1–3 0.90 0.50
>5 0.90 0.80

Taeg et al. [17] all 0.80–0.85 -

Ours
(Fusion approach)

1–2 0.92 -
>5 0.96 -
all 0.96 0.91

In addition, the quality of the applied lesion segmentation algorithms was investigated.
There were three such algorithms applied, a different one for each detection method. For
the histogram method, segmentation of nevi was performed based on the analysis of local
image brightness distributions. In the case of correlation, approach lesions were segmented
using the active contour approach. In deep learning, detection of lesions was undertaken
with the use of YOLO networks, whereas for their segmentation, the Otsu thresholding was
used. To evaluate the accuracy of each segmentation technique, the selected geometrical
parameters were calculated for detected skin lesions: area, diameter of equivalent circle (a
circle that has the same area as the lesion), and three features of ellipse that approximates
lesion’s shape—major and minor axes sizes, angle between major axis, and Ox axis. In
this case, analysis was performed for two lesion size groups: 1–3 mm and >3 mm because
according to clinical evidence most melanomas are bigger than 3 mm [30]. The reference
values were the geometrical parameters calculated for the mole’s outlines marked by a
dermatologist. A relative error (3) was determined for each of the parameters:

∆P =
(|P− Pder|)

Pder
·100% (4)

where:

P—the measured value of the parameter for nevi detected by various methods,
Pder—the parameter value measured for the outlines of lesion marked by a dermatologist.

The obtained error results, averaged for 100 analyzed lesions, are presented in Table 4.
The error values for the segmentation results constituting a fusion of three methods were
also determined, i.e., the logical sum of the superimposed results of the lesion segmentation
for individual methods was assumed as the final result of segmentation (Fusion rows in
Table 4).

It should be noted that the geometric parameters are salient features taken into account
when assessing individual nevi by a trained dermatologist. The diameter is especially
important when comparing the images of the melanocytic nevus taken over a period
of time [30–32]. A significant increase in the diameter of a nevus between consecutive
examinations is a strong indicator that the melanocytic nevi can be potentially dangerous.
Considering each method separately, the Active Contour provides the most accurate
segmentation. This confirms the repeatedly proven effectiveness of this method in various
tasks of detecting objects in images. This method provides the lowest average values of
the relative measurement error of all analyzed geometric parameters of the nevi. Such an
approach has proven to be particularly effective for small nevi with diameter <3 mm. The
fusion method provides the best measurement accuracy for large lesions (>3 mm). This
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result shows that, in general, all segmentation methods tend to detect a slightly smaller
lesion than is the ground truth. Taking into account the logical sum of all segmentation
results eliminates this effect, ensuring relatively accurate measurement of the geometry of
the lesions (errors do not exceed 10% for all calculated parameters). This also results in
better lesion shape reproduction—the Dice coefficient achieved the biggest values (0.80
and 0.86 depending on lesion size) for the fusion approach. In general, these errors are
smaller for large lesions than for small ones, which is understandable because small lesions
(especially these about 1 mm in size) are not accurately reproduced in the image and their
segmentation is problematic. However, from the point of view of detecting suspicious nevi,
it is important to accurately measure the geometry of any lesion bigger than 3 mm due to
the highest probability of developing neoplastic changes.

Table 4. Averaged relative errors [%] for geometrical parameters calculated and Dice coefficient [unitless] for lesion characterization.

Size
[mm] Area Diameter of

Equivalent Circle
Ellipse

Major Axis
Ellipse

Minor Axis
Ellipse
Angle

Dice
Coefficient

Histogram
(brightness distribution)

1–3 24.62 12.49 0.54 14.36 16.18 0.79
>3 14.80 8.19 0.45 8.74 10.69 0.86

Correlation
(Active contour)

1–3 20.14 10.89 0.56 12.91 14.42 0.74
>3 23.79 13.54 0.35 12.55 14.12 0.81

CNN
(Otsu threshold.)

1–3 28.53 15.99 0.47 18.27 19.65 0.77
>3 21.72 12.46 0.51 13.09 13.17 0.79

Fusion
(majority voting)

1–3 24.35 15.41 0.56 16.76 24.28 0.80
>3 9.84 4.95 0.41 7.33 8.37 0.86

A significant limitation of our study is the reduced dataset used for network training.
The reason for this is the need to develop analysis algorithms strictly for images recorded
by the system under development (the number of imaged volunteers was limited due to
the COVID-19 pandemic), because in the future it will be used in a dermatology clinic for
screening. Therefore, we focused on images, with properties determined by the imple-
mented cameras, lighting, and acquisition method. These elements influence algorithm
performance, which may be different for images acquired in other conditions (e.g., those
available in public databases).

4. Conclusions

In this study, three methods of segmentation of nevi in the patient’s full body images
were presented along with their quantitative analysis. The preliminary results are promis-
ing, particularly for the bigger lesions (size >3 mm) where fusion methods that combine the
results of the individual approaches ensure good both detection and segmentation results.
The majority vote fusion exhibits the highest sensitivity among all three approaches. Fur-
ther work will focus on testing and optimization of these methods, especially on extended
datasets on new patients. Moreover, the effort will be made to reduce the number of FP
detections to improve the system’s precision. We expect that, in particular, increasing
the size of the training sets with new photos (annotated photos, which we are currently
gathering in large quantity) will lead to an even better performance of the CNN. We also
plan to develop and implement image matching methods to identify the same lesions that
appear in different photos taken for different positions of the patient’s body. This will
enable the development of complete documentation of all patient’s moles, determination
of their geometric parameters, and their further analysis by a dermatologist.
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