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Background: Bladder cancer (BC) is the most common malignant tumor of the urinary system. 
Gemcitabine resistance partly accounts for treatment failure and recurrence in BC. Immunological cell death 
(ICD) is correlated with chemoresistance. The prognosis of patients with similar tumor stage still varies in 
response to chemotherapy, recurrence, and disease progression. Therefore, our study aimed to provide a 
prognostic model based on ICD-related and gemcitabine-resistance genes for BC.
Methods: The data of BC patients were obtained from The Cancer Genome Atlas (TCGA) and Gene 
Expression Omnibus (GEO) database. The differentially expressed genes (DEGs), and differentially 
expressed gemcitabine resistance-related genes (DEGRRGs) were identified using the edgeR package. 
The survival-associated DEGRRGs were identified by univariate Cox analysis. A prognostic model was 
established by univariate Cox regression analysis and validated by GEO dataset. The outcome of low-risk 
group and high-risk group was analyzed by the Kaplan-Meier curve. The relationship between risk score and 
immune cell infiltration was investigated using the TIMER online database.
Results: The prognosis of patients in the ICD-high group was significantly better than ICD-low group. 
A prognostic model containing 5 gemcitabine resistance-related ICD-associated genes, including PTPRR, 
HOXB3, SIGLEC15, UNC5CL, and CASQ1, was established. In both TCGA prognostic model and GEO 
validation model, patients in the low-risk group had better outcomes than high-risk group. According to 
the receiver operating characteristic (ROC) curves, the risk score area under ROC curve (AUC) of the 
TCGA prognostic model were calculated to be 0.705, while the risk score of the GEO validation model 
were calculated to be 0.716. Patients in the high-risk group had a significantly higher immune score, stromal 
score, and infiltration of M0 macrophages, M1 macrophages, M2 macrophages, and activated CD4+ T cells. 
Patients in the high-risk group had significantly lower infiltration of the regulatory T cells, resting dendritic 
cell (DCs), and activated DCs.
Conclusions: The present study highlighted the functional role of gemcitabine resistance-related ICD-
associated genes, constructed a prognostic score for the outcome evaluation and searched for potential 
targets to overcome gemcitabine chemoresistance in BC.
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Introduction

Bladder cancer (BC) is the most common malignant tumor 
of the urinary system and is estimated to account for 80,000 
new cases and 170,000 deaths worldwide each year (1-3). 
The latest cancer statistics report that BC is the 6th and 7th 
most common cause of cancer-related deaths in males and 
in females, respectively, in China (4). Nearly 70% of cases 
have non-muscle-invasive bladder cancer (NMIBC), and 
30% have muscle-invasive bladder cancer (MIBC) (5). The 
typical treatment for NMIBC is the transurethral resection 
of the bladder tumor, while that for MIBC is the radical 
removal of the entire bladder. However, the 5-year survival 
rate of BC patients with recurrence and metastasis is  
<5% (6).

Despite remarkable breakthroughs in tumor treatments 
over the past decade, chemotherapy is still the 1st-line 
treatment for BC. Gemcitabine is widely applied in 
adjuvant and palliative chemotherapy to treat recurrence 

and metastasis in BC (7,8). As the 1st-line therapy, 
chemotherapy is effective in 70% of metastatic BC cases. 
The lack of any 2nd-line chemotherapeutics contributes to 
the poor outcomes of BC patients. TNM staging system, as 
well as Spanish Urological Club for Oncological Treatment 
(CUETO) scoring system, are widely used for outcome 
prediction in resectable BC. Nevertheless, the prognosis 
of patients with similar stage still varies in response to 
chemotherapy, recurrence, and disease progression (9). 
Thus, potential therapeutic targets urgently need to be 
developed and chemoresistance against gemcitabine needs 
to be overcome to improve the outcomes of BC patients.

As a type of programmed cell death, immunological cell 
death (ICD) is widely accepted as a unique model of cell death 
triggered by a series of anti-tumor therapies (10). ICD in tumor 
cells is accompanied by damage-associated molecular patterns 
(DAMPs), which can be recognized by antigen presenting 
cells, and further induce anti-tumor immunity (11). Further, 
ICD induced by anti-tumor therapeutics may enhance 
patients’ sensitivity to chemotherapy and radiotherapy 
by immunoregulation (12,13). Thus, ICD is closely 
correlated to chemosensitivity, chemoresistance, and the 
tumor immune microenvironment. The present study 
sought to identify gemcitabine resistance-related ICD-
associated genes and explore potential treatment targets for 
BC. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://tau.
amegroups.com/article/view/10.21037/tau-22-736/rc).

