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Abstract

Motivation

Gene co-expression analysis is an attractive tool for leveraging enormous amounts of public

RNA-seq datasets for the prediction of gene functions and regulatory mechanisms. How-

ever, the optimal data processing steps for the accurate prediction of gene co-expression

from such large datasets remain unclear. Especially the importance of batch effect correc-

tion is understudied.

Results

We processed RNA-seq data of 68 human and 76 mouse cell types and tissues using 50 dif-

ferent workflows into 7,200 genome-wide gene co-expression networks. We then conducted

a systematic analysis of the factors that result in high-quality co-expression predictions,

focusing on normalization, batch effect correction, and measure of correlation. We con-

firmed the key importance of high sample counts for high-quality predictions. However,

choosing a suitable normalization approach and applying batch effect correction can further

improve the quality of co-expression estimates, equivalent to a >80% and >40% increase in

samples. In larger datasets, batch effect removal was equivalent to a more than doubling of

the sample size. Finally, Pearson correlation appears more suitable than Spearman correla-

tion, except for smaller datasets.

Conclusion

A key point for accurate prediction of gene co-expression is the collection of many samples.

However, paying attention to data normalization, batch effects, and the measure of correla-

tion can significantly improve the quality of co-expression estimates.
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Introduction

Understanding the functions and regulatory mechanisms of genes is one of the central chal-

lenges in biology. Gene co-expression is an important concept in bioinformatics because it

serves as a foundation for predicting gene functions and regulatory mechanisms, and for more

complex network inference methods [1–6]. Several gene co-expression databases have been

developed [7–10].

High numbers of samples are needed to accurately infer correlation of expression [11]. Pub-

lic databases are attractive sources of expression data, but in practice high numbers of samples

can only be obtained by aggregating data from different studies conducted by different labora-

tories. As a result, the input data for gene co-expression analysis often contains considerable

technical variability, called batch effects [9,12].

In a recent study, we showed that correcting batch effects improved the quality of gene co-

expression estimates significantly [9]. However, our previous study was limited to microarray

data, and considered only one data normalization method and one batch correction method,

i.e. ComBat [13]. Moreover, other studies have shown that treating batch effects can also result

in unwanted artifacts such as exaggerated differences between covariates in gene expression

and DNA methylation data [14–17].

Here, we present a systematic analysis of the effects of RNA-seq data normalization, batch

effect correction, and correlation measure on the quality of gene co-expression estimates. We

applied 50 data processing workflows on data for 68 human and 76 mouse cell types and tis-

sues, resulting in 7,200 sets of genome-wide gene-gene co-expression predictions. Through

analysis of the quality of these cell type- and tissue-specific co-expression predictions, we con-

firmed the importance of large numbers of samples [11]. We also found that some normaliza-

tion methods (especially UQ normalization) resulted on average in better co-expression

predictions than others. In addition, treating batch effects resulted in a significant improve-

ment of the co-expression estimates, especially in larger datasets consisting of samples pro-

duced by many different studies. It is imperative that future studies pay attention to batch

effects in order to make optimal use of large amounts of public data. Finally, the difference

between Pearson’s correlation and Spearman’s correlation was small, with Spearman working

better in small datasets and Pearson better in medium-sized datasets. To the best of our knowl-

edge, this is the first comprehensive study evaluating the importance of batch effect correction

for the prediction of gene co-expression from large collections of RNA-seq data.

Results

Overview of this study

The goal of this study is to gain insights into which data processing steps are preferable for

obtaining high-quality gene co-expression estimates from large collections of RNA-seq data.

To address this issue, we collected a dataset of 8,796 human and 12,114 mouse bulk RNA-seq

samples, from 401 and 630 studies, covering 68 human and 76 mouse cell types and tissues

(see Methods; S1 and S2 Tables) [18]. On these two datasets, we applied combinations of data

normalization approaches and batch effect correction approaches (see Fig 1 for a summary of

the workflow). As proxies for batches we used the studies that produced each sample (1 study

is 1 batch). We also applied the method ComBat-seq on the raw read count data without any

prior normalization [19]. The resulting 25 (6 normalizations x 4 batch effect correction

approaches, and ComBat-seq without normalization) human and 25 mouse datasets were used

to estimate correlation of expression using Pearson’s correlation and Spearman’s correlation

in the data of each cell type or tissue. This resulted in a total of 7,200 (3,400 human and 3,800
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mouse) genome-wide sets of cell type or tissue-specific gene co-expression predictions. We

will refer to each genome-wide set of cell type or tissue-specific gene co-expression predictions

as a “co-expression network”. However, the goal of this study is not to analyze network topol-

ogy. Our focus is to identify the key features that result in accurate co-expression predictions.

Defining the quality of co-expression predictions

Next, we evaluated the quality of the co-expression predictions produced by each workflow.

