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ABSTRACT: Microfluidic devices (MFDs) offer customizable,
low-cost, and low-waste platforms for performing chemical
analyses. Optical spectroscopy techniques provide nondestructive
monitoring of small sample volumes within microfluidic channels.
Optical spectroscopy can probe speciation, oxidation state, and
concentration of analytes as well as detect counterions and provide
information about matrix composition. Here, ultraviolet−visible
(UV−vis) absorbance, near-infrared (NIR) absorbance, and Raman
spectroscopy are utilized on a custom poly(methyl methacrylate) (PMMA) MFD for the detection of three lanthanide nitrates in
solution. Absorbance spectroscopies are conducted across three pathlengths using three portions of a contiguous channel within the
MFD. Univariate and chemometric multivariate modeling, specifically Beer’s law regression and principal component regression
(PCR), respectively, are utilized to quantify the three lanthanides and the nitrate counterion. Models are composed of spectra from
one or multiple pathlengths. Models are also constructed from multiblock spectra composed of UV−vis, NIR, and Raman spectra at
one or multiple pathlengths. Root-mean-square errors (RMSE), limit of detection (LOD), and residual predictive deviation (RPD)
values are compared for univariate, multivariate, multi-pathlength, and multiblock models. Univariate modeling produces acceptable
results for analytes with a simple signal, such as samarium cations, producing an LOD of 5.49 mM. Multivariate and multiblock
models produce enhanced quantification for analytes that experience spectral overlap and interfering nonanalyte signals, such as
holmium, which had an LOD reduction from 7.21 mM for the univariate model down to 3.96 mM for the multiblock model. Multi-
pathlength models are developed that maintain model errors in line with single-pathlength models. Multi-pathlength models have
RPDs from 9.18 to 46.4, while incorporating absorbance spectra collected at optical paths of up to 10-fold difference in length.

■ INTRODUCTION
Volume, cost, and time are all variables that influence and
constrain the design of experiments and the analysis methods.
Microfluidics offers a means to reduce these parameters1 while
providing similar results to lab-scale operations and improving
the environmental footprint of processes by reducing waste.2,3

These benefits are particularly salient for applications such as
point-of-care diagnosis,1 in which samples may be limited in
volume and availability. Microfluidics are also desirable for the
analysis of hazardous or expensive materials,4 in which reduced
sample volumes limit the monetary, health, and environmental
costs that may be incurred by working with and accumulating
large sample and waste volumes. Microfluidic devices (MFDs)
have been used for small volume analysis of chemical reactions,
including kinetics and interfacial chemistries.3,5,6

Optical spectroscopy on MFDs grants the ability to conduct
real-time sample analysis for lab-on-a-chip applications.5,7,8

Optical spectroscopy can be used to measure small sample
volumes from a microfluidic device as an alternative to or
before samples are routed to destructive techniques, such as
mass spectrometry.9,10 Impact can be further intensified

through the use of sensor fusion, the combination of multiple
sensing approaches, to gain more comprehensive insight into
sample chemistry. Here, the combination of three types of
optical spectroscopy, Raman, ultraviolet−visible (UV−vis)
absorbance, and near-infrared (NIR) absorbance allows for
rapid, noninvasive analysis of samples. These spectroscopies
have been demonstrated to be highly valuable in the analysis of
process streams containing multiple metal species in varied
oxidation states,11 and here they are applied to the microfluidic
scale.

The use of UV−vis and NIR spectrometers provides an
expanded range for absorbance spectroscopy in this study. NIR
in particular has been underutilized on MFDs. NIR spectros-
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copy can provide rapid, noninvasive analysis of a wide variety
of samples, often being applied in the food industry due to its
ability to detect lipids, water, and organic functional groups
found in food products.12,13 NIR can also detect inorganic
components, allowing its application in other fields such as
nuclear reprocessing.11 Handheld NIR instruments have been
developed, allowing for on-site analysis,12,14,15 making NIR
spectroscopy a candidate for portable MFD platforms.1,16

