
Review
Microfluidics for detection of exosomes and
microRNAs in cancer: State of the art
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Exosomes are small extracellular vesicles with sizes ranging
from 30–150 nanometers that contain proteins, lipids, mRNAs,
microRNAs, and double-stranded DNA derived from the cells
of origin. Exosomes can be taken up by target cells, acting as a
means of cell-to-cell communication. The discovery of these
vesicles in body fluids and their participation in cell communi-
cation has led to major breakthroughs in diagnosis, prognosis,
and treatment of several conditions (e.g., cancer). However,
conventional isolation and evaluation of exosomes and their
microRNA content suffers from high cost, lengthy processes,
difficult standardization, low purity, and poor yield. The emer-
gence of microfluidics devices with increased efficiency in
sieving, trapping, and immunological separation of small vol-
umes could provide improved detection and monitoring of
exosomes involved in cancer. Microfluidics techniques hold
promise for advances in development of diagnostic and prog-
nostic devices. This review covers ongoing research on micro-
fluidics devices for detection of microRNAs and exosomes as
biomarkers and their translation to point-of-care and clinical
applications.
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INTRODUCTION
Effective clinical diagnosis is necessary for early detection of cancer
and monitoring tumor progression. Biomarkers and individual-spe-
cific molecular information have improved the process of clinical
diagnosis and management of cancer in terms of identification, deter-
mination of disease burden and stage, and selection of the most effec-
tive treatment approach.1
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Cancer contributes to a large proportion of global deaths each year. The
International Agency for Research on Cancer reported an incidence
rate of 18.1 million and a mortality rate of 9.6 million worldwide in
2017.2,3 Cancer is responsible for approximately one-sixth of all deaths
worldwide, with an estimated 43.8 million people living more than
5 years after being diagnosedwith cancer. Early, accurate, and econom-
ical diagnosis of cancer at molecular levels is critical to improve man-
agement, lower care costs, and boost therapeutic efficiency.4 Tissue bi-
opsy, one of many forms of direct tumor biopsy, involves removing
cells from the body with special needles or surgery and is a common
step in standard clinical procedures for assessment of the tumor pro-
file.5 The study of cancer cells and other cancer-related biomolecules,
uthor(s).
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along with their microenvironment, using bodily fluids is an attractive
approach to overcome the limitations of tissue biopsy to monitor dis-
ease progression. Over the last decade, several experimental studies
have used analysis of body fluids, such as blood, serum, plasma, urine,
saliva, cerebrospinal fluid, or pleural effusions, to investigatemolecular
cancer biomarkers.6,7 Also known as fluid biopsy, liquid biopsy is iden-
tification of tumor-derived components by sampling body fluids in a
minimally invasive or non-invasive manner.8

Exosomes are small extracellular vesicles composed of a lipid bilayer
membrane containing membrane-specific proteins that are 30–
150 nm in size.9 It is difficult to determine whether extracellular ves-
icles (EVs) are exosomes based only on their size. Confusion about the
origin and nomenclature of EVs has spread throughout the literature
because vesicles with the same size as exosomes but that bud from the
plasma membrane have also been called exosomes.10,11 The vesicle
size distribution typically associated with exosomes is a 30- to
150-nm diameter, but their identity is based largely on their distinc-
tive cup-shaped morphology seen in transmission electron micro-
scopy images. However, much broader size distributions have been
reported from some laboratories, and spherical vesicles with the
morphological properties of exosomes and diameters up to
�200 nm have been directly observed in cryogenic transmission elec-
tron microscopy (cryo-TEM) images.11–13

Various exosomal cargos (e.g., DNA, messenger RNAs [mRNAs], mi-
croRNAs [miRNAs], and proteins) are protected from degradation by
the lipid bilayer membrane. Exosomes can be found circulating freely
in some body fluids, which can be employed as clinical samples.14

Exosomes are therefore appealing candidates for designing new can-
cer detection methods.15,16 miRNAs, which are non-coding, single-
stranded, endogenous small RNAmolecules found inmost eukaryotic
organisms, can be also used to detect alterations in normal cell path-
ways.17 miRNAs are involved in post-transcriptional regulation of
their target genes and have been shown to participate in regulation
of more than 30% of the human genome and in almost all funda-
mental cell processes.18,19 miRNA expression patterns are often
altered during normal developmental stages and in pathological con-
ditions such as senescence, cardiovascular disease, and cancer.20,21

When miRNAs are encapsulated in EVs or attached to special lipid
proteins, they are protected from RNase digestion and can be detected
in plasma or serum in a remarkably stable manner.22,23 As a result,
these small molecules are promising biomarkers used in fluid biopsies
for cancer detection.22

First introduced as a biological tool in the early 1990s, microfluidics is
now a field of study that manipulates microliter volumes in micro-
channels ranging in size only from 1–1,000 mm. Fluid flow is thus
purely laminar, allowing precise monitoring of molecular concentra-
tions.24,25 This integrative technique, which is now well recognized
for controlling reagents in miniaturized devices, has progressed
dramatically since then.26,27 Reduced sample size, less reagent con-
sumption, rapid processing, increased sensitivity, automation, and
real-time analysis are benefits of using microfluidics.28 One reason
for using microfluidics methods in the life sciences is to adapt la-
bor-intensive laboratory procedures in a manner similar to auto-
mated electronic circuits. The first microfluidics applications
included electrophoresis on a chip, DNA microarrays, and polymer-
ase chain reaction.29 After over a decade of progress in employing bio-
sensors and single-cell assays, microfluidics-integrated devices have
been expanded to include manipulation of RNA, proteins, and
mammalian cells to improve diagnosis and prognosis. Biologic micro-
fluidics devices can be employed in innovative formats to investigate
more detailed cancer properties.

MICROFLUIDICS AND CANCER
The Global Cancer Observatory (GLOBOCAN) 2018 reported about
18.1 million new cancer cases and 9.6 million cancer deaths in 2018
worldwide.30 Researchers have usedmany cancer screening, predictive
determination, and tracking approaches to prevent and treat cancers.
Few effective diagnostic techniques have been found so far that do not
damage the affected individual to some extent during the diagnosis
phase. Excessive ionizing radiation, for example in computed tomog-
raphy (CT) scans, can pose possible health risks to the individual, espe-
cially at younger ages.31 Less intrusive methods, like ultrasound scans
or magnetic resonance imaging (MRI), on the other hand, are consid-
ered insufficient for diagnosis of non-advanced or residual can-
cers.32,33 Tumor heterogeneity undermines the reliability of invasive
“solid biopsy” procedures to monitor complex changes at the cellular
level.34,35 Not only are these procedures invasive, but they can be
inconvenient and expensive for the affected individual. In addition,
people are more likely to be diagnosed at a later stage in the absence
of regular screening. A late diagnosis can lead to worse treatment re-
sponses and lower 5-year survival rates.36 When it is necessary to
continuously track the individual’s treatment response, improved can-
cer diagnosis methods should be less invasive andmore affordable, al-
lowing tumors to be detected and treated early. Exosomes and cellular
RNAs have therefore received increasing attention in recent years for
diagnosis of cancer and monitoring response to treatment.37

Conventional tests, such as polymerase chain reaction (PCR), enzyme-
linked immunosorbent assay (ELISA), western blotting, immunofluo-
rescence, flow cytometry, and immunodiffusion, have been used for
biomarker identification in laboratory studies to diagnose infection,
cancer, and other diseases.38,39 Most of these tests are complicated,
lengthy, and sample consuming, depending on spacious laboratories
and costly apparatus not available in deprived areas and developing
countries. As a result, convenient, cheap, portable devices and
methods are in high demand, especially point-of-care (POC) diag-
nostic devices that function well in resource-limited settings to diag-
nose and monitor pathological conditions. The spread of infectious
diseases and the mortality of several cancers (e.g., oral, cervical, breast,
and colorectal cancer) can be limited via POC devices providing rapid
and early diagnosis. The acronymASSURED (affordability, sensitivity,
specificity, user-friendliness, rapid treatment, robust use, no special
equipment, and delivery to patients) was introduced by the World
HealthOrganization (WHO) as requirements for a diagnostic regimen
in resource-limited populations.40
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Figure 1. Microfluidics technology in cancer studies

(A) Circular tumor cell (CTC) isolation by immunomagnetic-based, immunoaffinity-based, and size-based techniques. (B) Molecular diagnosis: droplet-based PCR for

identifying rare mutations, on-chip single-cell qRT-PCR conducted in every reaction chamber, and droplet-scale estrogen assay for quantifying small amounts of tissues. (C)

Tumor biology: migration of cancer cells in a micro-capillary array under mechanical confinement conditions, cell migration platform to explore the co-culture environmental

effect, and generation of 3D co-culture spheroids for investigating the PCa metastatic microenvironment. (D) Programmable cell culture array for drug screening. High-

throughput screening: an integrated blood barcode chip to identify plasma proteins and a single-cell array consisting of micromechanical traps for screening anti-cancer

drugs that resulted in apoptosis. This figure was adapted from other studies.46–55
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Microfluidics technology provides an expanding range of devices for
management of small quantities of fluids that can be used for sensing
and control of chemical, biological, and physical processes. Operational
sensor construction can be integrated with the required electronic and
optical elements using lithography-basedmanufacturing tools.24,41 The
laminar flow characteristics observed in microfluidics flow contribute
to maximal control over minimal volumes of sample fluid. Microflui-
dics platforms have many advantages, including enhanced reliability,
sensitivity, accessibility, lower consumption of samples and reagents,
reduced costs, quicker processing and response times, and the possibil-
ity of automated multiplexing.42–44 Despite these advantages, many
challenges remain unsolved, and more advances will be needed toward
employment and development of biomarker-based analytical devices.
Considering the benefits of microfluidics, an increased interest has
been shown in microfluidics use for biomarker discovery and sample
evaluation to overcome the barriers and explore new possibilities.45
760 Molecular Therapy: Nucleic Acids Vol. 28 June 2022
A schematic overview ofmicrofluidics technologies in cancer research
is shown in Figure 1.

Biomedical researchers have produced multiple microfluidics de-
vices that can analyze body fluids at micro scales for POC diag-
nosis and real-time evaluation.56 Global health is expected to be
improved significantly by application of such devices, which are
convenient for rural areas, developing nations, health care settings,
and emergency applications. A plethora of diseases, including
several cancer types (e.g., colorectal carcinoma, hepatocellular
carcinoma, and ovarian and prostate cancer), various infections
(e.g., food-borne disease, hepatitis B, meningitis, dengue virus,
and coronavirus disease 2019 [COVID-19]), and conditions such
as cardiovascular disease and Alzheimer’s disease can be detected
by microfluidics devices at naturally occurring biomolecular
concentrations.56–63
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Figure 2. A schematic of biogenesis of exosomes and their cargos
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THE BIOGENESIS AND FUNCTION OF EXOSOMES
Exosomes are small EVs with a lipid bilayer membrane containing
membrane-specific proteins and are 30–150 nm in size (Figure 2).9,64

Exosomes can be distinguished from other EV types according to their
biogenesis mechanisms. Exosomes are a subtype of EVs formed by an
endosomal route. Exosomes are formed by intraluminal budding of
multivesicular bodies (MVBs) leading to formation of intraluminal ves-
icles (ILVs), which are released into the extracellular mediumwhen the
MVBs and plasma membrane become fused. The main molecular
pathway machinery for delivery and protein integration into exosomes
membrane is the endosomal sorting complex required for transport
(ESCRT), which is made up of four multi-protein complexes
(ESCRT-0, -I, -II, and -III).65 ILV formation and exosome biogenesis
are also modulated by ESCRT-independent processes. Lipids (ceram-
ides), heat shock proteins, tetraspanins, and Rab proteins are involved
in this pathway.66,67

Exosomes contain distinct proteins, lipids, and cellular payloads de-
pending on their progenitor cell and biological origin. A common
set of surface proteins, lipids, and nucleic acid payloads may, however,
be seen in exosomes from diverse origins. The most common constit-
uents of exosomes include tetraspanins (CD9, CD63, and CD81),
lysosomal proteins (LAMP2B), heat shock proteins (HSC70), fusion
proteins (CD9, GTPase, and Annexin), and MVB biogenesis-associ-
ated proteins (TSG101).68 Exosomes usually contain lipids derived
from the parental cell plasma membrane and raft-associated lipids,
such as cholesterol, phosphoglycerides, sphingolipids, and ceram-
ides.69,70 An increased amount of phosphatidylserine is found in
lipidic exosomes compared with their parental cells. The unique lipid
and protein composition of exosomes provides their excellent physi-
cochemical stability and allows direct fusion between the exosome
and the recipient cell plasma membrane with no need for endosomal
escape to deliver their cargo. The intracellular cargos comprise
different kinds of biomolecules, including DNA and RNA molecules,
which can deliver messages to recipient cells (Figure 2).71,72 Recent
studies have demonstrated that exosomes can also transmit mito-
chondrial and chromosomal DNA between different cell types.73 Ge-
netic materials, such as RNA and DNA molecules, can be transferred
between neighboring or distant cells via exosomes.