Many studies have used enrichment of shared functional annotations among correlated genes

or regulatory DNA motifs in their promoter sequences as quality measures for co-expression

predictions [10,20–22]. In high-quality co-expression networks, we expect correlated genes to

belong to shared pathways or to be controlled by a common regulatory mechanism (Fig 1B). In

contrast, in a randomly generated network, correlated genes are expected to lack common func-

tions or regulatory mechanisms. In this study, in each co-expression network, for every gene X,

we extracted the set of 100 genes with the highest correlation, which we refer to as setX. We then

defined eight quality measures that are based on how frequently we observed significant enrich-

ment of Gene Ontology (GO) functional annotations and transcription factor binding site

(TFBS) motifs among these sets of 100 genes (Table 1, see Methods for more details). In high-

quality networks this frequency should be high, and in low-quality networks it should be low.

Although the eight quality measures were based on sets of 100 highly correlated genes, using

instead the top 50 or top 200 genes resulted in highly consistent quality estimates (S1 Fig).

We collected the eight quality measures of the 7,200 co-expression networks and Principal

Component Analysis (PCA) revealed that they are highly consistent and correlated: the first

PC explained 81.4% of variability in the quality measures (S2A Fig), and had a high correlation

with all eight measures (range 0.77 to 0.96; S2B and S2C Fig). In contrast, the second PC

Fig 1. Summary of this study. (A) Raw RNA-seq data was processed with 50 different combinations of normalization, batch effect

correction, and correlation measures into 7,200 genome-wide sets of cell type and tissue-specific co-expression predictions, which we

refer to as “co-expression networks”. (B) Quality of co-expression networks was estimated based on the enrichment of functional

annotations of correlated genes and regulatory motifs in their promoters. In random co-expression networks no common annotations

and motifs are expected to be found among correlated genes. In contrast, in ideal networks such enrichments should be encountered

frequently. Here nodes represent genes and edges co-expression. (C) Quality measures were processed into 7,200 quality scores, which

were used for downstream analysis. We use 75% of cell types and tissues for regression and exploratory analysis, and the remaining 25%

for validation.

https://doi.org/10.1371/journal.pone.0263344.g001
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accounted for only 12.1% of the variance in the data and was did not show consistent correla-

tion with all measures (S2A, S2B and S2D Fig). To facilitate the downstream analysis, we there-

fore decided to use this first PC as a general quality score (Quality, see Methods) after rescaling

it to the range 0 (worst networks) to 1 (best networks) (S3A Fig). As an illustration, S3B Fig

shows the quality measures for the networks with the lowest (Med + ComBat-seq + Spearman

applied on human salivary gland data), 50th percentile (Rlog + ComBat + Pearson applied on

human neuron data), and highest (UQ + removeBatchEffect + Spearman applied on mouse

liver data) Quality. From the lowest-quality network to the highest-quality network, the mea-

sures of quality are progressively increasing.

At this point we randomly split the 68 human and 76 mouse cell types and tissues into 2

groups (S1 and S2 Tables). One group (51 human and 57 mouse cell types and tissues; corre-

sponding to 75% of the datasets) will be used for the analysis of features that contribute to

high-quality gene co-expression predictions. We refer to this as our training set, and will focus

on it in the following sections. The remaining 25% of cell types and tissues (17 human and 19

mouse cell types and tissues) will be used as an independent validation set later (section “The

best workflows result in significantly better co-expression estimates”).

Fig 2 shows the 50 workflows that we examined, sorted by the average Quality of the 108 (51

human and 57 mouse cell types and tissues in the training set) networks that they each resulted

in. We observed that the top four workflows used UQ normalization, while Quantile normaliza-

tion resulted in low average quality. Similarly, the top 15 workflows all include a batch correc-

tion step, while many of the worst-performing workflows did not treat batch effects. The top-

ranking workflow (UQ + ComBat + Pearson) resulted in an above-average network for 102

(94%) of the 108 training datasets, and for 135 (94%) of all 144 datasets (S4 Fig).

Modeling the quality of co-expression networks

To gain more quantitative insights into what factors contribute to high-quality co-expression

estimates, we performed linear regression on the Quality scores using as predictors: 1) the

Table 1. Overview of the eight quality measures used to define the quality of genome-wide gene co-expression

networks.

Quality

measure

Definition

EnrichmentMF fraction of genes for which setX has one or more enriched GO terms of the domain Molecular

Function.

EnrichmentBP fraction of genes for which setX has one or more enriched GO terms of the domain Biological

Process.

EnrichmentCC fraction of genes for which setX has one or more enriched GO terms of the domain Cellular

Component.

EnrichmentTFBS fraction of genes for which the promoters of setX have one or more significantly enriched TFBS

motifs.

AccuracyMF fraction of genes for which known annotations of the domain Molecular Function overlapped

with enriched GO terms of setX.