Though some absorption of NIR light occurs in certain
polymers, the MFD material utilized here, poly(methyl
methacrylate) (PMMA), is relatively transparent in the low
NIR spectral range.13 Another common MFD material, fused
silica, transmits NIR light.17 Despite transmissive MFD
substrates being available and widely used, NIR has seen little
application within the space of microfluidics compared to other
techniques such as Raman and fluorescence spectroscopy.18

Coupled on the microfluidic device with UV−vis and NIR is
Raman spectroscopy. Raman online monitoring processes have
been developed to gather in situ analysis of samples, offering
vibrational spectroscopic information on molecules at small
scales.19 Micro-Raman probes allow real-time vibrational
spectroscopic measurement of solutions in narrow channels
and small droplets.5,7

Many lanthanides are targets of great analytical interest in
fields ranging from critical material harvesting to used nuclear
fuel recycling, and they are used in green technology,
biomedical applications, and nanotechnology.20 Lanthanides
exhibit similar chemistry, as most typically take a +3 oxidation
state and have similar cationic size due to lanthanide
contraction, making them difficult to physically separate from
one another and from actinides exhibiting +3 oxidation
states.9,21

Solutions containing multiple lanthanides or interfering
species can produce complex optical spectra that become
challenging to analyze. Chemometrics, a form of chemical data
science, has been applied successfully in many cases to the
complex data of optical spectroscopy.11,12,15,22 Optical spectra
can be analyzed via chemometric modeling to gain real-time
analysis of chemical composition.11 Chemometric analysis is a
statistical method utilizing multivariate spectral signatures and
correlated sample properties to create regression vectors by
which sample properties can be measured from new spectra.23

Here, multivariate analysis (PCR) is compared to univariate
analysis (Beer’s law) for the quantitative measurement of three
lanthanide nitrates: neodymium (Nd), holmium (Ho), and
samarium (Sm).

To demonstrate sensor performance under more static
microfluidic specifications, chemometric models were created
for each spectroscopy and path length individually. To
demonstrate a more advanced sensor deployment, models
were also created to incorporate absorbance spectra from the
three optical pathlengths on the MFD. Other studies have
examined methods for incorporating spectra collected at
multiple pathlengths into a single model. Such methods
include creating spectra from the slope of absorbance versus
path length at each measured wavelength24 and increasing
model complexity to capture additional variability in multi-
pathlength data sets.25 Here, a small subset of samples are
utilized to create a scaling vector for spectra collected in each
of the three pathlengths. Finally, to demonstrate sensor fusion,
spectra from the three optical methods are combined to create
fused spectra from which chemometric models are built. The

quantification of three lanthanides and their counterion,
nitrate, is compared across the various models.

■ EXPERIMENTAL SECTION
Materials. Holmium nitrate salts (Ho(NO3)3·H2O, 99.9%)

and samarium nitrate salts (Sm(NO3)3·3 H2O, 99.9%) were
sourced from Strem Chemical, Inc. Neodymium nitrate salts
(Nd(NO3)3·6 H2O, 99.9%) were sourced from Sigma-Aldrich.
All solutions were prepared using ≥18.2 Ω·cm deionized water.
PMMA Microfluidic Device. The MFD consists of two

fused plates of optically transparent PMMA. Within the body
of the chip is a carved rectangular channel that takes several
90° turns between the inlet and outlet of the channel, forming
three parallel tracks of channel which act as optical paths
through which absorbance spectroscopy is conducted. The
channels have printed pathlengths of 10, 2.5, and 1.0 mm, as
shown in Figure 1C.4

Along the length of each channel is a narrow air space that
acts as a mirror to guide light within the channel and prevent
stray light. At each end of the channel is a convex pocket of air
which acts as a two-dimensional lens to focus ingoing and
outgoing light to and from bare optical fibers.26 The bare fibers
are inserted and secured with epoxy glue into guide paths,

Figure 1. (A) Relative position of the (a) Raman probe during Raman
spectral collection, (b) protective casing, and (c) microfluidic device
with attached outlet tube. (B) Raman microprobe showing the (d)
Raman laser focal point within the (e) outlet tube. (C) The PMMA
microfluidic device shows (f) 1.0 mm, (g) 2.5 mm, and (h) 10 mm
length optical channels, with excitation light directed through the 10
mm channel.
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which are aligned with the internal optical channels of the
MFD. The fibers secured in the guide channels are ThorLabs
M112L02 solarization-resistant fibers with a 200 μm core, a
numerical aperture of 0.22, and a wavelength range of 180−
1200 nm.
Spectrometers. All spectrometers were procured from

Spectra Solutions, Inc. (Norwood, MA) and used associated
Spectra Soft software (version 1.3).