Methods

Data acquisition and processing

Transcriptome RNA-sequencing and clinical data for BC 
patients were obtained from The Cancer Genome Atlas 
(TCGA) data portal (https://portal.gdc.cancer.gov/). A total 
of 412 BC patients were included in the present study. The 
ICD-related gene list was obtained from Garg et al. (14). 
The transcriptome profiling data of 92 patients with BC in 
the GSE24450 data set from the Gene Expression Omnibus 
(GEO) database were used for validation. The study was 
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Highlight box

Key findings 
• The present study constructed a prognostic model containing 5 

gemcitabine resistance-related ICD-associated genes.
• The prognosis of the ICD-high group was significantly better than 

that those in the ICD-low group in bladder cancer patients.  

What is known and what is new?  
• ICD-associated genes play an important role in the development 

of BC, and gemcitabine resistance also affects the prognosis of 
patients with BC.

• The present study highlighted the functional role of gemcitabine 
resistance-related ICD-associated genes in bladder cancer outcome 
prediction.

What is the implication, and what should change now? 
• The present study constructed a prognostic score for the outcome 

evaluation and searched for potential targets to overcome 
gemcitabine chemoresistance in bladder cancer.

• The pathways and mechanisms involved in immunological cell 
death and chemoresistance deserve more in–depth researches to 
improve the outcome of bladder cancer.

https://tau.amegroups.com/article/view/10.21037/tau-22-736/rc
https://tau.amegroups.com/article/view/10.21037/tau-22-736/rc
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conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). Patient characteristics are detailed in Table 1.

Consensus clustering

The ICD-associated molecular subtypes were identified by 
ConsensusClusterPlus tool in R. Subsequently, we evaluated 
the ideal cluster numbers between k=2–9, and repeated the 

process 1,000 times to ensure stable results.

Identification of differentially expressed genes (DEGs), 
differentially expressed gemcitabine resistance-related 
genes (DEGRRGs), and survival-associated DEGRRGs

The DEGs were identified using the edgeR package in R 
language (http://bioconductor.org/packages/edgeR/) to 
further analyze the data. A |log2 fold change (FC)| >1 and 
false discovery rate (FDR) adjusted to a P value <0.05 were 
set as the thresholds (15). In addition, volcano maps and 
heat maps of the DEGs were produced using the gplots 
and heatmap packages in the edgeR package. By comparing 
the gemcitabine resistance-related gene lists, we obtained 
the DEGRRGs. The survival-associated DEGRRGs 
were screened out by a univariate Cox analysis, which was 
conducted using the R software survival package. The 
results were externally validated using the GSE24450 data 
set from the GEO database.

Development of the gemcitabine resistance-related ICD-
associated prognostic index

A prognostic risk score was obtained for each patient by 
the univariate Cox regression analysis and least absolute 
shrinkage and selection operator (LASSO)-penalized Cox 
regression. To verify the feasibility of the prognostic model, 
we also divided the GSE58812 patients into 2 groups 
according to the median risk score. The outcome of the  
2 groups was analyzed by the Kaplan-Meier curve. The risk 
score calculation formula for all patients was as follows:

( ) ( )1
SurvivalRiskScore i

k

i iC VSRS
=

×=∑  [1]

where k represents the number of messenger RNA (mRNA), 
Ci represents the coefficient of mRNA in the multivariate 
Cox regression analysis, and Vi represents the expression 
level of mRNA.

Relationship between prognostic index and immune cell 
infiltration

The TIMER online database analyses and visualizes 
the abundances of tumor-infiltrating immune cells (16). 
TIMER was used to reanalyze gene expression data from 
TCGA, which included 10,897 samples across 15 cancer 
types, to estimate the abundance of multiple subtypes of 
tumor-infiltrating immune cells, including CD4+ T cells, 

Table 1 The clinical features of BC patients from the TCGA

Clinical features Numbers of patients (n=398)

Age (years), median [range] 68.5 [34–89]

Gender, n (%)

Female 102 (25.63)

Male 296 (74.37)

T stage, n (%)

T1 4 (1.01)

T2 116 (29.15)

T3 190 (47.74)

T4 56 (14.07)

Unknown 32 (8.04)

N stage, n (%)

0 230 (57.79)