AccuracyBP fraction of genes for which known annotations of the domain Biological Process overlapped with

enriched GO terms of setX.

AccuracyCC fraction of genes for which known annotations of the domain Cellular Component overlapped

with enriched GO terms of setX.

AccuracyTFBS fraction of genes for which predicted TFBSs in their promoter sequence overlapped with

enriched TFBS motifs in the promoter sequences of setX.

setX refers to the set of 100 genes with the highest correlation of expression with each gene X in a given co-expression

network.

https://doi.org/10.1371/journal.pone.0263344.t001
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number of RNA-seq samples which the network was based on (log10 values), 2) the number of

batches in the data (log10 values), 3) the species (human or mouse), 4) the data normalization

approach, 5) batch correction approach, and 6) the correlation measure. In the next sections,

we will focus on workflows that did not include ComBat-seq. ComBat-seq differs from Com-

Bat and RemoveBatchEffect in that it takes integers as input and therefore cannot be used on

data that has already been normalized. Networks generated using ComBat-seq will be treated

separately in section “ComBat-seq results in lower-quality networks”.

The resulting linear model is summarized in Table 2. Despite its simplicity, this model

explains 55% of the variability in Quality (R2 = 0.55) in the training datasets. The reliability of

estimated coefficients was confirmed by 4-fold cross validation (CV), each time leaving out

25% of the cell types and tissues and repeating the same linear regression (S3 Table). In each of

the four models, the signs and relative magnitudes of coefficients was consistent. For example,

in each case, the coefficient of the number batches was negative, and the ordering of the coeffi-

cients of normalizations methods was the same. Below we discuss the roles of sample counts,

data normalization, batch effect correction, and correlation measures in more detail.

The importance of sample counts

The most significant predictor for the quality of co-expression estimates was the number of

samples they were based on (Table 2). Quality follows a roughly linear trend with the loga-

rithm of the sample count (Fig 3A). This is consistent with a previous study [11]. At the same

Fig 2. Evaluating the quality of co-expression networks. All 50 workflows are shown in order of decreasing average

quality of the networks they produced. From left to right are shown: Normalization method, batch effect correction

method, and measure of correlation used in each workflow. Next, the number of training datasets (108 in total) in

which the workflow resulted in an above-average quality network is shown, and the mean Quality of the 108 networks

generated using each workflow.

https://doi.org/10.1371/journal.pone.0263344.g002

Table 2. Linear regression analysis of co-expression network quality scores.

Feature Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.150 0.011 -13.9 5.1E-43

log10(sample count) 0.2894 0.0072 40.1 8.5E-295

log10(batch count) -0.0302 0.0081 -3.7 0.00019

species human baseline
mouse 0.0462 0.0035 13.3 3.0E-39

normalization Quantile baseline
Rlog 0.0231 0.0060 3.9 0.00012

CPM 0.0318 0.0060 5.3 1.2E-07

TMM 0.0540 0.0060 9.0 3.0E-19

Med 0.0638 0.0060 10.7 3.9E-26

UQ 0.0782 0.0060 13.1 3.4E-38

batch effect correction no correction baseline
removeBatchEffect 0.0412 0.0042 9.7 4.1E-22

ComBat 0.0468 0.0042 11.1 5.4E-28

correlation measure Pearson baseline
Spearman -0.0107 0.0035 -3.1 0.0019

A linear model was trained on 3,888 networks in our training set, excluding those treated using ComBat-seq. Features, their estimated coefficient, standard error, t value

(= estimate/std. error) and p-value of a two-sided t-test with 3,876 degrees of freedom are shown. Qualitative predictors are grouped by species, normalization, batch

effect correction and correlation measure.

https://doi.org/10.1371/journal.pone.0263344.t002
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time, an increase in the number of batches results in a small decrease in Quality (Table 2). A

number of samples obtained from a small number of batches is expected to result in better co-

expression predictions than an equal number of samples generated by many smaller batches. It

should be pointed out that there is a strong correlation between the number of samples and

the number of batches for each cell types and tissue (S5 Fig; Pearson correlation 0.84) which

can result in instability of estimated coefficients. However, in our 4-fold CV analysis, the coef-

ficients of sample count (log10) and batch count (log10) were consistently positive and negative,

respectively (S3 Table).

Quality being roughly linearly related to the logarithm of the sample count implies that an

ever-increasing number of additional samples is needed to achieve the same improvement in

quality. Collecting hundreds or thousands of additional samples is practically impossible

under most circumstances. Therefore, it makes sense to look for data processing steps that can

maximize the quality of co-expression predictions even in the absence of an increase in

samples.

The importance of data normalization approach

Regression analysis revealed clear differences in the average quality of networks generated

using the six different normalization methods (Table 2), confirming the tendencies observed

in Fig 2. Med and UQ resulted in an average increase of 0.064 and 0.078 in Quality compared

to the baseline (here Quantile normalization, the worse performing method), respectively.