Raman spectroscopy was performed using a 671 nm
excitation laser, providing a resolution of approximately 5
cm−1 and an effective range of 166−3650 cm−1. The detector
consisted of a transmission volume phase holographic grating
spectrograph with a thermoelectrically (TE) cooled charge-
coupled device (CCD) to detect the Raman signal. The Raman
microprobe shown in Figure 1B had a cross section of 70 μm.

UV−vis and NIR spectroscopies were performed on
separate instruments. Each instrument used a TE-cooled
CCD-based detector, providing an effective spectral range of
416−820 nm for UV−vis and 900−1700 nm for NIR. UV−vis
and NIR light were provided by a tungsten-halogen SLS201L
light source from ThorLabs (Newton, NJ), providing
excitation light in the range of 360−2600 nm.
Spectral Collection. Integration times and the number of

scans per sample varied per spectrometer. UV−vis and NIR
were referenced to water, and integration times were optimized
for maximum light transmission. 100 spectra were collected per
sample on the UV−vis with an integration time of 0.8 s. 50
spectra were collected per sample for the NIR with an
integration time of 1.0 s. Thirty spectra were collected per
sample for the Raman with an integration time of 3 s. For data
processing, spectra were averaged into 10 spectra per sample
before quantification was performed.

Due to the shallowness of the MFD channel and the
thickness of the top PMMA plate, the Raman signal from the
Raman microprobe when focused into the MFD channel was
dominated by the signal of the PMMA and did not adequately
capture analyte signal. The Raman probe laser was aimed
between the 2.5 and 10 mm channels during the collection of
the UV−vis spectra to intentionally cause an interfering signal
of the 671 nm laser in the visible spectra. After UV−vis and
NIR spectra were collected, the Raman probe was focused
within the outlet tube, which is contiguous with the flow from
the MFD, and Raman spectra were collected for each sample;
this arrangement is shown in Figure 1A. Future chip designs

will accommodate the Raman capabilities on chip, allowing for
simultaneous collecting of the three types of spectra.
Data Processing Software. Data was processed and

plotted using MATLAB 2022b version 9.13 (Mathworks,
Natick, MA) and PLS Toolbox version 9.1. (Eigenvector
Research, Inc., Manson, WA).
Data Sets. Samples of single, binary, and tertiary lanthanide

nitrate solutions were collected by using three spectroscopic
methods. The samples were divided into calibration and
validation data sets. The concentration profiles of the two data
sets are shown in Figure S1.

Absorbance spectra were excluded from data sets when one
or more constituents were above the linear concentration
range of the constituent for that optical method. Tables S1−S4
list the maximum concentration for each analyte and the total
number of spectra included in the calibration and validation
data sets for each model. The exclusion of samples affects the
standard deviation of the data set’s analyte concentration,
which affects the residual predictive deviation (RPD)24 and the
limit of detection (LOD) calculation.27 This is discussed
further in the Supporting Information.
Statistical Measures. Root-mean-square errors (RMSE)

are commonly utilized as a measure of multivariate model
uncertainty,28 being considered a measure of absolute error for
the model on the data set.29 RMSEC is the root-mean-square
error of the calibration set, and RMSEP is the root-mean-
square error of the validation set. In other words, RMSEC
measures the model’s ability to fit the calibration samples,
while RMSEP measures the model’s ability to predict on new
samples.30 RMSE of cross-validation (RMSECV) is discussed
in the Supporting Information.