1 44 (11.06)

2 75 (18.84)

3 6 (1.51)

Unknown 43 (10.80) 

Grade, n (%)

High 375 (94.22)

Low 20 (5.03)

Unknown 3 (0.75)

AJCC stage, n (%)

I 2 (0.50)

II 126 (31.66)

III 138 (34.67)

IV 130 (32.67)

Unknown 2 (0.50)

BC, bladder cancer; TCGA, The Cancer Genome Atlas; T stage, 
tumor stage; N stage, lymph node stage; AJCC, American Joint 
Committee on Cancer.
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regulatory T cells (Tregs), macrophages, and dendritic cells 
(DCs). TIMER can be used to determine the relationship 
between immune cell infiltration and other parameters. We 
downloaded the immune infiltrate levels of BC patients and 
calculated the associations between the prognostic index 
and immune cell infiltration.

Relationship between the prognostic model and clinical 
characteristics

To further understand the relationship between the 
immune prognostic model and other clinical data, such as 
age, gender, grade, American Joint Committee on Cancer 
(AJCC) stage, tumor (T) stage and lymph nodes (N) stage, 
we performed univariate and multivariate Cox analyses, 
which revealed that the immune prognostic model serves as 
an independent factor for predicting the progneosis of BC 
patients.

Statistical analysis

We performed a survival analysis for patients with the 
prognostic model using the “survival” package in R. Survival 
curves were generated using the Kaplan-Meier method and 
the log-rank test to compare the difference between the 2 
groups. The area under the curve of the survival receiver 
operating characteristic (ROC) curve was calculated via 
the survival ROC R software package to validate the 

performance of the prognostic signature (17). P values 
<0.05 were considered statistically significant.

Results

The clinical features of BC patients in TCGA

The median age of the patients was 68.5 years (range, 
34–89 years). In total, 398 patients were included in TCGA 
data set, of whom 296 were male and 102 were female. The 
patients were further categorized into subgroups on the 
basis of T stage, N stage, cancer grade, and AJCC stage. 
The clinical characteristics of patients involved in the 
present study are shown in Table 1.

The expression of ICD-related genes in BC patients

The ICD-related genes involved in our study were 
identified by Garg et al. (14). We analyzed the expression 
profiles of the BC and adjacent tissues in TCGA database, 
in which the expression levels of IL6, ENTPD1, P2RX7, 
NLRP3, TLR4, CD4, IL10, IL1R1, LY96, and NT5E were 
downregulated, and the expression levels of HMGB1, 
FOXP3, CASP8, IL17RA, PDIA3, BAX, CALR, and IFNB1 
were upregulated (Figure 1A). Protein-protein interactions 
were used to analyze the connections between ICD-related 
genes in the search tool for the retrieval of interacting 
genes/proteins (STRING) database (Figure 1B).
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Figure 1 Identification of differentially expressed ICD-related genes. (A) The heatmap. (B) The protein-protein interactions between the 
ICD-related genes. *, P<0.05; **, P<0.01; ***, P<0.001. ICD, immunological cell death. 
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Consensus clustering was used to identify 3 ICD-associated 
subtypes

We determined the ICD-associated clusters of BC using 
consensus clustering. In TCGA cohort, 3 clusters were 
identified using distinct ICD genes expression patterns 
after k-means clustering (Figure 2A). Among them, the C1 
group, which we called the ICD-high group, showed a high 
gene expression level, while the C2 and C3 groups, which 
we called the ICD-low group, showed low gene expression 
levels. The survival analysis showed that the prognosis of 
patients in the ICD-high group was significantly better than 
that of patients in the ICD-low group (Figure 2B).

Tumor immune microenvironment evaluation of the ICD 
subgroups

The ICD-high group had a higher estimation of stromal 
and immune cells in malignant tumours using expression 
data (ESTIMATE) score than the ICD-low group  
(Figure 3A) (P<0.001). The ICD-high group had a higher 
immune score than the ICD-low group (Figure 3B) 
(P<0.001). The ICD-high group had a higher stromal score 
than the ICD-low group (Figure 3C) (P<0.001). The ICD-
high group had lower tumor purity than the ICD-low group 
(Figure 3D) (P<0.001).

Identification of DEGRRGs

Using edgeR, we identified 2,372 DEGRRGs in the 
GSE80617 data set. Among these DEGRRGs, 1,784 genes 

were upregulated and 588 genes were downregulated with 
thresholds of |log2 FC| >1.0 and P<0.01 (https://cdn.
amegroups.cn/static/public/tau-22-736-1.xlsx).