These improvements are equivalent to a 66% and 86% increase in sample count. Additional

Fig 3. Importance of sample numbers and normalization approaches. (A) Sample count vs quality of co-expression networks. The quality of individual networks of

each cell type and tissue generated by using different workflows are indicated by small points (forming a vertical pattern). Larger points are averages for each dataset.

Blue: Mouse, red: Human datasets. (B) Boxplots of the quality of networks made using each of the six normalization methods, in function of dataset size. Datasets were

divided into three sets of 36 datasets according to size. Red: Small datasets (20 to 44 samples); Green: Medium-sized datasets (45 to 111 samples); Blue: Large datasets

(113 to 2,644 samples).

https://doi.org/10.1371/journal.pone.0263344.g003
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exploratory analysis revealed interactions exist between sample counts and normalization

methods: the performance of normalization methods depends on the size of datasets. We

divided our datasets according to sample counts into three sets of 36 cell types and tissues

each. Fig 3B shows the Quality of networks based on small (20 to 44 samples), medium-sized

(45 to 111 samples), and large (113 to 2,644 samples) datasets. While all normalization meth-

ods showed progressively higher performance with larger dataset sizes, UQ performed rela-

tively well not only on the large, but also on the small and medium-sized datasets.

Correcting batch effects in general improves co-expression quality

Correction of batch effects by removeBatchEffect or ComBat resulted in better networks,

increasing the Quality on average by respectively 0.041 and 0.047 compared to no correction

(Table 2). These improvements are equivalent to a 39% and 45% increase in sample count,

respectively. However, here too, the improvement depends on sample counts, and on the

number of batches in the dataset. The improvement in quality appears to increase roughly

with the sample count, for both removeBatchEffect (Fig 4A) and ComBat (Fig 4B). Especially

ComBat consistently resulted in higher-quality networks in larger datasets (Fig 4A and 4B).

Fig 4. The number of samples and batches affect the advantage of batch effect correction. (A-C) Difference in quality of co-expression networks based on data with

and without treating batch effects in function of sample count, for data treated with removeBatchEffect (A), ComBat (B), and ComBat-seq (C). Positive values indicate

an increase in quality in the batch-treated networks. (D-F) Difference in quality of co-expression networks based on data with and without treating batch effects in

function of the number of batches in each dataset, for removeBatchEffect (D), ComBat (E), and ComBat-seq (F). The average difference in quality is shown in blue for

each sample count and for each batch count. A smoothed pattern (loess) is included in each plot.

https://doi.org/10.1371/journal.pone.0263344.g004
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For datasets with>200 samples, ComBat’s average improvement in Quality exceeded 0.10,

equivalent to a>120% increase in sample count. removeBatchEffect failed to correct batch

effects in a few datasets, resulting in somewhat worse overall quality (Fig 4A, indicated data-

sets). Batch effect correction offered no clear advantage when a dataset contained few batches

(e.g. less than 5, Fig 4D and 4E). However, for datasets containing 5 or more batches, using

ComBat or removeBatchEffect resulted in general in better networks.

Spearman correlation is preferred for small datasets

Using Spearman’s correlation instead of Pearson correlation resulted on average in a 0.011

decrease in Quality (equivalent to a 8.2% decrease in sample count) (Table 2). However, for

small datasets (sample count < 30) Spearman’s correlation had on average an advantage (Fig

5). For medium-sized datasets (roughly 30 to 100 samples) Pearson’s correlation lead in gen-

eral to better co-expression networks, but the difference became smaller with higher sample

counts.

These results make intuitive sense. Spearman’s correlation, which is based on ranks and not

on raw values, is less sensitive to extreme values. In small datasets, extreme values have a strong

influence on correlation, adversely affecting Pearson’s correlation. However, in medium-sized

Fig 5. The preferred correlation measure depends on the number of samples. Difference in the quality of co-

expression networks based on Pearson’s correlation and networks based on Spearman’s correlation is shown in

function of the number of samples in the datasets. Positive values indicate an advantage for Pearson’s correlation. The

average difference in quality is shown in blue for each dataset. A smoothed pattern (loess) is included in the plot.

https://doi.org/10.1371/journal.pone.0263344.g005
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datasets, the influence of extreme values decreases and Pearson’s correlation appears to be bet-

ter able to capture biological signals.

ComBat-seq results in lower-quality co-expression estimates

On average, ComBat-seq did not result in high-quality networks compared to ComBat and

removeBatchEffect (Fig 2). Adding a normalization step following the correction by ComBat-

seq did not improve qualities but rather reduced them (Fig 2). Zhang and colleagues them-

selves noted that on some datasets ComBat-seq did not outperform ComBat [19]. In our data,

ComBat-seq resulted in lower-quality networks even in the datasets with more samples (Fig

4C) or more batches (Fig 4F). Although the reason for this failure is not clear, we did note that

ComBat-seq returned unrealistically high read counts in a substantial subset of samples. For

example, in 821 human samples (out of a total of 8,796) the total read count after correction

exceeded 10 billion reads. A subset of genes had extremely high reads counts in some samples.