RPD provides a measure of the model’s robustness,24 with
higher RPDs indicating lower prediction errors relative to the
inherent variability in the measured parameter. An RPD below
2 indicates an unreliable quantitative model, while an RPD
between 2 and 3 indicates moderately reliable models.24,31,32

RPDs above 5 indicate excellent models.30,32

LODs were calculated using a pseudo-univariate method
from Allegrini and Olivieri.27 This method of LOD generation
is considered by some to be oversimple,27,33 and it tends to
overestimate LODs compared to more complex methods.27

However, this method is independent of the number of
variables (wavelength and wavenumbers) utilized in the
models. Therefore, this method was chosen to compare

Figure 2. Spectral signatures of neodymium, holmium, and samarium nitrate in (A) UV−visible absorbance spectroscopy, (B) NIR absorbance
spectroscopy, and (C) Raman spectroscopy. Spectra were preprocessed with a second-order polynomial baseline. Colors are used to distinguish
spectra from one another and do not directly correlate to the analyte concentration.
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LODs of univariate (Beer’s law) and multivariate (PCR)
models. This method is discussed further in the Supporting
Information.

■ RESULTS AND DISCUSSION
Optical Spectra and Preprocessing. Figure 2A−C

shows the UV−vis spectra of single-constituent solutions of
neodymium, holmium, or samarium(III) nitrate; NIR spectra
of the same samples; and Raman spectra, respectively. All
metals were introduced as nitrate salts and therefore exhibit a
nitrate signal within the Raman spectra at 1048 cm−1.
Neodymium produces strong absorbance signals in the visible
region but also causes bands to grow in on top of the broad
water signal in the Raman region from 2280 to 3642 cm−1.
Peaks on the plastic outlet tube are seen in the Raman spectra,
as indicated in Figure 2C, but these are constant and
insensitive to sample solution composition. Samarium cations
produce strong signal in the NIR range. Holmium cations
produce signal in both the visible and NIR ranges. In both
ranges, the analyte signal is overlapped. The primary holmium
band at 1157 nm sits between two strong samarium bands, the
front and tail of which overlap with the holmium band. In the
visible range (Figure 2A), the 671 nm Raman laser produces a
strong signal, causing a sharp artifact with broad shoulders that
overlaps the 642 nm holmium band. Random variation in the
visible laser peak is due to laser power fluctuations, evidenced
in Figure S2C as a slight baseline fluctuation. Further
interferences can be noted in the raw absorbance spectra
shown in Figure S2A,B, which display baseline offsets. Finally,
Figure 2B shows nonlinear artifacts in the NIR baseline, which
were inconsistent between the three pathlengths on the chip.

Spectra underwent one or more preprocessing steps prior to
being modeled by a univariate or multivariate analysis. The
spectra after preprocessing are shown in Figure S3. For UV−
vis spectra, a Savitsky-Golay first derivative (15-point window,
second-order polynomial) was used. For NIR spectra, a

Whittaker filter (lambda of 15) and a Savitsky-Golay first
derivative (15-point window, second-order polynomial) were
applied. For Raman spectra, a Savitsky-Golay first derivative
(15-point window, second-order polynomial) was applied.
Two substrate peaks of the plastic tube were then used as
normalization standards to correct for laser power fluctuations
utilizing a 1-norm of the region under the areas of 250−440
and 1125−1430 cm−1.

Several high-noise, nonanalyte regions are removed from the
spectra before multivariate analysis occurred. Most notably, the
laser line in the visible region is removed from UV−vis spectra,
which also removes some holmium signal, and the sharp
substrate peaks in the Raman spectra are excluded. The
included regions for UV−vis multivariate PCR models are
556−666 and 681−835 nm. The analysis region for the NIR is
930−1330 nm. The analysis regions for Raman are 977−1104,
2215−2736, and 3088−3642 cm−1.

For models that incorporated UV−vis and/or NIR spectra
collected at multiple pathlengths, the following method was
utilized to scale the spectra in order to reduce variation in
absorbances caused by differences in the MFD’s channels. For
each spectroscopy, a scaling vector was created for the 10 and
2.5 mm pathlengths. An effective path length was determined
relative to the 1.0 mm path length, according to eq S3. For
UV−vis, spectra of 50.0, 75.0, and 100 mM Nd(NO3)3
solutions were utilized. For each sample, the absorbance
value of 10 and 2.5 mm path length preprocessed spectra at
731 nm were ratioed to the absorbance of the 1.0 mm path
length preprocessed spectra, producing a ratio of the effective
pathlengths. The ratios calculated from the three samples were
averaged for each path length. This process was repeated for
NIR, using samples of 100, 200, and 300 mM Sm(NO3)3
measured at 1078 and 1235 nm, with ratios averaged across the
two wavelengths. To account for absorbance baseline differ-
ences caused by fiber optic, channel, and chip wall thickness
variations among the three pathlengths, a correction vector was