Identification of ICD-related DEGRRGs

We identified 3536 DEGs within the different ICD groups 
(i.e., the ICD-high group and the ICD-low group) using 
the data of BC patients obtained from TCGA database via 
edgeR. Among them, 2,054 genes were downregulated and 
1,442 genes were upregulated with thresholds of |log2FC| 
>1.0 and an adjusted P<0.05. Intersection was performed 
in ICD-relate genes and DEGRRGs, and 131 ICD-related 
DEGRRGs were identified (Figure S1). The heatmap 
and volcano map are shown in Figure 4A and Figure 4B, 
respectively.

Construction of the gemcitabine-resistance prognostic 
model

We conducted a univariate Cox regression analysis to 
identify the survival-associated genes in both TCGA and 
GEO validation data (Table 2). A LASSO-penalized Cox 
regression analysis was performed to identify the genes in 
the prognostic model. The prognostic model was verified 
by a validation prognostic model based on the GSE31684 
data set obtained from the GEO database. The risk score 
for the prognostic gene signature was calculated as follows: 

risk score = (expression level of PTPRR × −0.01623) + 
(expression level of HOXB3 × −0.00335) + (expression level 
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Table 2 Univariate Cox regression analyses of TCGA and GEO data

Gene

OS

TCGA GEO

OR (95% CI) P value OR (95% CI) P value

MFAP3L 0.855 (0.758–0.965) 0.011* – –

TBL1Y 0.736 (0.573–0.949) 0.018* – –

APOL6 0.801 (0.687–0.934) 0.005** – –

SLAMF7 0.868 (0.770–0.979) 0.021* – –

PTPRR 0.831 (0.752–0.919) 0.000** 0.458 (0.249–0.842) 0.012*

IL21 0.323 (0.135–0.769) 0.011* – –

APOL3 0.859 (0.753–0.979) 0.023* – –

HOXB3 0.795 (0.695–0.910) 0.001** 0.456 (0.246–0.846) 0.013*

CAPS 0.917 (0.848–0.992) 0.032* – –

DHRS2 0.942 (0.901–0.985) 0.009** 0.548 (0.300–0.998) 0.049*

SIGLEC15 0.843 (0.748–0.949) 0.005** 0.489 (0.265–0.901) 0.020*

NNMT 1.083 (1.005–1.172) 0.045* – –

UNC5CL 0.694 (0.560–0.859) 0.001** 0.541 (0.297–0.985) 0.042*

CASQ1 0.864 (0.790–0.944) 0.001** 0.500 (0.274–0.911) 0.022*

S100A7 1.040 (1.001–1.080) 0.041*

TNC 1.140 (1.057–1.229) 0.001**

BTBD16 0.934 (0.881–0.989) 0.020*

SPHK1 1.164 (1.053–1.286) 0.003** 2.014 (1.107–3.665) 0.022*

PYHIN1 0.793 (0.644–0.975) 0.028*

TLL1 1.253 (1.081–1.451) 0.003**

PCSK9 1.155 (1.051–1.270) 0.003**

CALB2 1.108 (1.019–1.205) 0.016*

*, P<0.05; **, P<0.01. CI, confidence interval; GEO, Gene Expression Omnibus; OR, odds ratio; OS, overall survival; TCGA, The Cancer 
Genome Atlas. 

of SIGLEC15 × 0.05481) + (expression level of UNC5CL × 
−0.04691) + (expression level of CASQ1 × 0.096733).

The survival of the 2 groups was analyzed by a Kaplan-
Meier curve. In the prognostic model, the low-risk group 
had better overall survival (OS) than the high-risk group 
(P<0.001) (Figure 5A). In the GEO validation model, the 
low-risk group had better OS than the high-risk group 
(P<0.001) (Figure 5B). In relation to the prognostic model, 
the expression of genes for each patient is shown in 
Figure 5C. In relation to the GEO validation model, the 
expression of genes for each patient is shown in Figure 5D. 
The distribution of different survival statuses (in terms of 

years) of the prognostic model is shown in Figure 5E. The 
distribution of different survival statuses (in terms of years) 
of the GEO validation model is shown in Figure 5F. The 
distribution of different risk scores of the prognostic model 
is shown in Figure 5G. In the GEO validation model, the 
distribution of different risk scores is shown in Figure 5H.