Exosomes play a critical role in regulation of a diverse range of physi-
ological and pathological processes via horizontal delivery of biomole-
cules from progenitor to recipient cells. Exosomes carry out specific re-
ceptor-ligand interactions on the cellular membrane via functional
proteins and lipids and deliver their bioactive contents into the recip-
ient cells. Raposo et al.74 discovered that B cells release exosomes
that are able to present antigens and induce effector T cell responses,
which sparked further research into the physiological functions of exo-
somes. The immune surveillance function of exosomes has stimulated
many researchers with interests in immunotherapy.75,76 Several other
exosome-regulated biophysiological processes, such as cell prolifera-
tion, tissue regeneration, angiogenesis regulation, atherosclerotic pla-
que formation, coagulation cascades, and homeostasis maintenance,
have become topics of interest.77,78 Exosomes serve a pleiotropic role
in numerous disease mechanisms as important intercellular messen-
gers in vivo. The modulatory effects of exosomes in tumor biology
are the most often investigated pathogenic function of exosomes. In-
duction of tumor angiogenesis, tumor immunosuppression, and crea-
tion of pre-metastatic niches are among the mechanisms by which tu-
mor-released exosomes can lead to the spread of malignancies
(Figure 3).80 Exosomes can also play a role in delivery of neurodegen-
eration-related molecules and development of neurodegenerative
Molecular Therapy: Nucleic Acids Vol. 28 June 2022 761
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Figure 3. Summary of tumor-derived exosome-mediated functions

Released exosomes from tumor cells modulate autocrine/paracrine induction of tumors and can induce angiogenesis, regulation of the immune system, re-education of

stromal cells, organotropic metastasis, and remodeling the extracellular matrix. This figure was adapted from Tai et al.79
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disorders.81 For instance, b-amyloid peptides responsible for progres-
sion of Alzheimer’s disease are transported by exosomes and conse-
quently deposited in particular brain regions.82 Exosomes are involved
in release and transfer of toxic a-synuclein (asyn), which forms aggre-
gates that affect neuronal cells and cause brain pathology.83 Several
other diseases, such as inflammatory conditions, cardiovascular dis-
eases, virus infections, autoimmune diseases, diabetes mellitus, and,
most importantly, cancers are also mediated by exosomes.84–86

EXOSOMES AND CANCER: ROLE IN DIAGNOSIS AND
THERAPY
Role of tumor-derived exosomes in cancer progression

Among the diverse functions of exosomes, activities associated with
cancer pathology have received the most attention. Exosomes released
by tumor cells attach to their target cells, promoting primary tumor for-
mation, activating angiogenesis, stimulating stromal fibroblasts, pro-
moting cancer cell adhesion to the extracellular matrix, forming a pre-
metastatic niche, and suppressing the host immune response.
762 Molecular Therapy: Nucleic Acids Vol. 28 June 2022
Exosomes can also encourage their recipient tumor cells to avoid cell
death and resist cytotoxic treatment through secretion of anti-apoptotic
proteins.87,88 Peinado et al.89 revealed the potential of tumor-associated
exosomes produced by mouse melanoma cells to promote melanoma
formation in bone marrow cells. Disrupted formation and differentia-
tion and abnormal function of hematopoietic cells are characteristic of
bone marrow changes mediated by exosomes.90,91

Tumors are highly dependent on their blood supply, which provides
cancer cells with abundant nutrients and oxygen to continuously
grow in size.92,93 The new blood supply is provided by the balance
between pro-angiogenic factors and anti-angiogenic factors
becoming biased in favor of the former.92 In addition to many soluble
factors, such as vascular endothelial growth factor (VEGF), exosomes
have been found to be involved in determining the angiogenesis
rate.94 When hypoxia is detected by tumor cells, they secrete their
associated exosomes containing pro-angiogenic factors into the extra-
cellular matrix to ensure an adequate supply of oxygen via the new
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vessels.94,95 Exosomes containing hypoxia-induced proteins are taken
up by normal endothelial cells, which release their exosomal contents
to stimulate formation of new tubules and, subsequently, a typical
network of new blood vessels found in tumors.96 Several growth fac-
tors and cytokines are synthesized and secreted through the phospha-
tidylinositol 3-kinase (PI3K)/Protein kinase B (AKT) pathway when
hypoxic tumor exosomes are taken up by host endothelial cells. Exo-
somes also damage tight junctions via delivery of miR-105 to endo-
thelial cells, which then increases vascular permeability.97,98

The development and spread of tumors is highly dependent on exo-
somes. Exosomes may transfer growth-promoting genes and boost
proliferation, invasion, and migration of metastatic cancer cells. For
example, exosomes expressing the epidermal growth factor receptor
(EGFR) can promote liver metastasis in an animal model.99 Exosomal
miRNAs have also been discovered to be capable of down-regulating
their downstream genes, which can drive cancer progression and
spread to unaffected areas.100 Exosomes are also involved in cancer
cell evasion from the immune response, leading to further prolifera-
tion or invasion. Exosomes can induce tumors to lower expression of
phosphatase and tensin homolog deleted from chromosome 10
(PTEN), a tumor suppressor, especially in the brain and enhance
brain metastasis.101,102 Another study reported that PTEN protein
could be directly released from cells in exosomes and transferred to
recipient cells, where it could restore its function.103 Exosomes have
also been shown to restrict calcium absorption by non-tumor cells
by releasing miRNA-122 to provide themselves with adequate
glucose. Exosomes also have the ability to induce angiogenesis.104,105

In one study, tumor cells released exosomal tetraspanin (Tspan8), a
key angiogenesis modulator, functioning via VEGF-independent
pathways to stimulate endothelial cell proliferation and migration.106

Cancer cell exosomes can exert a bilateral effect on the immune system,
stimulating immune cell activity in some cases and promoting tumor
evasion from the immune system in other cases, such as nasopharyngeal
cancer. This is possible because the exosomes facilitate CD4 T cell con-
version and boost Treg recruitment to suppress anti-tumor immu-
nity.107 Wen et al.108 used fluorescently tagged exosomes to show that
exosomes can reduce immune activity by directly suppressingT cell pro-
liferation and inhibiting natural killer (NK) cell cytotoxicity. Mizyazaki
et al.109 showed that T cell-targeted exosomes can enhance immunolog-
ical escape through induction of EBAG9 (estrogen receptor-binding
fragment-associated antigen 9) expression. Antitumor immunity has
been shown to be greatly boosted when tumor cells are exposed to
heat stress. A potential anticancer vaccine could be designed based on
the heat-mediated increase of immunogenicity of carcinoembryonic an-
tigen (CEA)+ cancer cells.102

Treatment of several cancers, especially breast cancer, is often disrup-
ted by frequent development of drug resistance in cancer cells during
therapy. Drug resistance has been partly linked to the activity of exo-
somes and EVs.110,111 Exosomes have been shown to increase the in-
teractions between stromal cells and breast cancer cells (MDA-MB-
231). Exosomes released from drug-resistant tumor cells have been
found to affect antiviral RIG-I (retinoic acid-inducible gene 1
enzyme) signaling and can be transferred to recipient tumor cells to
increase drug resistance by affecting the NOTCH3 pathway.112,113

The process of exosomal transfer has been proposed to be mediated
by an increase in stromal cell-induced RAB27B and exosomal
50tripohosphate RNA-mediated activation of RIG-I signaling. Non-
transformedMRC5 human diploid fibroblasts (stromal cells) were in-
jected into MDA-MB-231 xenograft female nude mice to confirm the
study results. STAT1 (signal transducer and activator of transcription
1) expression was consequently upregulated, resulting in less cell
death and faster disease progression in vivo.114

Tumoral exosomes as cancer biomarkers

Body fluids like blood from individuals with cancer are rich in tumor-
derived exosomes, which partly reproduce the molecular and genetic
composition of the tumor cells.115,116. Much attention has been
directed toward possible application of such exosomes as a “liquid bi-
opsy” for non-invasive detection of cancer.117,118 Exosomes have
shown good potential as cancer biomarkers in personalized medicine
because of their easy accessibility and ability to recapitulate the prop-
erties of their parental cells.119 Differences in contents and membrane
composition have been observed in exosomes released from cells un-
der various conditions (Table 1).148–150 The exosomal contents,
derived from tumor cells, include a variety of nucleic acids, lipids,
proteins, and biomarkers that may be a valuable source of diagnostic,
prognostic, and therapeutic information.151

Each cancer type displays different exosomal compositions. For
example, 100% of exosomes from individuals with pancreatic cancer
show glypican-1 (GPC1+) expression compared with only 2.3% in
healthy individuals. The specificity and sensitivity of this biomarker
for pancreatic cancer havebeen found to be relativelyhigh, even at early
stages.129Another exosomalmarker,macrophagemigration inhibitory
factor (MIF), has been shown to be related to the chance of livermetas-
tasis in individuals with stage I pancreatic cancer.80 Estimation of exo-
somal vimentin levels after gemcitabine treatment provides prognostic
information for individuals with pancreatic cancer.152 For example,
exosomalmiR-103 has been shown to be upregulated in hepatocellular
carcinoma (HCC) tumors and suggested to be able to affect normal
endothelial cells to encourage angiogenesis; it could therefore be a
possible future HCC biomarker.153 lnc-sox2ot, Long non-coding
RNAs (lncRNA)-activated in renal cell carcinoma with sunitinib resis-
tance (ARSR), lnc-h19, and some other lncRNAs have been detected in
exosomes in the circulation and have been successfully correlated with
tumor stage and survival rate.125,154,155 Hence, exosomes could be
highly sensitive and specific biomarkers for cancer detection and pre-
diction ofmetastasis in the future, and exosomalmiRNAsplay a critical
role in cancer metastasis and may be an effective therapeutic target for
cancer therapy.156,157

Exosomal analysis still has some challenges, the most important of
which is the low levels of exosomes in bodily fluids. To obtain a suf-
ficient concentration of exosomes, a relatively large amount of body
fluid has to be extracted. These drawbacks mean that full-scale
Molecular Therapy: Nucleic Acids Vol. 28 June 2022 763
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Table 1. Exosomal molecular markers in various cancers

Cancer type Exosomal molecular marker Reference

Colorectal CPNE3 Sun et al.120

Colorectal
miR-1246, miR-23a, miR-21,
miR-150, let-7a, miR-223,
miR-1224-5p, miR-1229

Ogata-Kawata et al.121

Colorectal CRNDE-h Liu et al.122

Colorectal miR-21 Uratani et al.123

Gastric lncUEGC1, lncUEGC2 Lin et al.124

Gastric HOTTIP Zhao et al.125

Gastric ZFAS1 Pan et al.126

Gastric miR-423-5p Ouyang et al.127

Pancreatic miR-191, miR-451a, miR-21 Goto et al.128

Pancreatic GPC1 Melo et al.129

Pancreatic miR-17-5p Que et al.130

Pancreatobiliary
tract

miR-1246, miR-4644 Machida et al.131

Liver hnRNPH1 Xu et al.132

Liver LINC00161 Sun et al.133

Liver
ENSG00000258332.1,
LINC00635

Xu et al.134

Pancreatic hTERT Goldvaser et al.135

Lung MALAT-1 Zhang et al.136

Lung 14-3-3z Sun et al.137

Ovarian ephrinA2 Li et al.138

Ovarian
miR-200a, miR-200b,
miR-200c

Meng et al.139

Ovarian miR-21, miR-100, miR-320 Pan et al.140

Prostate miR-125, miR-19 Bryzgunova et al.141

Prostate SAP30L-AS1 Wang et al.142

Prostate ADIRF Øverbye et al.143

Prostate LincRNA-p21 Işın et al.144

Melanoma exo-MIA, exo-S100B Alegre et al.145

GBM (glioblastoma) RNU6 Manterola et al.146

Bladder TACSTD2 Chen et al.147
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investigations of exosomal biomarkers are challenging, leaving much
of the potential unexplored.