Figure 3. RMSEP for models of (A) Nd3+, (B) Ho3+, (C) Sm3+, and (D) NO3
−. Pseudo-univariate LOD was obtained from models of (E) Nd3+,

(F) Ho3+, (G) Sm3+, and (H) NO3
−. RPD for models of (I) Nd3+, (J) Ho3+, (K) Sm3+, and (L) NO3

−. The legend in plot H applies to all plots and
refers to optical pathlengths or beam width. BL = Beer’s law regression, PCR = principal component regression, Vis = visible absorbance, NIR =
near-infrared absorbance, and MB�multiblock. Nd�neodymium, Ho�holmium, Sm�samarium, NO3

−�nitrate. RMSEP�root-mean-square
error, LOD�limit of detection, RPD�residual predictive deviation.
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calculated relative to the 1.0 mm path length. A correction
vector was calculated by taking the base-10 logarithm of the
ratio of a single-beam water spectrum on the 1.0 mm path
length divided by a single-beam water spectrum of the 2.5 or
10 mm path length, treating the 1.0 mm path length as if it
were an absorbance reference. Finally, the sample spectra were
divided by the difference of the effective path length and the
correction vector for their respective path length. This resulted
in spectra that were scaled to the 1.0 mm path length, without
requiring a priori knowledge of the true, precise path length of
any channel within the chip.

For multiblock data sets that combine UV−vis, NIR, and
Raman spectra in a single model, spectra were scaled before
being combined into data sets (shown in Figure S4). Scaling
was conducted by taking the 1-norm of each spectrum for each
spectroscopy, selecting the maximum 1-norm of the spectral
matrix for that spectroscopy type, and dividing all spectra of
the corresponding type by the maximum normalization scalar.

Before PCR was conducted, the spectral matrices were
mean-centered. Concentration matrices were autoscaled in all
models of nitrate, while the concentration matrices were
otherwise mean-centered.
Univariate Analysis (Beer’s Law). Univariate analysis was

conducted at one wavelength for each analyte in each spectral
type in which it produced a signal. Univariate analysis was
performed using the Beer’s law method, which relates spectral
intensity to analyte concentration, as demonstrated in Figure
S5. The model results of RPD, RMSEC, RMSEP, and LOD are
shown in Table S1 for neodymium from UV−vis and Raman,
in Table S2 for holmium from UV−vis and NIR, in Table S3
for samarium from NIR, and in Table S4 for nitrate from
Raman. Results are shown visually in Figure 3, where it should
be noted that low RMSEP and LOD (A−H) and high RPD
(I−L) values are preferred.

The 10 mm path length in all cases provides the lowest LOD
for the univariate analyses. The increased path length allows
for more chromophores to enter the light path, ultimately
resulting in an improved LOD. However, this results in light
starvation at wavelengths where the analyte has a high molar
absorptivity, resulting in a nonlinear relationship between the
chromophore concentration and absorbance as concentration
increases. The model of UV−vis spectra of neodymium
collected on the 10 mm path length had the lowest upper limit
of just 100 mmol L−1 Nd(NO3)3, whereas the maximum
sampled concentration was 600 mmol L−1. The upper
concentration range is listed for all models in the tables in
the Supporting Information.

Neodymium can also be effectively quantified using the 3286
cm−1 band in the preprocessed Raman spectrum, producing
the second highest RPD in this study and similar statistics to
the 2.5 and 1.0 path length UV−vis models. It should be noted
that in more complex chemical systems, utilizing the Raman
band may be challenging and that in organic phase systems, the
band would not be present.

Samarium concentration is effectively quantified using the
1078 nm band in the preprocessed NIR spectrum. The RPD
and LOD values increase from the 10 mm path length to the
2.5 mm path length, with a slight increase again in the 1.0 mm
path length, but there is no definite relationship of RMSEP
with path length. The univariate models function very well for
samarium with only minimal improvements offered by
multivariate models.