Verify the accuracy of the prognostic model

Prediction accuracy was compared among clinical features 
and riskscore. The ROC curve analysis of the prognostic 
model and validation model were showed in Figure 6. 
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Figure 5 Construction of the gemcitabine resistance-related ICD-associated prognostic model. (A) TCGA prognostic model for outcome 
prediction. (B) GEO validation model for outcome prediction. (C) The heatmap of expression profiles of the genes included in the TCGA 
prognostic model. (D) The heatmap of the expression profiles of included genes in GEO validation model. (E) Survival status of patients 
in different groups in TCGA prognostic model. (F) Survival status of patients in different groups in the GEO validation model. (G) Rank 
of prognostic index and distribution of groups in TCGA prognostic model. (H) Rank of prognostic index and distribution of groups in the 
GEO validation model. ICD, immunological cell death; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.

According to the ROC curves, the risk score, age, gender, 
AJCC stage, T stage and N stage AUC of the TCGA 
prognostic model were calculated to be 0.705, 0.661, 0.465, 
0.605, 0.611 and 0.597, respectively (Figure 6A). According 
to the ROC curves, the risk score, age, T stage and N stage 
AUC of the GEO validation model were calculated to be 

0.716, 0.640, 0.597 and 0.639, respectively (Figure 6B).

The clinical features of the prognostic model

In TCGA prognostic model, the univariate Cox regression 
analyses (Table 3) showed that an older age (>58 years) 
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Figure 6 The survival ROC curve analysis of the prognostic model and validation model: Prediction accuracy was compared among clinical 
features and risk score. (A) ROC curves of TCGA prognostic model. (B) ROC curves of GEO validation model. AJCC, American Joint 
Committee on Cancer; AUC, area under the curve; GEO, Gene Expression Omnibus; ROC, receiver operating characteristic; TCGA, The 
Cancer Genome Atlas.

Table 3 Univariate and Multivariate Cox regression analyses of TCGA prognostic model

Clinical feature

OS

Univariate Multivariate

OR (95% CI) P value OR (95% CI) P value

Age 1.555 (1.125–2.148) 0.007** 1.533 (1.109–2.121) 0.010*

Grade 0.227 (0.032–1.630) 0.140 – –

T stage 2.019 (1.344–3.032) 0.001** 1.232 (0.634–2.395) 0.538

N stage 1.543 (0.767–2.794) 0.089 – –

AJCC stage 2.349 (1.480–3.729) <0.001** 1.791 (0.838–3.826) 0.132

Risk score 1.824 (1.306–2.548) <0.001** 1.679 (1.198–2.354) 0.003**

*, P<0.05; **, P<0.01. AJCC, American Joint Committee on Cancer; CI, confidence interval; N stage, lymph nodes stage; OR, odds ratio; 
OS, overall survival; T, tumor stage; TCGA, The Cancer Genome Atlas.

[hazard ratio (HR) 1.555; 95% confidence interval (CI): 
1.125–2.148; P=0.007], a high AJCC stage (III–IV) (HR: 
2.349; 95% CI: 1.480–3.729; P<0.001), a high T stage (3 
to 4) (HR: 2.019; 95% CI: 1.344–3.032; P=0.001), lymph 
node metastasis (positive) (HR: 1.543; 95% CI: 0.767–2.794; 
P=0.089), high tumor differentiation (HR: 0.227; 95% CI: 
0.032–1.630; P=0.140), and a high risk score (HR: 1.824; 
95% CI: 1.306–2.548; P<0.001) were significant risk factors 
for a poor prognosis. The multivariate Cox regression 
analysis (Table 3) showed that a high-risk score (HR: 1.679; 
95% CI: 1.198–2.354; P=0.003) was an independent risk 
factor for a poor prognosis. In the prognostic model, a high 

T stage, the AJCC stage, higher grade, and being female 
were correlated with higher risk scores (Figure 7).

Immune cell infiltration correlation analysis of risk score

Patients in the high-risk group had a significantly higher 
immune score, stromal score, and infiltration of M0 
macrophages, M1 macrophages, M2 macrophages, and 
activated CD4+ T cells than those in the low-risk group 
(Figure 8). Patients in the high-risk group had significantly 
lower infiltration of Tregs, resting DCs, and activated DCs 
than those in the low-risk group (Figure 8).
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Discussion

Tumor cell death can be categorized into immunogenic 
or non-immunogenic death according to external stimuli. 
ICD is generally referred to as cell death triggered by anti-
tumor therapeutics, such as chemotherapy and radiotherapy 
(18,19), and is recognized as a potential predictor of anti-
tumor immunity (20,21). Recent studies have conducted 
in-depth investigations to explore the mechanism and 
find solutions for overcoming the chemoresistance of 
gemcitabine in BC. The present study established a 
prognostic model based on ICD-related genes for outcome 
prediction, and expanded the approaches for overcoming 
gemcitabine resistance in BC.