For example, Prh1 had corrected read counts> 1e100 in a subset of human salivary gland sam-

ples. These observations suggest that ComBat-seq adjusted a subset of the data to negative

binomial distributions that are extremely skewed, negatively affecting the quality of co-expres-

sion networks.

The best workflows result in significantly better co-expression estimates

Finally, we returned our attention to the eight raw quality measures, and the validation data-

sets. We compared the networks produced by a default workflow (Rlog + no batch correction

+ Pearson) with those produced by optimized workflows (UQ + ComBat + Spearman for data-

sets with < 30 samples, and UQ + ComBat + Pearson otherwise) (Fig 6). For all eight mea-

sures, using the optimized approaches resulted in a significant improvement compared to the

default workflow (one-sided paired t-tests; all eight p-values < 0.01; improvements seen in 25

to 33 of the 36 validation datasets). The optimized workflows lead to co-expressed genes

Fig 6. Optimized workflows lead to a significant improvement in all eight quality measures. (A-D) (left) Dotplots

showing the fraction of genes with enrichment of GO terms and regulatory motifs in networks produced by a default

workflow (red) and the optimized workflow (blue). (right) Dotplots showing the fraction of genes with an annotation

that fit with enrichment GO terms, and with promoters that contain an instance of an enriched regulatory motif. Each

dot represents one of the 36 (17 human and 19 mouse cell types and tissues) validation datasets. P-values are based on

one-sided paired t-tests. The number of validation datasets in which an improvement was observed is indicated between

brackets.

https://doi.org/10.1371/journal.pone.0263344.g006
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sharing common functional annotations more frequently (Fig 6A–6C left side), as well as

shared annotations fitting with the known annotations of genes more frequently (Fig 6A–6C

right side). The same was true for regulatory motifs in promoter sequences (Fig 6D).

Discussion

We presented a systematic analysis of 50 workflows for processing large collections of RNA-

seq data into gene co-expression predictions. We applied the workflows on data for 68 human

and 76 mouse tissues and cell types, and estimated the quality of the resulting 7,200 sets of

genome-wide gene co-expression datasets (“co-expression networks”). We used linear regres-

sion analysis to gain understanding of the important factors for obtaining high-quality co-

expression networks. Our aim was to re-analyze existing large RNA-seq expression datasets,

that have already been trimmed, aligned to a reference genome, and counted using a standard-

ized pipeline. We focused on the steps of RNA-seq data normalization, batch effect correction,

and measure of correlation of expression. Other studies have compared between read trim-

ming and alignment approaches in related contexts [23].

We found that co-expression network quality is to a large degree determined by the number

of samples which it is based on, as has been reported before [11]. It is therefore important to

gather as many samples as possible. However, in practice the number of available samples is

always limited. Moreover, co-expression network quality appeared to be roughly a linear func-

tion of the logarithm of the sample count. This means that for cell types and tissues with abun-

dant data, adding hundreds of additional samples might result in only modest improvements

in quality. It therefore makes sense to optimize the data processing workflow to obtain high-

quality networks even in the absence of large sample counts.

Treating batch effects in general lead to better networks. On average, ComBat performed

better than limma’s removeBatchEffect function. ComBat-seq however performed consider-

ably worse than ComBat and removeBatchEffect. In our analysis, correcting batch effects

using ComBat resulted in improvements to network quality equivalent to a 45% increase in

sample count on average. In larger datasets, the advantage was even more pronounced, equiva-

lent to roughly a doubling in sample count. Unfortunately, gene co-expression studies still

often ignore batch effects. Clearly, more attention needs to be paid to the issue of batch effects

in order to extract the maximum potential out of ever-increasing public gene expression

datasets.

We found that some data normalization approaches lead to better co-expression estimates

than others. Especially UQ performed well. UQ has also been found to perform relatively well

compared with total count normalization (equivalent to CPM in our study) and quantile nor-

malization in the context of predicting differentially expressed genes [24]. Other comparisons

of RNA-seq normalization methods (outside of the context of co-expression) have come to dif-

ferent and conflicting conclusions [25–27].

The measure of correlation appeared to be less crucial, but Pearson’s correlation seems to

have a slight advantage, except when there are only small numbers of samples (<30). In the lat-

ter case, Spearman’s correlation seems better.

Although no workflow dominated all others, UQ + ComBat + Pearson (or Spearman for

small datasets) resulted in the best quality overall, and in above-average co-expression net-

works in >90% of the tissues and cell types we examined (Fig 2).