The chosen wavelength for holmium regression in the UV−
vis region was 639 nm in the preprocessed spectrum.
Univariate analysis could not account for the inconsistent,
interfering laser signal, resulting in poor regression results for
holmium compared with other models. In the NIR, the
holmium concentration was quantified using the 1145 nm
band in the derivative spectrum. Due to the front and trailing
edge of the adjacent, high extinction coefficient samarium
peaks, and the nonzero baseline, the NIR univariate regression
of holmium performed extremely poorly relative to other
models, producing RPD values below 5 (Figure 3J), LOD
values above 80 mM (Figure 3F), and the highest RMSEs of
any lanthanide model. The univariate models are unsuitable for
the complexity of the holmium signal.
Multivariate Analysis (PCR). Multivariate analyses can

incorporate an entire optical spectrum to quantify species in
solution. In this work, multivariate analysis was performed by
using PCR. PCR’s ability to sequester noise and capture
overlapping signal using regression vectors, called principal
components (PCs),34 allows for improved quantification
compared to univariate Beer’s law analysis in cases where
optical signatures are confounded by variation that is
independent of the target analyte’s concentration, such as
signals from other analytes or interferents, random noise, or
baseline fluctuation.

All PCR models of a single spectroscopy type included only
two principal components. By including only a small number
of principal components in the final model, regression vectors
capture primarily chemical variation, rather than noise or
nonanalyte signal; the exclusion of excess PCs can result in
more robust models while maintaining lower model errors
compared to univariate models that do not exclude nonanalyte
signals.35 The third principal component in UV−vis and NIR
models captured nonanalyte variation amounting to less than
1% variation in the spectral matrices, and therefore the third
component was not deemed significant enough to warrant its
inclusion.

The gravimetrically known concentrations for the three
analytes versus the concentrations measured by the PCR
model are shown in Figure S6, which also includes the best-fit
lines and 95% confidence interval (CI) for the fits of the
known and predicted concentrations. These plots are called
parity plots. For nitrate and neodymium measured by Raman,
the PCR model improves upon the univariate method
significantly in every metric. For neodymium measured by
UV−vis, performance varies compared to univariate analysis.
For samarium, RMSEs remain similar to Beer’s law analysis,
LOD values remain similar or improved by PCR analysis, and
RPD slightly decreases. For holmium, which displays the most
spectral complexity, the PCR models offer significant improve-
ment over the Beer’s law models, with an improvement of up
to 4.5 times in RMSEP. The greatest reduction in RMSE and
LOD values is seen in the NIR models, for which spectral
overlap and baseline effects are greatest.

There is not a proportional relationship between error and
path length for the UV−vis and NIR spectroscopies in PCR,
due to the unique array of nonchemical signals in the spectra
on each path length. The 10 mm path length spectra produced
the lowest LODs in the PCR models, as in the Beer’s law
models.
Multi-Pathlength (1.0 + 2.5 + 10 mm) PCR Models.

The goal of quantifying spectra from all pathlengths using one
model is to allow for simultaneous measurement and
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quantification of solutions at multiple physical locations in a
system despite significant differences in the measurement
conditions at those locations. The system here is a PMMA
MFD and the differences in measurement condition are
variation in optical path length, fiber optics, PMMA thickness,
and detector arrays. Measuring at multiple locations that
display great variability occurs also in process analytical
technology (PAT) applications. Complex chemical processes
may have unique measuring conditions at several locations in
the system. If an analyst wishes to deploy a sensor using
chemometric models into such a system, then the analyst must
either create a calibration model for each measurement
location or create a robust model that can analyze data from
these disparate measurement conditions. It is the latter
approach that is the focus of the following section.