EXOSOME ISOLATION METHODS
Exosomes must be accurately separated from a broad mixture of
cells, proteins, and unwanted components to permit characteriza-
tion and analysis of these unique EVs. Exosome isolation methods
should be highly efficient and be able to isolate exosomes from a va-
riety of different sample compositions. Multiple optical and non-op-
tical approaches have been designed to assess the quality of isolated
exosomes, including measuring their size, size distribution,
biochemical composition, shape, and abundance.158 To isolate exo-
somes at sufficient numbers and concentrations, many different ap-
proaches have been tested as a result of rapid technological break-
764 Molecular Therapy: Nucleic Acids Vol. 28 June 2022
throughs occurring in the laboratory. To enhance exosome
isolation, each methodology takes advantage of a unique property
of exosomes, such as density, surface proteins, size, and shape.
Each exosome isolation method has its own set of benefits and
drawbacks. Ultracentrifugation-based isolation techniques, im-
muno-isolation techniques employing magnetic microbeads, and
extraction kits have been employed. Microfluidics-based techniques
for purification and analysis of exosomes can include biosensing
and basic proteomics in a single system.159

Although some reviews have previously covered similar topics,160–163

in the present study we discuss microfluidics-based techniques not
only for exosome analysis but also for detection of miRNAs, which
has not been accomplished previously.

Some conventional as well as novel methods of exosome isolation are
shown in Figure 4.

Ultracentrifugation

Ultracentrifugation is the most popular method for isolating exo-
somes; it involves multiple centrifugation stages: 800 � g for
10 min, 2, 000 � g for 10 min, and finally more than
100,000 � g.100,165 Complete vesicle precipitation highly depends
on attaining a sufficiently high speed and a long duration (more
than 16 h) of centrifugation. Exosomes are usually separated
from biofluids usually using higher-speed centrifuges; i.e.,
10,000–20,000 �g. Jeppesen et al.166 used a centrifuge with ultra-
high speed at 100,000–200,000 �g to separate exosomes from
cell culture in the presence of 20% fetal bovine serum (FBS) after
16 h. However, differential centrifugation leads to sediments con-
taining exosomes as well as other EVs and contaminating protein
debris, which are responsible for unsatisfactory results and rela-
tively low yields.166,167

Classic ultracentrifugation can be complemented with a sucrose
gradient centrifugation step to improve the purification process.165

Although exosomes move upward in a sucrose gradient, proteins
form aggregates and sediments in this approach. Melo et al.129 uti-
lized the sucrose gradient ultracentrifugation method to separate
exosomes expressing tumor cell surface proteoglycan glypican-1
(GPC-1). Individuals with pancreatic or breast cancer have been
shown to have GPC-1-bearing exosomes. GPC-1 exosomes can
effectively allow differentiation of individuals with pancreatic ductal
adenocarcinoma (PDAC) from healthy individuals even at early
stages.129

The miRNA contents of exosomes, which are similar to their cells of
origin, have prompted researchers to investigate exosomal miRNA
expression levels as biomarkers, using ultracentrifugation for exo-
some isolation.168–172 Lee et al.173 recently employed the ultracentri-
fugation technique for quantitative detection of miR-21 in exosomes
from breast cancer cells using a molecular beacon fluorescent oligo-
nucleotide probe. Although ultracentrifugation proved more effective
in allowing miR-21 hybridization, other commercial exosome
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Figure 4. Novel and conventional techniques for

exosome isolation

Conventional techniques of EV isolation are as follows:

differential ultracentrifugation (dUC) and size-exclusion

chromatography (SEC). SEC uses a porous stationary

phase against biofluids as a mobile phase to elute the

molecules differentially with an opposite speed relation to

their size. That is, at first, larger particles will elute,

continued by smaller vesicles. Because smaller vesicles will

pass into and flow via the pores, it results in a longer route

and time of elution. dUC is based on EV subpopulation

separation using slowly increasing acceleration rates.

Novel exosomal methods are as follows. Polyethylene

glycol (PEG)-based precipitation applies a solution to pro-

mote polymer-entrapped vesicle aggregation in a more

significant number. The immunoaffinity (IA) capture method

involves antibodies targeted for exosomal surface proteins

to isolate specific vesicle populations. Chips with specific

antibody-mediated binding are applied by microfluidics

(MF) technology to efficiently capture the exosomes. Ul-

trafiltration (UF) relies on a filter with a particular pore size

that specifically produces a vesicle-rich filtrate to the

desired size. This figure was adapted from Sidhom et al.164
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isolation methods (e.g., Total Exosome Isolation and ExoQuick-TC)
used in this study also led to accurate detection results.37
Magnetic microbeads

Exosome separation from cell culture medium or from bodily fluids
using antibody-coated magnetic beads is a simple, quick, and prom-
ising technique that has been claimed to show better recovery and
higher purity than ultracentrifugation.174 Use of bead-exosome com-
plexes has the benefit of allowing flow cytometry to quickly charac-
terize the exosome surface phenotype.165 Only partial recovery of to-
tal exosomes is possible with this procedure because only some
particular types of exosomal membrane surface proteins direct bind
to monoclonal antibodies; therefore, the beads are attached to only
a limited number of exosomes. Several cancer types, such as ovarian,
colon, and lung cancer, have been studied with immuno-isolation of
exosomes via magnetic microbeads.175,176 The adhesion molecule
epithelial cellular adhesion molecule (EpCAM), which is overex-
pressed on epithelial progenitor cells, carcinoma cells, and cancer-
initiating cells and can also be present in exosomes, has been targeted
with this method.176 Tauro et al.174 used a colorectal cancer cell line,
LIM1863, to analyze affinity capture mechanisms for exosomes
compared with differential centrifugation and density gradient centri-
fugation. The affinity capture method managed to enrich exosomal
markers and exosome related proteins at least two times better than
the other two exosome isolation techniques. Affinity-based ap-
proaches, according to Klein-Scory et al.,177 are more successful to
detect and isolate cancer-specific biomarkers along with other pro-
teins expressed in exosomes. They found that EpCAM-based affinity
exosome purification differed in efficiency depending on the hetero-
geneity of the pancreatic cancer cells (Paca44 and Panc1) and the sur-
face proteins expressed on exosomes.

Extraction kits

The ExoSpin Exosome Purification Kit (Cell Guidance Systems,
USA), Invitrogen Total Exosome Isolation Kit (Life Technologies,
USA), ExoEasy Maxi Kit (QIAGEN, Germany), and ExoQuick exo-
some precipitation solution (BioCat, Germany) are among the com-
mercial kits used frequently by research groups to perform exo-
some isolation. These kits typically require an overnight incubation
period at 4� C in polyethylene glycol or other polymers and lead to
exosome sedimentation using low-speed centrifugation (10,000–
20,000 � g).178 These techniques are attractive for exosome isolation
because they are reasonably rapid and do not demand a time-
consuming ultracentrifugation step. Some challenges remain when
using such kits; for instance, they may sediment non-vesicular parti-
cles in the same way as ultracentrifugation, and their mode of action
has yet to be completely established. High cost is another drawback of
these kits, especially for high-throughput processing of large numbers
of samples.179

Several studies have attempted to detect cancer biomarkers in exo-
somes using commercial isolation kits. For instance, Bryant et al.180

utilized the ExoMiR extraction kit (Bio Scientific, Austin, TX, USA)
to comprehensively analyze the miRNA profile in exosomes. miR-
141 miR-375 levels were found to be correlated with metastatic
prostate cancer (PCa), and miR-107 and miR-574-3p concentrations
were found to be higher in exosomes from individuals with PCa
compared with healthy individuals. More extensive cohort studies
are required to verify whether the miRNAs identified by this study
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Figure 5. Illustration of an MF device for exosome analysis

Plasma or serum has flows through an antibodiy-containing chamber that detects exosome surface proteins. Exosomes are captured in this chamber, and waste is piled up

in an outlet. Retained exosomes are stained with various antibodies for profiling of surface protein. The exosomes can then be transferred to another chamber for lysis and

deliver their cargos into various chambers. Proteins can be recognized by sandwich immunoassays, whereas RNA and DNA can be examined by DNA microarrays or PCR.

Exosome cargo can be study off-chip for more molecular profiling. This figure was adapted from Garcia-Cordero et al.183
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can be used as biomarkers for early PCa diagnosis. In another study,
serum exosome miR-21, precipitated by the ExoQuick kit, was
found to be higher in individuals with esophageal squamous cell
carcinoma (ESCC), suggesting its possible potential for detecting
ESCC at primary stages.181 The ExoQuick kit was also used in
another study in which exosomal miR-373 was found to be elevated
in individuals with aggressive breast cancer.182 In this study, miR-
373 serum levels were found to be higher in estrogen receptor
(ER)-negative and progesterone receptor (PR)-negative cancer cell
subtypes compared with receptor-positive ones, each subtype pre-
senting a different prognosis. However, the clinical benefit of
miR-373 is questionable because different levels of miR-373 were
detected in ER/PR-negative and receptor-positive cases. ExoQuick
kits more commonly allow precipitation of exosomes and early
identification of cancer-related biomarkers compared with analyzing
free miRNAs. Melanoma inhibitory activity (MIA), S100B, and
tyrosinase-related protein 2 (TYRP2) have been identified in serum
as exosomal diagnostic and prognostic biomarkers for melanoma.
However, application of TYRP2 for early diagnosis of melanoma
has not been firmly established.145
MICROFLUIDICS-BASED ISOLATION TECHNIQUES
The design and preparation of microfluidics-based devices have
immensely benefitted from remarkable breakthroughs in microfab-
rication technology, Microfluidics can now utilize the physical and
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biological features of exosomes at the microscale. Novel filtering
processes, such as acoustic, electrophoretic, or electromagnetic
manipulation, can be used in addition to conventional techniques
based on size, density, or immunoaffinity.159 Required sample vol-
ume, reagent consumption, and isolation time can be noticeably
decreased with adoption of such technologies. A schematic depic-
tion of a microfluidics device for exosome analysis is shown in
Figure 5.
Exosome isolation by microfluidics

Common approaches to exosome isolation using microfluidics-based
methods include size-based, immuno-affinity-based, and dynamic
microfluidics manipulation. Nano-filters, nano-porous membranes,
and nanoarray devices are types of separation systems that depend
on the size of the exosomes. The main parts of a sandwich-like micro-
fluidics device designed for size-based enrichment of exosomes in low
sample volumes are a detachable membrane filter (with 0.1-mm
pores), a microfluidics circuit located beneath the membrane, and
two permanent ring magnets that work together to drive the filtered
exosomes into the collection channel.184 The droplet size can be
controlled in the range of 20–400 mm by varying the water and oil
flow rates. The sandwich-like microfluidics device has the advantages
of a short processing cycle, low cost, and low flow resistance.185 This
type of device allows easy replacement of filter units during the pro-
cess. Soft lithography is used to create the microfluidic device, which
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Figure 6. Experimental strategy for exosome immobilization and characterization using ExoChip

(A) Schematic of the exosome capture and analysis procedure using ExoChip. The blood is collected for serum extraction from healthy or diseased individuals, and then

exosomes are captured by flowing serum through a CD63 antibody-coated ExoChip. To visualize the captured exosomes, the ExoChip is processed for membrane-specific

dye (DiO) staining. (B) The ExoChip is designed to measure the levels of fluorescently stained exosomes through fluorescence intensity measurements using microplate

readers and allowsmolecular characterization of exosome contents through a variety of standard assays, including protein analysis (western blot) andmRNA/miRNA analysis

(RT-PCR/miRNA open array). This figure was adapted from other studies.194,195
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comprises three polydimethylsiloxane (PDMS) layers attached to a
glass slide. Negative pressure is used to guide the fluid in the micro-
fluidics channels, with mechanically activated valves placed in the
PDMS layers. Non-cured PDMS is employed to adhere the PDMS
layers together, and traditional O2 plasma activation is utilized to
form an irreversible bond between the PDMS structure and the glass
slidxe. Although, in most cases, blood samples are analyzed, other
biofluids, such as serum or urine, can also be utilized by these micro-
fluidics devices.