In addition to the findings described above, the dataset collection and the workflows used

in this study are valuable resources. The collection of raw human and mouse samples and their

annotation data have been made public, together with the data processed using UQ normaliza-

tion and ComBat batch effect correction (see section “Data and code availability”). Scripts and
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an example workflow have been made public in a GitHub repository. We hope that together

this data and code can serve as a basis for future studies.

Methods

Gene expression data collection and normalization

We used the RNASeq-er REST API of the European Bioinformatics Institute [18] to obtain

read count data for 8,796 human and 12,114 mouse RNA-seq samples, produced by 401 and

630 studies, covering 68 human and 76 mouse cell types and tissues, respectively (see S1 Meth-

ods and S1 and S2 Tables). On these two large datasets of human and mouse samples, we

applied the following six normalization approaches:

Trimmed Mean of M-values (TMM). For all genes, log ratios are calculated versus a ref-

erence sample [28]. The most highly expressed genes, and genes with high log ratios are fil-

tered out. The mean of the remaining log ratios is used as a scaling factor. This normalization

method is the default normalization method of the edgeR function calcNormFactors [28,29].

In this study, we first removed genes that have less than 1 read per million reads in all samples

prior to normalizing the remaining genes.

Counts per million (CPM). The number of reads per gene is divided by the total number

of mapped reads of the sample and multiplied by 1 million [25,30].

There are several variations on CPM, describe below, including Upper Quartile and

Median.

Upper Quartile (UQ). Counts are divided not by total count but by the upper quartile of

non-zero values of the sample [24].

Median (Med). Counts are divided not by total count, but by the median of non-zero val-

ues of the sample [25].

Regularized Logarithm (RLog or RLE). A regularized-logarithm transformation is

applied which is similar to a default logarithmic transformation, but in which lower read

counts are shrunken towards the genes’ averages across all samples. We applied this normali-

zation using the R package DESeq2 [31].

Quantile. All samples are normalized to have the same quantiles. We applied this normal-

ization using the function normalizeQuantiles of the limma R package [32].

Note that methods that correct for differences in gene length (RPKM and FPKM) are not

relevant here, since they don’t affect correlation values. In this study, these methods would be

equivalent to CPM normalization.

We thus obtained 12 normalized datasets (6 each for the human and the mouse data). Each

dataset was transformed to log values after addition of a small pseudo count (defined as the 1%

percentile of non-zero values in the normalized dataset).

Batch effect correction using ComBat and limma’s removeBatchEffect

function

On the 12 log-transformed datasets we applied two batch effect correction methods: ComBat

(function ComBat in the sva R package) and the removeBatchEffect function of the limma R

package [13,32]. Both ComBat and removeBatchEffect allow users to specify batch covariates

to remove from the data (“batch” parameter in both functions). Here, studies were used as sub-

stitutes for batches. Users can also give biological covariates to retain (“mod” parameter in

ComBat and “design” parameter in removeBatchEffect). In this study, biological covariates are

the cell type or tissue from which the samples were obtained. Both ComBat and removeBatch-

Effect were used using default parameter settings.
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To be able to treat batch effects in a dataset there can be no confounding between technical

and biological covariates. In practice, studies often focus on a single cell type, which makes

confounding of batches and cell types highly probable. Both the human and mouse datasets

could be divided into several subsets with no shared cell types or tissue annotations. Therefore,

batch effects were corrected for each of these subsets of samples separately, and finally the

treated datasets were merged again into one dataset.

In addition to correcting the data using ComBat and removeBatchEffect we also considered

2 other options. One is to ignore batch effects and use the normalized data directly for estimat-

ing gene co-expression. Another is to use ComBat-seq.

Batch effect correction and normalization using ComBat-seq

ComBat-seq differs from ComBat and limma’s removeBatchEffect function in that both its

input and output are integer counts, making it more suitable for RNA-seq read count data

[19]. To correct batch effects using ComBat-seq (function Combat_seq in the sva R package),

we therefore gave as input the raw count data (without any normalization step applied to it), as

well as the same batch covariates and biological covariates as we used for ComBat and remove-

BatchEffect. ComBat-seq was used with default parameter settings. The output read counts

were transformed to log values after adding a pseudocount of 1. These log-transformed data

were used for estimating correlation of expression (see next section) without an additional

normalization step.

However, quality estimates of the co-expression networks generated using ComBat-seq

were relatively low compared to ComBat and removeBatchEffect, which use normalized data

as input (Figs 2, 4C and 4F). Therefore, to avoid an unfair comparison, we also applied the 6

normalization approaches (TMM, CPM, UQ, Med, Rlog and quantile) on the ComBat-seq

output data. Rlog normalization failed because of the extremely high reads counts in a subset

of the data (see also section “ComBat-seq results in lower-quality co-expression estimates”).

We therefore trimmed all read counts >1e9 to 1e9 before conducting the Rlog normalization.