UV−vis and NIR absorbance spectra were collected on three
channels within the MFD, producing three spectra for each
sample for each of these spectroscopies. These multi-
pathlength data sets contain chemical variation, variation in
analyte signal due to differences in the path length of absorbing
solution, and differences in the signal-to-noise ratio. Slight
differences in the reflectance, transmission, and absorbance of
light by the chip itself along each of the three channels and the
abutting chip body also introduce some variation. In the case
of UV−vis spectroscopy, additional variation is introduced in
the wavelength calibration that is unique to each optical path
on the spectrometer itself, discussed in the Supporting
Information. A model that incorporates spectra from all
channels on the MFD must contend with all of these sources of
variability.

Absorbance spectra from three pathlengths were assembled
into data sets for each of the two spectroscopies separately, and
spectra were scaled as described in the Optical Spectra and
Preprocessing section. Statistics for multi-pathlength models
are shown as dark red bars in Figure 3. Figure 4 shows parity
plots of models of UV−vis and NIR data, using data sets that
include unsaturated spectra collected at the three pathlengths.

For all three lanthanides in RMSEP, LOD, and RPD, the
multi-pathlength PCR models produce statistics between those
of the 2.5 and 1.0 mm path length models. The exception is the
LOD for samarium, which is slightly higher in the multi-
pathlength model than in either the 2.5 or 1.0 mm model. This
middling performance indicates that, as expected, the multi-
pathlength models cannot surpass the low RMSE or LOD of
the 10 mm path length, yet these models retain comparable
error to the models of the 2.5 and 1.0 pathlengths, despite the
increased variance inherent in the multi-pathlength data sets.
Further, the multi-pathlength models retain the wide
concentration range and the high RPD of the 2.5 and 1.0
mm path length models, improving the multi-pathlength
models’ robustness compared to the 10 mm path length
models.
Multiblock (UV−Vis + NIR + Raman) PCR Models.

Multiblock modeling involves combining multiple sources of
data measured from the same sample into a contiguous data
set.36 In this case, UV−vis, NIR, and Raman spectra were
combined to form fused spectral matrices. Multiblock
modeling provides benefits for the quantification of analytes
that experience signal overlap in one type of spectroscopy but
may be free of interference in another mode. It can also
provide additional points of measurement for analytes that are

Figure 4. Parity plots of analyte concentrations determined gravimetrically and via principal component regression using data sets containing
absorbance spectra collected at three pathlengths. (A) Neodymium measured from UV−visible spectra, (B) holmium measured from UV−visible
spectra, and (C) samarium measured from NIR spectra. CI = confidence interval.

Figure 5. Preprocessed spectra of neodymium, holmium, and samarium nitrate solutions, showing visible absorbance, NIR absorbance, and Raman
spectroscopy, concatenated into multiblock spectra. Axis breaks of two solid vertical lines indicate where wavenumbers or wavelengths were
excluded from the multiblock data set, while vertical dashed lines indicate the boundaries between each spectral mode.
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active in multiple modes. In this case, holmium and
neodymium cations produce signal within the range of two
spectroscopies each, whereas samarium and nitrate produce
signal in one each. However, nitrate is covariant with all three
lanthanide cations because the lanthanides are introduced as
lanthanide (III) nitrates; this covariance allows for nitrate to be
quantified from the signal provided by the lanthanide ions in
the UV−vis and NIR spectra.

The multiblock spectra are shown in Figure 5. The model
results are summarized and discussed below. Multiblock
models included three principal components due to the three
signal-producing analytes present in the merged spectra.

Neodymium produces strong signals in two spectral regions,
allowing for an improvement in model results when both
spectral modes are included in the spectral matrix. Multiblock
models of neodymium are equivalent to or lower than single-
spectroscopy models for RMSE and LOD values, and RPD
values are in most cases higher than for single-spectroscopy
models.

For holmium, RMSEC and LOD values are improved in
every case by multiblock modeling, and RMSEP values are
improved by multiblock modeling or are equivalent to the best
single-spectroscopy modeling. The increase in net signal via
the combination of the spectral signature in multiblock models
compensates for the overlapping analytes and interfering
signals that reduced the efficacy of holmium quantification
from singular spectroscopy methods.

For samarium, multiblock modeling does not definitively
improve quantitation. While the 10 mm path length model
shows some improvement, the 1 mm path length model is
markedly worse. Because samarium produced a signal only in
the NIR range and produced a very strong signal in that range,
a multiblock spectral matrix holds little additional information
for the quantification of this analyte. The supplement of
additional variables into a model quantifying samarium merely
increases the non-samarium concentration variation which the

model’s PCs must capture, and this counteracts the typical
benefit of a multivariate model.