Exosomes have been isolated from small-volume samples by an
acoustic nanofilter device using a contact-free continuous flow
method. Surface acoustic waves (SAWs) are used to sort the EVs
into different sizes and concentrations. A continuous flow setup
with a low risk of coagulation is provided by the SAW methodology.
The SAW generates a drag force dependent on the volume of the par-
ticle. Acoustic power and fluid speed are two additional parameters
that can be adjusted to affect particle velocity. The method has a
high yield and good separation resolution. The findings also showed
that SAW can be a potentially rapid and successful method for
isolating exosomes.186 The advantages of SAWmicrofluidics are sim-
ple fabrication, high biocompatibility, rapid fluid actuation, versa-
tility, compact and inexpensive devices and accessories, contact-free
particle manipulation, and compatibility with other microfluidics
components.187 This technique has mostly been used for blood sam-
ple analysis with up to 50-mL sample volume. Fluid pumping in such a
closed-loop chamber can be used to mimic the action of small blood
vessels, making it useful for clinical applications and laboratory
studies.187
Deterministic lateral displacement (DLD) is a continuous-flow mi-
crofluidics particle separation method discovered in 2004 that has
been successfully applied for separation of blood cells, yeast, spores,
bacteria, viruses, DNA, droplets, and more.188 DLD arrays are used
to separate particles or cells with sizes ranging from millimeters to
sub-micrometers.189 Researchers have reported high-resolution isola-
tion of exosomes with sizes between 20 and 110 nm, using DLD arrays
created in a microchannel.190 Huang et al.191 first introduced the
nano-DLD technique to regulate sample flow through nanopillar ar-
rays in rows with a pre-determined gap, pitch, and diameter. To
extend the range of potential applications, the specific arrangement
of geometric features in DLD has also been adapted and/or coupled
with external forces (e.g., acoustic, electric, and gravitational) to sepa-
rate particles on the basis of other properties, such as shape, deform-
ability, or the dielectric properties of particles.192 Another study
showed that a nano-pillar array with a spacing of 25 nm can be gener-
ated. A SiO2 mask was used to shape the nano-pillars with an aspect
ratio (depth/gap) of 10:1 in silicon using an optimized deep reactive
ion etching (RIE) method3,3’ -dioctadecyloxacarbocyanine, perchlo-
rate (DiO). Scanning electron microscopy (SEM) has been used to
assess the extent to which samples have a uniform size.193

In another study, an immunoaffinity-based microfluidics system was
used to selectively separate particles depending on unique biomarkers
expressed on the exosome surface. Magnetic beads with appropriate
antibodies to bind the exosomes can be manipulated in microchan-
nels in these devices. The ExoChip is one example shown in Fig-
ure 6A.194 The ExoChip is a simple, low-cost microfluidics-based
platform to isolate circulating EVs enriched in exosomes directly
Molecular Therapy: Nucleic Acids Vol. 28 June 2022 767
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from blood or serum, allowing simultaneous capture and quantifica-
tion of exosomes in a single device. The ExoChip is fabricated from
PDMS and functionalized with antibodies against CD63, an antigen
commonly overexpressed in exosomes. Subsequent staining with a
fluorescent carbocyanine dye (DiO) that specifically labels the exo-
somes can quantify exosomes using a standard plate reader.194 This
microfluidics system comprises one or more channels, each of
which leads to numerous wells connected by a thin channel.
Increased numbers and decreased sizes of the chambers are used to
lower the fluid speed in the wells, facilitating exosome interaction
with anti-CD63 antibodies (an overexpressed exosomal antigen) on
the beads. The velocity gradient permits the sample to be mixed be-
tween the connecting channels. Soft lithography produces the
PDMS structure, which is attached to glass via plasma treatment to
create the microfluidics device.

Microfluidics systems can handle small liquid volumes because of their
miniaturized channels and can conduct several procedures in parallel.
When multifunctional nanostructures, such as nanopillars, nano-
wires,196nanoparticles,197,198 graphene-basedmaterials, or nanoporous
layers199,200 are coupled with microfluidics channels, the separation in
microfluidic channels is enhanced, holding promise for future design of
nanostructure-coupled microfluidics systems.186,194,198,201,202

A polyethylene glycol (PEG)-lipid-modified surface was utilized
initially to examine exosome isolation and microfluidics immobiliza-
tion with no need for antibodies as additional approaches.163 A mi-
crofluidics system was introduced by Wang et al.203 for multi-scale
filtration based on a ciliated nanowire-on-micropillar platform with
the ability to trap exosome-like lipid vesicles. Routine microfabrica-
tion approaches are applied to achieve the array of micropillars,
and subsequently the side walls of micropillars are etched via porous
silicon nanowires. Next, liposomes are trapped selectively by the
nanowire forest, and proteins and beads larger than 500 nm are
filtered. Then the nanowires are dissolved in PBS for 24 h to recover
the trapped liposomes. Concurrently, the exosomes are isolated by a
three-dimensional nanowire network specific to DNA extraction with
higher efficiency than ultracentrifugation.204 In a similar way,
microfluidics equipment can be utilized to trap EVs exploiting
PDMS-anchored ZnO nanowires. One of the most promising
methods appears to be physical entrapment of exosomes by applying
nanowires because of their great capture efficiency and fairly high
throughput.163 Trapping based on pillars involves one or more arrays
of closely spaced structures capable of ejecting larger molecules be-
tween structures. Such filters can reverse the flow for recovering exo-
somes. Multiscale biofluid filtration and exosome isolation have been
carried out by an array of ciliated nanowire micropillars located in the
microfluidics system.203 A range of 30–200 nm could be considered to
adjust the distance between the nanowires of a nanowire array.
Hence, a tool with suitable interstitial locations could trap exosomes
without considering tiny molecules and larger components. The trap-
ping procedure is fairly rapid (about 10 min) with admirable recovery
efficiency (about 60%). High-purity trapped exosomes are likely to be
released through porous nanowire dissolution in PBS. The effects of
768 Molecular Therapy: Nucleic Acids Vol. 28 June 2022
saturation could potentially reduce the recovery efficiency of the
tool with a greater sample volume. Exosomes can be trapped on the
microfluidics framework using a three-dimensional PDMS-anchored
ZnO nanowire network.205 One of the most promising methods ap-
pears to be physical entrapment of exosomes by applying nanowires
because of their great capture efficiency and high throughput
compared with ultracentrifugation. Exosomes can possibly be ex-
tracted in combination with other microvesicles with similar surface
properties, so there is a need for off-chip downstream analysis to
detect specific exosomal proteins.206

Introduction of magnetic microbeads containing affinity ligands al-
lows the exosomes to be isolated from serum (anti-CD63, anti-
EGFR). After lysing the exosomes, the RNA is transferred to glass
beads for further processing. A surface-enhanced Raman scattering
(SERS)-based isolation approach has been reported for tumor-based
exosome detection, either qualitatively or quantitatively. SERS signals
can be detected in the presence of target exosomes and SERS nanop-
robes. The exosomes are trapped by a sandwich-type immunoassay
and magnetic-dependent precipitation of the nanobeads.207

Unfortunately, only exosomes rich in specific surface antigens can be
separated using immunoaffinity-based separation microfluidics
devices. Faster and easier exosome separation systems have been
proposed by combining novel microfluidics techniques with dynamic
approaches based on external forces, such as flow field-flow fraction-
ation (FIFFF) or ultrasound. Davies et al.208 devised a microfluidics
filtration technique to separate exosomes and extract mRNA from
whole-blood samples instead of using antibody binding. Their tech-
nology eliminates the need for time-consuming centrifugation and af-
finity purification using antibodies. Vesicles may be differentiated
from cells or detritus based on their size through use of a porous poly-
mer monolithic membrane (PPM) attached to a poly(methyl methac-
rylate) (PMMA) chip. The exosomes can be selectively extracted and
biological impurities rejected by changing the size of the membrane
pores. An acoustic nanofilter device can distinguish EVs based on
density and size with an exosome recovery rate of 80%.186 Despite
the good purification and recovery rate of the separated subcellular
elements in the samples, the FIFFF device is still considered a compli-
cated nanostructure.209

Exosome characterization by microfluidics

Biophysical, molecular, and microfluidics approaches are among the
techniques used to characterize exosomes. Exosomal size range can be
defined using biophysical approaches. Novel label-free biophysical
approaches are rapidly emerging in exosome research, with the po-
tential to revolutionize exosome (EXO) diagnostics. These methods
include use of nanodevices for EXO purification, small-angle scat-
tering (SAS) and diffraction, vibrational spectroscopy, scattering,
and nanoindentation for characterization.162

Optical particle tracking is a biophysical approach to evaluate the size
distribution of exosomes between 10 nm and 2 mm as well as their
concentration. The velocity of the particles is assessed by monitoring
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the exosomal migration trajectories.210 Photon correlation spectros-
copy, resistive pulse sensing, atomic force microscopy, FIFFF, cryoe-
lectron microscopy, and TEM are other biophysical characterization
techniques.211–217 Different versions of the Malvern Panalytical
NanoSight instrument are routinely utilized.215,218,219 The size of
blood exosomes has been quantified and analyzed through nanopar-
ticle tracking analysis using a Malvern Instruments Nanosight NS500
device plus TEM with a Zeiss Libra 120 in a study conducted by Ka-
pogiannis et al.218 In another study, Flaherty et al.219 employed a
NanoSight NS300 (Malvern Instruments) and a ViewSizer 3000
(MANTA Instruments) to investigate the particle concentration
and size of adipocyte-derived exosomes. Capello et al.220 used a Par-
ticle Metrix ZetaView Nanoparticle-tracking analytical instrument to
evaluate exosome isolation.