Together, this resulted in 7 datasets which had been processed using ComBat-seq (i.e. 6

with a normalization step, and 1 without).

Estimating correlation of expression

For each of the 25 data processing combinations (6 normalization methods x 4 batch correc-

tion methods, and ComBat-seq without normalization), we calculated correlation of expres-

sion between each pair of genes in the log-transformed data for each cell type or tissue. We did

this using Pearson’s correlation and Spearman’s rank correlation. Before calculating correla-

tion coefficients in the expression data of a tissue or cell type, genes with general low levels of

expression (less than 10 mapped reads in>90% of samples, or less than 10 reads in>80% of

samples and fewer than 50 reads in all samples) or with no variation in expression (standard

deviation = 0) were removed. The number of samples and genes used for calculating co-

expression in each tissue and cell type are listed in S1 and S2 Tables.

Evaluation of gene co-expression network quality

The processing steps described above resulted in 7,200 (3,400 human and 3,800 mouse) sets of

genome-wide cell type or tissue-specific gene co-expression predictions, which we refer to as

“co-expression networks”. The main goal of this study is to gain understanding into what are

the critical features that distinguish good co-expression networks from bad ones. Because

there is no gold standard co-expression network available, we first defined eight measures of

quality (see also Table 1) based on the enrichment of biologically meaningful features
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(functional annotations of genes and regulatory DNA motifs in promoter sequences) among

co-expressed genes. For each gene X in a co-expression network, we define setX to be the 100

genes with the highest correlation of expression with X (excluding X itself). Our quality mea-

sures are based on the enrichment of GO annotations and TFBS motifs in the setX of every

gene X in each genome-wide co-expression network. These measures should not be inter-

preted as strict measures of accuracy of for example functional annotation predictions, but

rather as rough indicators of quality of the inferred gene co-expression values.

GO enrichment frequency. Genes involved in the same biological process are expected to

be co-expressed more frequently than unrelated sets of genes. In a high-quality co-expression

network, we would expect the genes in setX to share a functional annotation (Fig 1B). In con-

trast, in a low-quality network (e.g. a randomly generated network) we expect genes in setX to

have a random set of annotations. We define EnrichmentMF, EnrichmentBP, and EnrichmentCC
as the fraction of genes in a network for which setX contained one or more significantly

enriched GO terms (after correction for multiple testing) for Molecular Function (MF), Bio-

logical Process (BP) and Cellular Component (CC) GO terms. The number of tested GO terms

in each dataset is shown in S1 and S2 Tables.

GO enrichment accuracy. Where we found setX to have enriched GO terms, we checked

if the enriched terms overlapped with the GO terms of gene X. AccuracyMF, AccuracyBP, and

AccuracyCC were defined as the fraction of genes in the network for which this was the case for

MF, BP, and CC GO terms.

TFBS enrichment frequency. Genes with similar expression profiles are likely to be

under the control of a shared regulatory mechanism, including regulation by a similar set of

transcription factors (TFs). In a high-quality co-expression network, we would therefore

expect the genes in setX to contain a shared set of transcription factor binding sides (TFBSs).

We define EnrichmentTFBS as the fraction of genes in a network for which the promoter

sequences of setX contained one or more significantly enriched TFBSs.

TFBS enrichment accuracy. Where we found setX to have enriched TFBSs, we checked if

the promoter of gene X contained one or more of those TFBSs. AccuracyTFBS was defined as

the fraction of genes in the network for which this was the case.

Correlation between the eight quality measures was high (range 0.60 to 0.98). To facilitate

comparison between co-expression networks, the eight measures were combined into a single

quality score, Quality, which is based on PCA of the eight measures. PCA was conducted using

the function prcomp in R, after standardizing the eight quality measures to mean 0 and standard

deviation 1. Analysis of the Principal Components (PCs) revealed that 81.4% of the total variation

in the quality measures could be explained by the first PC (S2A Fig). We decided to use this first

PC as the general quality score, Quality, after rescaling it to values between 0 (worst network) to 1

(best network). The correlation between Quality and each of the quality measures was high (range

0.77 to 0.96; S2C Fig). The p-values of Pearson correlation coefficients as shown in S1 and S2 Figs

are based on a Student’s t-distribution with n-2 degrees of freedom [33].

To evaluate the sensitivity of our quality measures with regard to the number of genes they

are based on, we also calculated the eight quality measures using the top 50 and top 200 genes

(instead of the top 100). We did this for 200 randomly selected co-expression networks (out of

the total of 7,200). We used scatterplots of the results (S1 Fig) and Pearson correlation to evalu-

ate the consistency of the eight quality measures based on the top 50, 100, and 200 genes.