In the case of nitrate, multiblock models produce in all cases
lower RMSE and LOD values than single-spectroscopy models,
and multiblock models produce higher RPDs except in the case
of the 10 mm absorbance spectral data set. Nitrate is
introduced into the system only in concert with the
lanthanides. Therefore, even though holmium and samarium
do not produce signals in the Raman spectra directly, their
absorbance signals are still covariant with nitrate concen-
tration. Therefore, by including the spectral regions of UV−vis
and NIR, in which all three lanthanide cations produce a signal,
the PCR model correlates the increase in nitrate with the
corresponding increase in lanthanide signals, resulting in
improved quantitation of the nitrate counterion.
Multiblock (UV−Vis + NIR + Raman) Multi-Pathlength

(1.0 + 2.5 + 10 mm) PCR Models. Compared to multi-
pathlength single spectral models, multi-pathlength multiblock
models are either equivalent�in the case of samarium, or
improved, in the cases of neodymium, holmium, and nitrate,
for all statistical measures used in this study compared to single
spectral models. Despite including the greatest amount of
variation of any of the models examined thus far, these models
perform very well, producing RMSEP and LOD values similar
to or below those of the single-path length multiblock models.
The RPD values of the multiblock multi-pathlength models are
typically similar to or higher than many of the single-
spectroscopy, single-pathlength models and are in every case
higher than the single-spectroscopy, single-pathlength models,
indicating the reliability of these models’ quantitative
predictions for the four analytes. The performance is reflected
in parity plots in Figure 6 compared to Figure 4; in Figure 6,
there is less divergence in samples measured on different
pathlengths for neodymium (A) and holmium (B). The fit of
the prediction also remains in closer agreement with the 95%

Figure 6. Parity plots of analyte concentrations determined gravimetrically and via principal component regression using data sets containing UV−
visible and NIR absorbance spectra collected at three pathlengths and Raman spectra. (A) Neodymium, (B) holmium, (C) samarium, and (D)
total nitrate. CI�confidence interval.
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confidence interval of the calibration fit in the multiblock
models than in the single spectral models.

■ CONCLUSIONS
Aqueous solutions of lanthanide nitrates were measured via
UV−vis absorbance, NIR absorbance, and Raman spectrosco-
py on a custom PMMA MFD. Inset fiber optics allowed for
simultaneous collection of absorbance spectra on three lengths
of the channel within the MFD. An external Raman
microprobe allowed for the collection of vibrational spectra
on the connected outlet tube. Univariate and multivariate
models allowed for the quantitation of lanthanide cations and
counterions with low RMSE and high RPD values. Pseudo-
univariate LOD allowed for comparison of LOD values across
Beer’s law and PCR analyses.

For the quantitative analysis of samarium, in which little
spectral overlap occurs, the signal-to-noise ratio is high, and in
which signal occurs in only one spectral mode, univariate
calibration proved sufficient for quantification, with little
improvement via PCR or multiblock PCR. Holmium
prediction greatly improved through multivariate PCR, due
to PCR’s accommodation for baseline effects, spectral overlap,
and lower signal-to-noise displayed by holmium in both UV−
vis and NIR spectra. Multiblock modeling improved results for
neodymium, holmium, and nitrate due to these analytes
producing signals or having covariate signals in multiple
spectroscopic modes. Multi-pathlength models were created
which performed on par with single-pathlength models, despite
a variance of up to 10 times in the optical path length of
absorbance spectra. This study demonstrates how chemo-
metric approaches enable the deconvolution of complex signals
for the quantification of multiple analytes sampled under varied
measurement conditions. It provides support for the develop-
ment of complex sensor arrays in which sensors and calibration
models can be deployed at multiple, unique locations in a
system despite significant differences in measuring conditions
at those locations. It demonstrates techniques useful for the
analysis of solutions containing analytes that produce a high
degree of spectral overlap or which have spectral signals
confounded by matrix effects or concentration-dependent
interactions.
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