Exosomal surface proteins can be categorized using molecular
methods. Exosome size and shape in particular can be determined us-
ing flow cytometry.221 Flow cytometry and Raman spectroscopy
(which uses laser light to produce a scattered infrared signal) are mo-
lecular approaches for exosome characterization. A variety of mole-
cules, such as peptides and nucleic acids, can be detected by this
method, which, in turn, characterizes the exosome chemical
composition.222

Exosomal RNA contents have been studied using a variety of ap-
proaches, includingmicroarray analysis, digital droplet PCR (ddPCR),
and next-generation sequencing (NGS).223 miRNAs in exosomes
derived from leukemic cells exposed to toluene have been quantified
by microarray analysis to investigate changes in gene expression.224

NGS has also been used to assess the expression of exosomal miRNAs
from human stem cells. ddPCR has been used to perform absolute
quantification of miRNAs.225,226 Western blotting, proteomics tech-
nologies, and fluorescence-based cell sorting have also been used to
examine the protein composition of exosomes.184,227,228

MICROFLUIDICS AND EXOSOMES IN CANCER
Use of circulating exosomes to identify cancer and track response to
therapy using continuous release of tumor-derived exosomes con-
taining specific biomolecules is becoming more common.11,64,115,229

The technological challenges involved in isolating and analyzing these
miniaturized vesicles containing different markers have severely
limited their wider application.11

Kanwar et al.194 created a simple, affordable, microfluidics-based
approach that could separate exosome-enriched circulating EVs (cir-
EVs) from healthy and pancreatic cancer blood samples with the aim
to collect and quantify exosomes in a single device. They used
ExoChip, an anti-CD63 antibody-dependent microfluidics device
constructed from PDMS, to collect specific exosomes. Exosomes
were quantified via a conventional plate reader after being labeled
with a fluorescent carbocyanine dye (DiO). Exosomes were signifi-
cantly higher from individuals with cancer (2.3-fold, p < 0.001)
than those collected from healthy persons, according to 10 repeated
ExoChip tests utilizing serum from five individuals with pancreatic
cancer and five healthy persons. The ExoChip is claimed to be an
appropriate platform for exosome-based diagnosis and research on
human cancer molecular monitoring.194

Non-small cell lung cancer (NSCLC), accounting for over 85% of lung
cancers, is a main global cause of cancer-related mortality, with a very
low 5-year survival rate of only 15% (stage IIIA).230–232 Acquiring
enough biopsy tissue for diagnosis is problematic, leading to the ma-
jority of individuals only being diagnosed at advanced non-resectable
stages. Obtaining tissue samples before therapy is exceedingly chal-
lenging, which severely restricts the availability of histologic and mo-
lecular findings for personalized treatment.233 Therefore, researchers
have attempted to detect serum biomarkers in serum from individuals
with NSCLC. This involved selective isolation of exosomes followed
by quantitative analysis of IGF-1R (type 1 insulin growth factor recep-
tor) phosphorylation levels and IGF-1R total expression levels.234

However, clinical assessment of IGF-1R requires a highly invasive
immunohistochemistry (IHC) test to be performed on the tumor bi-
opsy tissue.235 He et al.236 described, for the first time, a combinedmi-
crofluidics technique that allows direct on-chip immuno-isolation
and in situ protein analysis of exosomes in plasma obtained from in-
dividuals with NSCLC. Exosome separation and enrichment, online
chemical lysis, sandwich immunoassay with fluorescence detection,
and protein immunoprecipitation are used in this approach. In addi-
tion, a cascade microfluidic circuit is constructed to optimize and
accelerate the workflow for circulating exosome proteomic analysis.
This method allows direct and highly sensitive isolation of specific
exosome subpopulations from plasma samples and quantitative
detection of surface and intravesicular markers in less than
100 min. This technique is used to conduct exosome subpopulation
phenotyping with a collection of common exosomal and tumor-spe-
cific markers as well as multiparameter assessment of intravesicular
biomarkers in the targeted subpopulation. Exosomes are used instead
of invasive traditional tissue biopsies to evaluate IGF-1R total expres-
sion and phosphorylation levels in individuals with NSCLC. He
et al.236 suggest that their microfluidics exosome analysis platform
can serve as part of the essential infrastructure to advance exosome
biology and clinical applications.

In women in the United States, ovarian cancer is the fifth most com-
mon cause of cancer-related death. It is most often detected at clinical
stages III/IV, causing death in 80% of affected women within 5
years.237 There is currently no approved method for identifying
CA125, the most often employed ovarian tumor biomarker, with
acceptable sensitivity and specificity.238 Tumor exosomes found in
body fluids like ascites and blood might be used as non-invasive bio-
markers for monitoring and early detection.239,240. Zhang et al.241

studied changes in CD24, EpCAM, and FRa protein expression in
ovarian cancer-derived exosomes to test whether a 3D-nanopatterned
microfluidics device could perform non-invasive screening of cancer
biomarkers. Circulating exosomes were found to contain detectable
FRa concentrations in early-stage ovarian cancer serum samples us-
ing this approach. Exosomal FRa levels were considerably higher
compared with normal samples, suggesting that this approach may
Molecular Therapy: Nucleic Acids Vol. 28 June 2022 769
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Figure 7. Down- or up-regulation of miRNAs contributes to the cancer-

driving steps

Often one miRNA affects more than one hallmark with one prevailing tissue-

dependent mechanism. This figure was adapted from Detassis et al.249
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be used to detect early-stage malignancies. These findings encourage
future research into the clinical potential of exosomal FRa as a blood
biomarker for sensitive and specific detection of ovarian cancer.
Novel biosensing technologies can provide clinical diagnosis using
this approach.241 Zhao et al.240 designed ExoSearch, a simple micro-
fluidics platform that efficiently detects blood plasma exosomes for in
situ immunomagnetic bead detection in a multifunctional manner.
The consistent flow in the ExoSearch chip allows quantitative extrac-
tion and release of blood plasma exosomes in a broad range of vol-
umes from 10 mL to 10 L. Using a training set of ovarian cancer
plasma samples, they used the ExoSearch chip to perform simulta-
neous measurements of CA-125, EpCAM, and CD24 (three different
exosomal tumor biomarkers) for blood-based ovarian cancer detec-
tion. The diagnostic power was estimated to be as high as that of a
conventional test (a.u.c. = 1.0, p = 0.001). This finding is likely to
open up new horizons for application of microfluidics for clinical can-
cer diagnosis and fundamental exosome studies.240

The most common malignancy among women is breast cancer.242

Exosome levels in breast cancer serum have been reported to be
considerably higher than in normal donor serum.243,244 Each stage
and variant of breast cancer displays different combinations of EV
proteins, which can be used as diagnostic markers of tumor progres-
sion or as general cancer diagnostic markers, akin to those used in
fluid biopsy. As a result, HER2 molecular classification is critical
when choosing the right approach for treatment of each individual
with breast cancer. EpCAM expression has also been shown to be up-
regulated in a variety of carcinomas, such as breast cancer.245 Fang
et al.246 designed a clinical microfluidics chip for immunocapture
and evaluation of circulating exosomes in small sample volumes.
Six individuals with breast cancer and three healthy control individ-
uals were recruited for this study, which evaluated EpCAM-positive
exosomes in the plasma samples. Compared with healthy controls,
the affected individuals showed a substantial rise in EpCAM-positive
exosome levels. Circulating HER2-positive exosomes were measured
in 19 individuals with breast cancer for molecular categorization. The
expression level of HER2, a breast cancer marker, is frequently
measured in clinical trials using immunohistochemical labeling of tu-
mor biopsy samples.247,248 The findings showed that expression levels
of exosomal HER2 were almost identical to those measured by immu-
nohistochemistry in tumor tissue. They suggested that microfluidics
chips showed potential for diagnosis and molecular categorization
of breast cancer.246 Sina et al.195 described a straightforward method
for determining the fraction of clinically relevant exosomes (CREs) in
the bulk exosome population extracted from breast cancer blood sam-
ples. The percentage of CREs can provide information about the stage
of the cancer and allow non-invasive screening of expression levels of
breast cancer receptors, which vary depending on the individual (Fig-
ure 7). The CRE proportion is determined using a surface plasmon
resonance (SPR) platform in a two-step procedure. The first step is
initial separation of the bulk exosome population using CD9 and
CD63 (two tetraspanin biomarkers), and the second step is detection
of CREs in the collected bulk exosomes using HER2 tumor-specific
antibodies. Concentrations around 2,070 exosomes/mL can be
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measured in breast cancer cell cultures by this relatively sensitive
approach, with 14%–35% of tumor-specific exosomes present in
breast cancer serum samples. This method may also be useful to iden-
tify other types of tumor-specific exosome populations with applica-
tions in the fields of cancer research and cancer diagnosis.195

PCa is the second most frequent cancer in men across the world.250

Despite its use in immunoassays, direct Raman spectroscopy is
currently limited by its low signal intensity. In the 1990s, it was re-
ported that the strength of Raman signals could be considerably
boosted when the analytes were absorbed onto noble metal (Au or
Ag) nanoparticles with rough surfaces. This is called SERS. Pro-
teins, lipids, nucleic acids, and some other biological molecules
show intense Raman signals in the 400–1,800 cm�1 and 2,800–
3,100 cm�1 regions, allowing reasonably specific sample identifica-
tion and quantification.251 Tian et al.252 used magnetic enrichment
and SERS probes to develop a sandwich immunoassay to identify
the trapped exosomes. The requirement for metal substrates, howev-
er, restricts applicability. Johan et al. proposed novel Raman active
polymeric nanoparticles (Raman beads) that incorporated a number
of alkyne, nitrile, and azido groups for multicolor Raman bioimaging
in cells to effectively eliminate interfering signals originating from
cell-based biomolecules. The biologically silent region of the Raman
spectrum (1,800–2,800 cm�1), where the 18 types of Raman beads
showed strong and characteristic Raman vibrations (up to 104),
considerably increased the application of Raman beads.When Raman
beads and microfluidics were combined, it opened up new possibil-
ities for system miniaturization and combined the benefits of both
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methods. Raman analysis can now be performed automatically and
reproducibly in nanoliter volumes using Raman microfluidics.253

Wang et al.254 created an in situ Raman assay chip that simulta-
neously allows consistent flow mixing and immunomagnetic separa-
tions on the same chip. Exosomes can be enriched using a staggered
triangular pillar array mixing channel equipped with anti-CD63mag-
netic beads. The anti-EpCAM-functionalized Raman-active poly-
meric nanostructures with a quantifiable signal at 2,230 cm�1, allow
rapid (less than 1 h) detection of exosome samples. The detection
limit of this biochip was around 1,600 particles mL�1 with a 20-mL
sample volume. This microfluidics Raman chip could be a promising
screening test for diagnosis of PCa. The study suggested that the mi-
crofluidics Raman chip can successfully distinguish individuals with
PCa and healthy control individuals, making this strategy applicable
to analysis of clinical specimens.254 Vaidyanathan et al.255 used a
tunable alternating current electrohydrodynamic (ac-EHD) technol-
ogy known as “nanoshearing” to construct a multiplexed microflui-
dics device for selective capture and identification of several types
of exosomes. Electrical forces created by the ac-EHD act in the layer
within nanometers of the electrode surface to produce miniaturized
fluid flow. The capture specificity is improved and nonspecific
adsorption of weakly bound molecules is prevented by this miniatur-
ized liquid flow. This method allows analysis of exosomes obtained
from HER2- and PSA-expressing cells as well as the isolation of exo-
somes from breast cancer samples. The ac-EH device showed a limit
of detection (LOD) of 2,760 exosomes/L and was three times more
sensitive compared with hydrodynamic flow-based analysis (LOD
of 8,300 exosomes/L). The study suggests that this method might
be useful for analyzing exosomes in biological samples as a simple
and rapid quantitative technique.255 More details about microflui-
dics-based exosome isolation and detection methods related to hu-
man cancer cells are given in Table 2.

miRNA BIOGENESIS
miRNAs are short non-coding RNAs that were first discovered in
1993.281 Plants, mammals, and viruses have miRNAs, and they play
a role in RNA silencing and post-transcriptional regulation of genes.
They have also been found to be involved in cancer, neurological dis-
orders, and other disease processes.249 miRNA transcriptional units
can be located on the introns and exons of their specific genes or
on other genes.282 RNA polymerase II is mainly responsible for tran-
scription of primary miRNAs, whereas RNA polymerase III produces
the remaining miRNAs. RNase III Drosha and the RNA-binding pro-
tein DGCR8 convert primary microRNA (pri-miRNA) into a precur-
sor miRNA (pre-miRNA) of around 70 nt.283 The pre-miRNA then
exits the nucleus using the exportin-GTPase RAs-related nuclear pro-
tein (RAN) system and is processed by Dicer to produce 22-nt dou-
ble-stranded mature miRNA.284 This is subsequently bound by an ar-
gonaute (AGO) protein complex to form miRNA-induced slicing
complex (miRISC). The RISC complex only holds one strand of
miRNA, whereas the other strand, the passenger strand, is destroyed.
The RISC complex regulates miRNA stability and turnover rate,
which is crucial for post-transcriptional regulation of gene expression.
Because of its sequence complementarity, the loaded miRNA is able
to bind to its target mRNAs. If a strong match is made, then the
mRNA will be degraded; otherwise it remains untranslated. miRNAs,
which normally bind to the 30UTR of target mRNAs, can target
numerous different mRNAs because of their short length; any partic-
ular mRNA can bind to various miRNAs of other types.285

miRNAs AND CANCER: FROM THERAPY TO
DIAGNOSIS
Calin et al.286 located the genetic locus of miR15 and miR16 on chro-
mosome 13q14, a region lost in most individuals with B cell chronic
lymphocyte leukemia (B-CLL), and subsequently discovered a rela-
tionship between miRNAs and cancer for the first time. Since then,
instability or amplification of chromosomes in several human malig-
nancies has been widely associated with miRNAs by other groups.
Moreover, the staging, progression, and metastasis of various cancers
has been associated with abnormal miRNA expression, according to
many experimental and clinical investigations (Figure 7).287,288 miR-
NAs have been reported to act as tumor promoters (oncomirs) or
tumor suppressors (anti-oncomirs), depending on the context.289