Linear regression analysis

We randomly split the 68 human and 76 mouse cell types and tissues into four parts, each rep-

resenting 25% of the human and mouse cell types and tissues. We used three parts to form the
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training set (representing 75% of cell types and tissues; 51 human and 57 mouse cell types and

tissues), and the remaining part was used as a validation set (representing the remaining 25%;

17 human and 19 mouse cell types and tissues).

We conducted least squares regression using the lm function in R using the 3,888 networks

of the training set, excluding networks where batch effects were treated using ComBat-seq. As

response variable we used Quality, and as predictors we used 1) the number of RNA-seq sam-

ples on which the co-expression network was based (log10 values), 2) the number of batches in

the data (log10 values), 3) the species (human or mouse), 4) the data normalization approach,

5) batch correction approach, and 6) the correlation measure. For the categorical predictors

(i.e. species, data normalization approach, batch correction approach and correlation measure)

the lm function uses dummy variables with values 0 and 1. The baseline levels of these categor-

ical variable were set in a way that facilitates interpretation of the results. The resulting model

as shown in Table 2 is the output of the R function lm, including the estimated coefficients,

their standard errors, t values (= estimated coefficient/standard error), and p-value of a two-

sided t-test. In this case, the degree of freedom in the t-test is 3,876 (= the number of observa-

tions in the dataset minus the number of coefficients to estimate = 3,888–12).

To evaluate the stability of estimated coefficients of the above model, we step-by-step left

out each of the three parts used to form the original training set, and used the other parts (the

two remaining parts of the training set and the original validation set) to fit the same linear

model, effectively implementing a 4-fold cross validation (CV) analysis. Coefficients of the

resulting four models are shown in S3 Table.

Supporting information

S1 Fig. Consistency of the eight quality measures with regard to the number of top corre-

lated genes they are based on. Scatterplots are shown for the eight quality measures (see main

manuscript and Methods section) based on the top 100 highly correlated genes (X axes) and

the top 50 highly correlated genes (A) or the top 200 highly correlated genes (B) (Y axes). Scat-

terplots show data for 200 randomly selected co-expression networks (out of a total of 7,200

networks). Pearson correlations coefficients (and p-values) are indicated. For each quality

measure a high correlation (PCCs between 0.93 and 0.98) was observed, suggesting that the

quality measures are robust with regard to the number of highly correlated genes they are

based on.

(DOCX)

S2 Fig. Principal Component Analysis of the eight quality measures. (A) Proportion of the

variance in the eight quality measures explained by the principal components (PCs). The first

and second PCs explain 81.4% and 12.1% of the total variance, respectively. (B) Bar plot of the

loadings of the first and second PC. (C-D) Scatterplots of PC1 (C) and PC2 (D) (in the X-axes)

versus each of the eight individual quality measures (Y-axes). Each plot shows 7,200 dots, each

representing a genome-wide gene-gene co-expression network for a cell type or tissue. The

Pearson correlation coefficient (PCC) and its p-value are indicated in each plot.

(DOCX)

S3 Fig. Distribution of the Quality score. (A) The distribution of the 7,200 general quality

scores, Quality. (B-C) The 8 quality measures of the worst (red), the median (green), and the

best (blue) network for GO Molecular Function, Biological Process, Cellular Component and

Regulatory motifs in promoter sequences. (B) shows the frequency of enrichment and (C) the

accuracy.

(DOCX)
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S4 Fig. Overview of the performance of each workflow on each of the 144 datasets. For

each of the 50 workflows the relative performance on each of the 144 datasets is visualized.

Workflows are ordered in order of average overall performance as in Fig 2 in the main text.

Datasets are ordered according to sample counts. Colors indicate the relative performances of

the 50 workflows on each dataset.

(DOCX)

S5 Fig. Scatterplot of the sample count and batch count for the 144 cell types and tissues.

The Pearson correlation between the sample count and batch count (both in log10 values) is

0.84.

(DOCX)

S1 Table. Human datasets. The cell type or tissue, the number of RNA-seq samples, the num-

ber of genes included in the final co-expression network, and the number of GO terms tested

for the estimation of the network quality is shown. The last column indicates which datasets

were included in the validation set.

(DOCX)

S2 Table. Mouse datasets. The cell type or tissue, the number of RNA-seq samples, the num-

ber of genes included in the final co-expression network, and the number of GO terms tested

for the estimation of the network quality is shown. The last column indicates which datasets

were included in the validation set.

(DOCX)

S3 Table. Coefficients and p-values of linear models trained by 4-fold cross-validation.

Human and mouse cell types and tissues were randomly divided into 4 folds. Each fold was left

out and a linear regression model was trained on the remaining 3 folds. Model 1 is equivalent

to the model shown in Table 2 in the main manuscript. For each model, the estimated coeffi-

cient (and corresponding p-value) for each parameter is shown. The coefficients estimated in

each model are in general consistent with each other.

(DOCX)

S1 Methods.

(DOCX)
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