Cancer stem cells (CSCs) and epithelial-mesenchymal transition
(EMT), both of which encourage cancer spread and treatment resis-
tance, have been found to be influenced by miRNA expression.290,291

By suppressing tumor suppressor genes and/or genes that govern cell
differentiation and death, oncomirs can encourage tumor growth.
Because of gene amplification, epigenetic alterations, or transcrip-
tional deregulation, oncomirs have been found to be upregulated in
many cancers.292 The miR-17-92 cluster, which is found on chromo-
some 13q31 and is overexpressed in lung cancer and other cancers, is
a well-knownmiRNA oncomir.293,294 miR-21 has been demonstrated
to cause apoptosis in human glioblastoma cells by activating caspases,
whereas silencing of miR-21 decreased in vitro and in vivo growth of
breast cancer cells by triggering Bcl-2 down-regulation and increasing
apoptosis.295,296

Let-7, miR-17-5p, miR-29, miR-34, miR-127, and other miRNAs
have been identified as tumor suppressors.292,297 Interestingly, miR-
15 and miR-16 were the first tumor-associated miRNAs to be estab-
lished with tumor-suppressive activity.286,298 miR-15/16 causes
apoptosis by down-regulating the anti-apoptotic gene BCL2.299

Another study found that miR-16 can inhibit PCa cell growth by
regulating CDK1 and CDK2, two cell cycle regulatory proteins,300

miR-15a and miR-16-1 have also been shown to affect the survival,
growth, and metastasis of PCa cells by triggering CCND1 (encoding
cyclin D1) and WNT3A.301 The let-7 family members are well-inves-
tigated tumor suppressor miRNAs that are underexpressed in several
cancers and could play a role in diagnosis and prognosis of
cancer.292,302

On the other hand, some miRNAs have been proposed to be prom-
ising therapeutic targets because of their tumor-promoting activity.
For instance, the growth of breast and stomach tumors was inhibited
in xenograft mouse models when the angiogenesis regulator miR-29b
was inhibited.303,304. Another clinically relevant miRNA, miR-34a, is
Molecular Therapy: Nucleic Acids Vol. 28 June 2022 771
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Table 2. MFs and exosomes in cancer

Strategy
Isolation
method Cancer

Sample/sample
volume

Detection
method LOD

Marker
detection Reference

On-chip immuno-
isolation and in situ
protein analysis

antibody-labeled
magnetic beads

NSCLC
plasma/
30 mL

fluorescence
0.281 pg/mL for
IGF-1R and 0.383
pg/mL for p-IGF-1R

tumor-associated
markers (EpCAM,
a-IGF-1R, and
CA125), common
exosomal markers
(CD9, CD81,
and CD63)

He et al.236

Integrated
MF approach
(ExoChip)

IA capture pancreatic
serum/
400 mL

fluorescence
0.5 ppm
fluorescence
sensitivity

Rab5 and
CD63 capture
exosomes

Kanwar et al.194

Nano-HB
chip

nanostructured
IA capture

ovarian
cancer

plasma/
2 mL

fluorescence 10 exosomes/mL

circulating exosomal
CD24, EpCAM, and
FRa markers to
detect ovarian cancer

Zhang et al.241

Integrated MF
approach
(ExoPCD-chip)

immuno-
magnetic
beads

liver
serum/
30 mL

electrochemical
4.39 � 103

particles/mL
CD63 capture
exosomes

Xu et al.256

ACE (angiotensin
converting enzyme)
microarray

AC electrokinetic
capture

pancreatic
whole
blood/
25 mL

fluorescence
limited only
by exosome
concentration

Glypican-1 and
CD63 capture
exosomes

Lewis et al.257;
Ibsen et al.258

Exodisc filtration bladder
urine/
1 mL

colorimetric – CD9 and CD81 Woo et al.259

Double-filtration
MF biochip

filtration bladder
urine/
8 mL

colorimetric –
CD63 capture
exosomes

Liang et al.260

Immunocapture
and quantification
of circulating exosomes

immuno-
magnetic beads

breast
plasma/
50–200 mL

fluorescence –

CD63 and major
histocompatibility
complex (MHC) class
I, EpCAM-positive
exosomes, HER2-
positive exosomes

Fang et al.246

Real-time, label-
free profiling of CREs

IA capture breast serum/1 mL
surface plasmon
resonance (SPR)

�2,070
exosomes/mL

CD9/CD63-positive
exosomes, HER2-
positive exosomes

Sina et al.195

ExoSearch
immuno-
magnetic beads

ovarian
cancer

plasma/10 mL–10 mL fluorescence 7.5 � 105 particles/mL
three exosomal tumor
markers (CA-125,
EpCAM, CD24)

Zhao et al.240

Nano-interfaced
MF exosome
(nano-IMEX)

IA capture
ovarian
cancer

plasma/2 mL fluorescence
50 exosomes/mL
(80 aM)

tumor-associated
markers, common
exosomal markers
(CD63 and CD81)

Zhang et al.261

MF-based mobile
exosome detector
(mMED)

IA beads concussion
serum,
mouse/1–500 mL

fluorescence 10,000 exosomes/mL
CD45, CD61,
CD81, and GluR2-
positive exosomes

Suck et al.262

(Continued on next page)
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Table 2. Continued

Strategy
Isolation
method Cancer

Sample/sample
volume

Detection
method LOD

Marker
detection Reference

iMEX (integrated
magnetic-electrochemical
exosome)

immuno-
magnetic beads

ovarian cancer
plasma/
10 mL/marker

electrochemical 3�104 exosomes
CD63, EpCAM,
CD24, and CA125

Jeong et al.263

Nano-plasmonic
exosome (nPLEX) assay

IA capture ovarian cancer ascites SPR
�3,000
exosomes (670 aM)

EpCAM, CD24,
CA19-9, Claudin 3,
CA-125, MUC18,
EGFR, HER2, CD41,
CD45, D2-40, HSP90,
HSP70, CD63, and
immunoglobulin G (IgG)

Im et al.239

Alternating current
electrohydrodynamic
(ac-EHD)-induced
nanoshearing biochip

electrohydrodynamic
immunoaffinity

prostate
and breast

serum/500 mL colorimetric
2,760
exosomes/mL

HER2, PSA Vaidyanathan et al.255

AuNC-exosome-AuR IA capture lung cancer urine/500 mL
dark-field
microscopy
(DFM)

down to 1
particle/mL

CD63, CD81, LRG1 Yang et al.264

Magnetic
(Fe3O4NPs)-based MF

immuno-
magnetic beads

pancreatic cancer
whole
blood/500 mL

colorimetric
�2 � 1010

exosomes
CD9 and CA19-9 Sancho-Albero et al.265

MF Raman chip
immuno-magnetic
beads (Raman beads)

PCa
serum/20
mL samples

Raman
1.6�102

particles/mL

CD63-Mag,
EpCAM-functionalized
Raman beads

Wang et al.254

ExoChip – NSCLC blood/30–100 mL –
1.47�109

particles/mL
CD63, CD9, CD81 Kang et al.266

Ciliated MF device system
antibody-labeled
ciliated micropillar

MDA-MB-231
human breast
cancer

cell lines fluorescence – CD63 Qi et al.267

On-chip microbead
immunomagnetic capture

immuno-
magnetic beads

breast cancer blood/2 mL
fluorescence
(colorimetric)

–
CD63, CD9,
EpCAM

Chen et al.268

OncoBean MF IA capture melanoma plasma/3 mL fluorescence –

CD9, MCAM (melanoma
Cell adhesion molecule), and
MCSP (
melanoma-associated
chondroitin sulphate
proteoglycan)

Kang et al.269

Herringbone-grooved
MF device (microchannels)

IA capture ovarian cancer serum fluorescence – CD9 and EpCAM Hisey et al.270

MF chip-based electrophoresis centrifugation cell line serum, medium fluorescence – – Marczak et al.271

Mechanical forces
(tunable MF system)

size-dependent
purification

cancer cell line
(SW620)

medium fluorescence – – Shin et al.272

Viscoelasticity-
based MF system

continuous, size-
dependent, and
label-free manner

cell line/200 mL medium, serum fluorescence – – Liu et al.273

dielectrophoresis (DEP) lung cancer plasma/200 mL – Chen et al.274
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Table 2. Continued

Strategy
Isolation
method Cancer

Sample/sample
volume

Detection
method LOD

Marker
detection Reference

Dielectrophoresis
chip-based MF system

HPLC-MS,(high-
performance liquid
chromatography/mass
spectrometry) qRT-
PCR

protein (CD81, EGFR),
miRNA (miR-21, -191,
-192), mRNA (CD81,
GAPDH [Glyceraldehyde-
3-Phosphate
Dehydrogenase],
EGFR)

MF filtration system
(nanoporous membrane)

filtration
melanoma-
grown mice

whole blood qRT-PCR – CD9, CD63, CD81 Davieset al.208

Droplet digital
ExoELISA

immunocapture by
magnetic NPs

breast cancer plasma
droplet
digital ELISA

�10 exosomes/
mL (10�17 M)

CD63, Glypican-1 Liu et al.275

Exosome track-etched
magnetic nanopore
(ExoTENPO) chip

immunocapture
by magnetic NPs

pancreatic
cancer

serum
PCR, machine
learning

–
CD9, CD81, EpCAM,
EV-associated mRNA

Ko et al.276

Exosome-specific,
dual-patterned
immunofiltration
(ExoDIF)

immunocapture
by solid surface

human breast
cancer cell
line, MCF-7

plasma, medium fluorescence – CD63, EpCAM Kang et al.277

Bio-inspired
NanoVilli chips

immunocapture
by solid surface

NSCLC plasma
RT-ddPCR,
fluorescence

–
ROS1, T790M,
EpCAM, EGFR

Dong et al.278

EVHB-Chip
immunocapture
by solid surface

glioblastoma
multiforme

serum, plasma fluorescence 100 EVs/mL
Podoplanin, EGFRvIII,
EGFR, PDGFR (platelet-
derived growth factors)

Reátegui et al.279

MF immunoaffinity-
based isolation of
microvesicles

immunocapture
by solid surface

glioblastoma
serum,
medium/400 mL

scanning electron
microscopy
(SEM), RT-PCR

–
CD63, EV-
associated total RNA

Chen et al.280
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down-regulated in breast cancer as well as some other cancer types.
The transcription factor Fos-related antigen (Fra-1), whichmodulates
cell death, growth, and differentiation, and the nicotinamide adenine
dinucleotide (NAD)+-dependent histone deacetylase sirtuin-1
(SIRT1), which disables the tumor suppressor p53, have also been
found to be targets of miR-34a.305,306 miR-34a was administered to
a group of individuals with refractory advanced solid tumors in a
phase I clinical trial along with dexamethasone and produced some
clinical responses.307

Dysregulation of miR-15a and miR-16-1 have been associated with
enhanced survival, proliferation, and metastasis, in prostate and
pancreatic cancer. These miRNAs target CCND1 (cyclin D1),
WNT3A, and BCL2. WNT3A is a component of the Wnt/b-catenin
signaling pathway, which is involved in cell-cell adhesion as well as
stimulation of oncogenic factors such as c-Myc and CCND1. miR-
15a restoration led to tumor growth inhibition in an in vivo model
of PCa, whereas miRNA-15a knockdown led to increased infiltration
and proliferation in a mouse model of pancreatic cancer.301,308

A number of miRNAs (let-7c, miRNA-182, miRNA-205, miRNA-
138, miRNA-224, miRNA-513a-3p, miRNA-34a, miRNA-106a,
miRNA-31, miRNA-92b, miRNA-15b, and miRNA-27a) have been
shown to target various genes involved in regulation of sensitivity
to cisplatin (CDDP) (a first-line chemotherapy for lung cancer) in
NSCLC.309 Alterations in expression of miRNA-96, miRNA-199a-
5p, miRNA-182, miRNA-340, and miRNA-130a have also been
found to affect the susceptibility of HCC to CDDP.309 ABCC2 is an
ATP-dependent transport protein that boosts drug efflux and lowers
intracellular CDDP concentration. ABCC2 up-regulation in tumor
cells can make them resistant to CDDP, along with many other cyto-
toxic drugs. BCL2-like 1 (Bcl-xl), a member of the anti-apoptotic pro-
tein family, inhibits chemotherapy-induced apoptosis in cancer cells.
Let-7c can target ABCC2 and Bcl-xl, leading to their down-regulation
and increasing A549 cell sensitivity to CDDP.310 miRNA-31, on the
other hand, can suppress ABCB9, another ATP-binding cassette
(ABC) transport protein family member, enhancing CDDP resistance
in NSCLC cells.311

Early stages of several cancer types have been associated with dysre-
gulation of a plethora of circulating miRNAs that could be detected
prior to any evident clinical symptoms and before any biopsy or im-
aging procedure. In individuals with NSCLC at stages I and II, plasma
miR-21-5p, miR-223-3p, miR-141-3p, miR-145-5p, miR-155-5p, and
miR-20a-5p levels have been found to be significantly elevated.312

Circulating miR-126-3p, miR-210-3p, miR-183-5p, and miR-182-
5p have also been found to allow early diagnosis of individuals with
NSCLC with sensitivity and specificity comparable with that of the
classic tumor marker CEA.313 NSCLC stages I–IIIA could be effec-
tively distinguished by measuring pri-miR-944 and pri-miR-3662,
two primary miRNAs.314 In colorectal cancer serum exosomes, there
were considerably lower levels of miR-125a-3p along with higher
plasma levels of miR-23a-3p, miR-27a-3p, miR-376c-3p, and miR-
142-5p.315,316 Early in the course of glioma development, plasma
miR-1825-3p has been shown to be underexpressed, and its level is
linked to tumor growth and poor prognosis.317 In stage I breast can-
cer, miR-4281-3p, miR-1202-5p, miR-1207-5p, miR-1225-5p, miR-
4270-5p, and miR-642b-3p have been shown to be increased in the
circulation.316 Therefore, the early stages of several cancers could be
screened by detecting specific circulating miRNAs.

Biosynthesis of miRNAs, which is carried out by several components,
is a complex process divided into canonical and non-canonical path-
ways. Cancer growth pathways, such as cell cycle disruption and im-
mune evasion, have been found to be associated with deregulation of
certain miRNAs. miRNAs are therefore emerging as important bio-
markers in cancer diagnosis and prognosis because of their potential
to influence dozens of cancer-related genes. DNA damage repair-
associated genes, drug target-associated genes, pharmacokinetics-
associated genes, and many cell signaling pathways play a role in can-
cer treatment resistance associated with miRNA dysregulation. There
are emergingmiRNA-based therapeutic approaches usingmiRNA in-
hibitors or knockdown as well as miRNA replacement treatment and
miRNA mimics. miRNA therapy would likely be used together with
chemotherapy, immunotherapy, or radiation treatment. miRNAs
are clearly going to have a big effect on the development, diagnosis,
and therapy of human cancer in the future. More research in this
area is needed to fully explore the mechanisms and develop cancer-
targeting medicines.

MICROFLUIDICS AND miRNAs IN CANCER
As mentioned above, miRNAs have become a hot topic among re-
searchers since their discovery in 1993, especially in carcinogenesis
and cancer development.289,318 SomemiRNAs can be consistently de-
tected in the peripheral circulation as well as in some other bodily
fluids and are therefore promising as biomarkers for early-stage can-
cer diagnosis.319–321 Many of the methods used for miRNA detection
and quantification, such as quantitative reverse-transcriptase PCR
(qRT-PCR), microarrays, and NGS, despite their many benefits, are
costly and time consuming, which makes them unsuitable for diag-
nosis at the POC or in rural undeveloped areas or for large-scale
screening studies.322 Newly introduced biosensing devices based on
microfluidics could solve these challenges by allowing rapid and
cheap detection of miRNAs.323,324

A variety of microfluidics-based techniques have been used for de-
tecting miRNAs. These include SERS,325 SPR,326 upconversion nano-
particles (NPs),327 rolling cycle amplification (RCA),328 and enzyme-
assisted target recovery (EATR).329 Other methods include NP-based
colorimetry,330 fluorescence resonance energy transfer (FRET),331,332

and electrochemical detection.333 Of these approaches, SERS and SPR
can detect the lowest miRNA concentrations (less than 1 aM for
SERS), taking advantage of surface enhancement. However, quantifi-
cation of real samples is still difficult because of the lack of standard-
ization, unknown quantities, and the poor reproducibility of SERS.
Upconversion NP-based sensors rely on absorption of low-energy
photons and emission of high-energy fluorescence after target capture
with a detection limit of 0.1 nM, mostly governed by conversion
Molecular Therapy: Nucleic Acids Vol. 28 June 2022 775
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Figure 8. chip-based approaches

(A) The PFMF device in which PDMS absorbs air in the outlet chamber, making it a self-stand pumping device. Probe DNA is immobilized on the glass surface, microchannels

convey the sample to the probe, and miRNA hybridization and detection take place. (B) An enlarged view of a laminar flow in the microchannel. The laminar flow conveys

fluorescein isothiocyanate (FITC)-labeled streptavidin (F-SA) and biotinylated anti-streptavidin (B-anti-SA). Sandwich hybridization and dendritic amplification take place at

the intersection between the probe DNA-patterned surface and the interface of the laminar flow. This figure was adapted from other studies.341,346,347
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efficiency. Colorimetric approaches leverage the unique optical fea-
tures of gold nanoparticles (AuNPs), and the visible color shift of
aggregated AuNPs provides a detection limit of about 1 fM. Graphene
oxide and its analogs,331,332 MoS2, WS2, and some other newly
emerging two-dimensional (2D) materials can capture single-
stranded DNA and quench fluorescent signals when the molecules
are in close proximity.334,335 When the target miRNAs have been
tagged with fluorescent reporters and desorbed from the 2D mate-
rials, fluorescence emission is restored. Nanomaterial-based FRET
and colorimetry are sensitive and reliable techniques, but each type
of miRNA requires its own detection element, and miRNA detection
could require a sample volume of a few microliters or greater, neces-
sitating a large set of test samples to perform repeated detection.
Amplification-based detection technologies, including RCA and
EATR, are also available. High-throughput identification of miRNAs
in a small amount of sample remains a challenge for most ap-
proaches.336,337 Microfluidic chips are now used with a variety of pro-
cedures and have a wide range of applications.

Jiao et al.338 developed a droplet-PCR-based 3D-printedmicrofluidics
chip for miRNA identification. Kim et al.339 described a non-powered
microfluidics chip that employs self-pumping via PDMS air uptake
without requiring any additional power. Novara et al.340 created
numerous biological detection platforms by combining a Raman
detection substrate with a microfluidics chip. Modification of chem-
ical substrates could enable microfluidics chips to become more
powerful. For example, the remaining amino groups in an alde-
hyde-assembled341 substrate could be used to immobilize a DNA
probe, and poly-L-lysine (PLL)342,343 can immobilize DNA or
miRNA probes using electrostatic binding. Combination of designed
biomaterials with a microfluidics chip is promising for high
throughput and convenient miRNA detection. Gao et al.344 used
three-segment hybridization and fluorescence imaging by combining
PLL-modified, self-assembled slides with high-throughput microflui-
dics chips to develop miRNA quantitative assay technology. In this
776 Molecular Therapy: Nucleic Acids Vol. 28 June 2022
work, miR-4732, miR-k12-5, miR-3646, and miR-4484 (four typical
miRNAs found in intraductal breast cancer) were employed to
demonstrate the effectiveness of the biochips. To identify miRNAs,
a three-segment hybridization technique was utilized, with the target
miRNA binding to the capture probe at one end and a fluorescent dye
at the other end. Detection probes with fluorescent labels were bound
to the target miRNA on the chip. Then the capture probes were im-
mobilized on the device by a miRNA hybridization probe. Finally, a
laser scanner was employed to excite the fluorescence signal of the
capture probe-miRNA-detection probe complex on the chip and to
eliminate non-specific probe binding.

The lab-on-a-chip (LOC) approach has become a hot topic among
microfabrication scientists over the previous two decades, attracting
major industry attention for future biomedical applications. Econom-
ical, rapid, and combinatorial detection of biological materials are the
main advantages of LOC systems. These properties of LOCs have
encouraged researchers to develop innovative devices that could be
used for consumer applications as POC systems.344 Development of
POC systems requires a miniaturized electronic readout, which could
be based on MicroTAS (micro-total analysis system) or MEMS (mi-
cro-electro-mechanical system).24,345 Arata et al.341 described a
power-free microfluidics device requiring a small sample size (Fig-
ure 8A) that could be used as a POC system for miRNA identification.
The device is powered by degassed PDMS, requiring no external en-
ergy source for fluid pumping. Signal amplification in the microflui-
dics device relies on laminar flow-assisted dendritic amplification
(LFDA).346 The miRNA is identified using a sandwich hybridization
approach in which a miRNA capture probe is mounted on the glass
surface, and the sample is transported to the immobilized probe
through the microchannels. Subsequently, the miRNA is hybridized
to the probe, and LFDA amplifies the signal (Figure 8B). This device
is promising for further development of miRNA POC detection sys-
tems.347 Zhang et al.348 described a bacterial pathogen detection
system (with a detection limit of 200 cells/L) using a manual,
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electricity-free centrifugal microfluidics chip with sample multiplex-
ing and molecular label detection ability. Relying on top-spinning
technology, this device could be used in rural communities as a
POC tool. This microfluidics disc can carry out multiple procedures,
from nucleic acid purification through target amplification and diag-
nosis. Centrifugal mixing of the pre-loaded reagents is used for re-
agent manipulation. The loop-mediated isothermal amplification
(LAMP) reaction is carried out between 30�C and 60�C, a relatively
low temperature produced by a mobile pocket warmer, and the fluo-
rescence signals are detected by a tiny UV lamp. It is critical to
improve the system function to the extent that it can compete with
the gold-standard technology. Salim et al.349 employed a microflui-
dics miRNA-based POC device to further investigate the LAMP reac-
tion. A fluorescence reader is incorporated into this system. It can
detect and monitor miRNA-21 levels in blood samples from individ-
uals with breast cancer in half an hour, using miRNA molecular bea-
con probes.349 Molecular beacon probes were developed to conduct
screening of multiplex miRNAs at different levels within a single
test, which improves the true positive and true negative rates and is
not interfered with by other nucleic acids. miRNA-21 levels in the
serum of individuals with breast cancer could be used as a biomarker;
it has been shown to be as much as four times higher compared with
its levels in healthy individuals. This POC device was used to evaluate
51 blood samples, 30 from healthy control individuals and 21 from
individuals with breast cancer.349 qRT-PCR was used to verify the
effectiveness of the device. It has been suggested that this test could
be used in rapid staging of cancer, required by physicians who want
to select a treatment plan.

A microfluidics paper-based analytical device (PAD) was used for
miRNA analysis. Fluid flow on a PAD can be controlled by capillary
forces in a direct manner not requiring any external driving
forces.350,351 Cellulose paper allows a variety of chemical and
biochemical reactions and provides passive liquid transfer.352 Being
hydrophilic, paper may be thought of as a porous material with a ho-
mogeneous structure that permits useful reactions.353 PADs are high-
ly disposable because of their minimal weight, cheap cost, and low
sample/reagent consumption.354 MicroPADs (mPADs) have evolved
into useful tools for analyzing nucleic acids and other biological mol-
ecules.355 Detection techniques such as colorimetric detection and
fluorescence are commonly used in mPADs.356,357 Among these
detection strategies, colorimetric detection is a rapid and easy way
of detecting samples.358,359 The results are plainly visible with the
naked eye.360 Fluorescent samples can be sensitively analyzed by a
fluorescence detection technique, which minimizes interference
with the sample. The detection method of laser-induced fluorescence
(LIF) is a specific type of fluorescence detection, well suited for
mPADs.361,362 It should be borne in mind that the number of different
intracellular miRNAsmight be 1,000 or even higher.363 Amplification
or enrichment techniques play a major role in allowing miRNA detec-
tion by standard methods. DSN (duplex-specific nuclease) is an
enzyme that can cleave each single DNA chain in double-stranded
nucleic acids in a selective manner. DSN can cleave TaqMan probes,
DNA chains, releasing fluorophores into solution and increasing the
fluorescence emission intensity when these DNA sequences combine
with target miRNAs.364 Because the content of miRNAs can be as low
as 1,000 molecules in each cell,363 it is impossible for ordinary detec-
tion methods to directly determine cellular miRNAs without amplifi-
cation or enrichment. The sensitivity of miRNA detection can be
significantly improved using DSN amplification.365 In addition,
DSN amplification does not require any complicated procedures
and is relatively fast, making it a useful approach for miRNA analysis.
DSN amplification on mPADs, however, is significantly more chal-
lenging than in test tubes. Paper has a large specific surface area,
and the fibers may bind strongly to nucleic acids; therefore, a substan-
tially higher number of miRNAs will be required for detection. In
addition, the reagent storage shelf life and fluorescence signal ob-
tained on paper differ from those obtained in clear solutions. Re-
searchers have recently developed a microfluidic DSN paper-based
LIF sensor to selectively detect miRNAs in cancer cells with good
sensitivity.366 Sample detection on the paper-based device was
initially performed using LIF detection. DSN (0.10 U) and TaqMan
sensors (0.25 mM) were added to the folded paper circle (diameter,
4 mm) chip and could be stored under ideal conditions. Using cyclical
digestion of the hybrids between miRNAs and TaqMan probes by
DSN enzyme, the fluorescence signal was amplified after addition
of the miRNA solution. The entire procedure, including sample heat-
ing, could be completed in about 40 min. miRNA-21 and miRNA-31
had detection limits of 0.20 and 0.50 fM, respectively, leading to
miRNA consumption of just 1.0 or 1.5 zmol. The approach demon-
strated high specificity when tested with mismatched miRNAs. The
concentrations of miRNA-21 and miRNA-31 in lysates of A549
and HeLa cancer cells, along with LO2 hepatocytes, were successfully
measured by this approach. miRNA-21 and miRNA-31 concentra-
tions in HeLa cell lysates (3.75 � 104 cells/mL) were 1.74 � 10�13

M and 6.29 � 10�14 M, respectively, and 3.07 10�15 M and
3.28 � 10�15 M in A549 cell lysate (8.33 � 106 cells/mL). The recov-
ery rates varied from 87.30% to 111.83%, verifying the study findings.
miRNAs could be efficiently and sensitively determined in cancer
cells in a selective manner.366

Other groups introduced a new miRNA detection method by
designing a rapid and affordable microfluidics chip.341,346,367 There
were two main aspects of this strategy. First, pumping was accom-
plished by degassed PDMS, which is widely used as a microfluidics
chip material, so no external power source was needed.368 Second,
the process was enzyme free because of fluorescence signal amplifica-
tion on the microfluidics platform using an LFDA method.369,370 The
duration of the detection process was claimed to be as short as
20 min.346 With a sample volume of only 0.5 mL, the LOD was 0.5
pM. This method has been reported to be able to simultaneously
detect miR-16, miR-21, and miR-500.367,371

A surface-functionalized, power-free microchip (SF-PF microchip)
for POC testing has been introduced as a rapid and convenient
biomarker detection system.372,373 Electron beam-induced graft poly-
merization (EB grafting) and chemical modification of the inner sur-
faces of the microchannels were used to create this PF microchip. The
Molecular Therapy: Nucleic Acids Vol. 28 June 2022 777
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Table 3. MFs and miRNAs in cancer

Strategy Isolation method Cancer
Sample/sample
volume

Detection
method LOD miRNAs Reference

Double-layered
MF biosensing chip

capture DNA probe breast cancer serum/2 mL fluorescence 0.146 aM
miR-125, miR-126,
miR-191, miR-155, miR-21

Chu et al.375

Self-priming MF
chip and DSN

capture DNA probe
human breast
cancer cell line

medium/20 mL fluorescence 45.35 pM miR-100, miR-155, Let-7a Zou et al.376

DNA-field-effect
transistor (FET)
biosensor-based
MF system

DNA-FET biosensors breast cancer serum – 84 and 75 aM miR-195, miR-126 Huang et al.377

Integrated MF
platform

antibody-coated
magnetic beads

ovarian cancer plasma – 1.4 aM miR-21 Sung et al.378

Integrated MF
platform

field-effective
transistor biosensors

breast cancer plasma – 1 fM miR-195 Huang et al.379

Magnetic
hyperthermia
on chip

DNA hybridization
on core-shell NPs

liver plasma/0.24 mL electrochemical – miR-122 Horny et al.380

Electrochemical
MF multiplexed
biosensor

CRISPR-biosensor brain cancer serum/0.6 mL electrochemical 2–18 pM
miR-19b, miR-20a
(from miR-17–92 cluster)

Bruch et al.381

and Bruch et al.382

Surface-enhanced
Raman scattering
(SERS)- MF approach

RSA probes
breast cancer
cell line

medium/– SERS spectroscopy 2.32 fM, 40 min miR-141 Ma et al.383

SF-PF MF chip capture DNA probe cancer cell medium/0.5 mL UV light 41 fM, 18 min miR-500a-3p Ishihara et al.374

Hydrogel-based
colorimetric assay

biotinylated DNA
probe-loaded
nanogold-streptavidin

cancer cell
total RNA
samples

colorimetric 260 fM, Let-7a, miR-145, miR-21 Lee et al.384

Poly-L-Lysine (PLL)
substrate is integrated
with MF chips

capture DNA probe breast cancer serum fluorescence 1 pM, 30 min
miR-4732, miR-k12-5,
miR-3646, and miR-4484

Gao et al.344

MF paper-based
analytical device (mPAD)

amplification for miRNA
on mPAD (miRNA
sequences, TaqMan
probe, and DSN)

cancer cells – LIF detection
0.2 fM (miR-21),
0.5 fM (miR-31)

miR-21, miR-31 Cai et al.366

MF exponential rolling
circle amplification
(MERCA) platform

capture probe cancer cells total RNA fluorescence <10 zmol levels miR-21, let-7 Cao et al.385

PF MF chip capture DNA probe (LFDA) cancer cell 0.5 mL fluorescence
0.045 pM (miR-196a)
and 0.45 pM
(miR-331), 20 min

miR-196a, miR-331 Kim et al.339

MF platform capture DNA probe lung cancer cell – fluorescence – miR-21, miR-486
Arata et al.;
Allahverdi et al.346,386

MFs PADs
electrochemical probe
(cerium dioxide -

cancer cell serum/– electrochemical 0.434 fM miR-21 Sun et al.387

(Continued on next page)
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Table 3. Continued

Strategy Isolation method Cancer
Sample/sample
volume

Detection
method LOD miRNAs Reference

Au@glucose oxidase
(CeO2-Au@GOx))

Integrated droplet
MF system

DNA hybridization
chain reaction
(real-time droplet assay)

breast cancer
cells (MCF-7,
MDA-MB-231)

medium fluorescence – miR-21 Guo et al.388

MF VAL-DESI (voltage-
assisted liquid desorption
electrospray ionization-
tandem)-MS/MS

capture DNA probe –
miRNA-containing
samples (25 mL)

mass
spectrometry

0.25 pM miR-21 Li et al.389

Theranostic one-step
RNA detector; MF disc

capture-target-NP labeled probe –
plasma and human
cerebrospinal fluid

electrochemical 1 pM miR-134 McArdle et al.390

MF TaqMan array cards qRT-PCR-based technology
pancreaticobiliary
tumors

tissue – –

miR-135b, �148a,
�155, �196a, �210,
�217, �203, �375, �1246

Gress et al.391

MF platform miRNA probe breast cancer serum fluorescence – miR-21 Salim et al.349

MF platform molecular beacon (MB) probe – –
fluorescence and
SERS reporter

10�8 M miR-21 Wang et al.392

Droplet MF combined
with ICSDP (isothermal
circular-strand-displacement
polymerization)

MB probe – 0.2–1 mL fluorescence – miR-210 Giuffrida et al.393

Digital MF devices MB-assisted ICSDP – 20 nL droplets fluorescence – miR-210 Giuffrida et al.394
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pump-free microchip was powered by PDMS gas solubility rather
than electric power.368,374 A DNA capture probe was attached to
the grafted polymer chain on the microchannel surface of the PF
microchip, enabling triple miRNA detection on the SF-PF microchip.
The required sample volume, assessment time, and detection limit for
miRNA were determined to be 1.0 mL, 20 min, and 5.0 nM, respec-
tively.373 UV light-induced graft polymerization (UV grafting) on
the PDMS PF microchip was used to produce a cancer biomarker
SF-PF microchip for identification of hsa-miR-500a3p (miR-500).
Rapid and sensitive detection with a small sample volume was ob-
tained. The sample volume, detection time, and LOD were 0.5 mL,
18 min, and 41 fM, respectively. This LOD was 19-fold lower than
the SF-PF microchip produced by EB grafting and fell within the
miRNA concentration range in blood. Compared with EB grafting,
UV grafting allowed easier production of the SF-PF microchip and
more sensitive miRNA detection. Under normal atmospheric condi-
tions, the SF-PF microchip could be stored for over 7 days.374

A summary of studies on microfluidic-based miRNA detection
methods in human cancer is given in Table 3.

CONCLUSION
Since microfluidics was first introduced to biological research two de-
cades ago, the field has continued to be widely developed.Microfluidics
has great potential in the diagnosis and molecular understanding of
cancer, a leading global cause of death, because of its affordability,
sensitivity, spatiotemporal control, and low sample consumption.
The microscale microfluidics platform has made many contributions
to basic sciences (e.g., physics, biology, chemistry, and physiology).
The high portability of microfluidics devices has made them promising
for POC diagnostics. Cancer management and biological understand-
ing could be significantly improved through application and develop-
ment of microfluidics approaches. Despite the popular assumption
that microfluidics are a “cost-effective” alternative to conventional
benchtop instruments, the actual costs of microfluidics devices for
isolation and analysis of exosomes and miRNAs can vary widely, de-
pending on the methodology employed. However, the continuing im-
provements being made in microfluidics hold great promise for design
of new commercial gadgets for liquid biopsy analysis. It is predicted
that samples will be analyzed for their miRNA and exosome composi-
tion in POC and clinical settings. To achieve this, a number of chal-
lenges have to be solved. First, there are insufficient clinical studies,
particularly large cohort trials. Second, there is a lack of unified stan-
dardization, meaning that robust methodical reproducibility and the
real potential of miRNA and exosome-based microfluidics have not
been established. Third, the devices will need to achieve regulatory
approval for clinical applications. Despite the recent initial approval
of commercial microfluidics-based instruments for miRNA and exo-
some detection, we suggest thatmicrofluidics technologywill bemainly
commercialized in the academic research market.
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