ICD is characterized by the release of a series of 
DAMPs, such as HMGB1, IFN-1, ANXA1 and surface-
exposed CALR (22). The present study identified a series of 
survival-associated ICD-related genes, including HMGB1. 
A previous meta-analysis revealed that the upregulation of 
HMGB1 was unfavorably correlated with the outcomes 
of various types of malignant tumors, including BC (23). 
Patients were further classified into 3 clusters according to 
the expression level of the ICD-related genes by consensus 
clustering. The survival analysis indicated that patients in 
the ICD-high group had better outcomes than those in the 
ICD-low group, which is consistent with the conclusions 
drawn in previous research.

Gemcitabine is a classic anti-tumor drug for adjuvant 
chemotherapy after radical surgery and pall iative 
chemotherapy in patients with recurrent and metastatic BC. 
However, in the treatment of early and late stage patients, 
the therapeutic effect decreases sharply, and patients 
gradually develop chemoresistance to gemcitabine, which 
leads to treatment failure. Previous research has shown that 
ICD plays an important role in the anti-tumor activity of 
oncolytic parvovirus H-1 in combination with gemcitabine 
in pancreatic cancer (24). Additionally, Zhao et al. reported 
that S-2-amino-3-[4V-N,N,-bis(2-chloroethyl) amino]-
phenyl propionic acid N-oxide dihydrochloride) (PX-478), 
a HIF-α inhibitor, could enhance the anti-tumor effect of 
gemcitabine by inducing ICD in pancreatic cancer cells (25). 

To the best of our knowledge, no previous research has 
focused on the correlation between gemcitabine-resistance 
and ICD in BC. Given the correlation between the anti-
tumor properties of gemcitabine and ICD, an intersection 
analysis of the gemcitabine-related genes and the above-
mentioned ICD-related DEGs was performed and 131 
gemcitabine resistance-related ICD-associated DEGs were 

identified in the present study.
PTPRR is an inhibitor of the mitogen-activated protein 

kinase signaling pathway (26). Previous research has 
revealed a correlation between the expression level of 
PTPRR and multiple malignant tumors, such as pancreatic 
cancer (27) and ovarian cancer (28). Previous research has 
also reported that silencing of PTPRR facilitates metastasis 
in cervical cancer (29).

HOXB3, which is a member of the HOXB family, plays 
a crucial role in the invasion and recurrence in various 
malignant tumors (30-32). For example, a lower expression 
level of HOXB3 is correlated with worse outcomes in breast 
cancer patients, and further pathway enrichment analysis 
revealed that HOXB3 is negatively correlated with malignant 
proliferation, invasion and metastasis (33). Similarly, Yan et al. 
showed that the upregulation of HOXB3 is independently 
correlated with unsatisfactory outcomes in lung cancer. 
Additionally, a functional analysis revealed that HOXB3 is 
positively correlated with the alleviation of apoptosis, and 
the proliferation and migration of lung cancer cells (34).

SIGLEC15, which is a member of the SIGLEC family, 
plays a crucial role in the regulation of immune cell 
function and attenuates the innate immune response against 
malignant cells, and is upregulated in various cancers 
(35,36). A meta-analysis reported positive or negative 
correlations between the expression level of SIGLEC15 and 
tumor outcomes depending on the cancer subtypes (37). 
Additionally, SIGLEC15 is complementary to programmed 
cell death ligand 1 and recognized as a promising target for 
cancer immunotherapy (38). A recent study showed that the 
upregulation of SIGLEC15 was linked to the lower density 
of tumor infiltration lymphocytes, and a worse response 
to chemotherapy and immunotherapy in BC (36). Thus, 
SIGLEC15 may be a prospective therapeutic target for 
immunotherapy and outcome prediction in BC.

CASQ1, which is a type of Ca2+ binding protein in the 
skeletal muscle (39), has rarely been studied in malignant 
tumors. However, the overexpression of CASQ2 was 
shown to increase tumorigenesis and metastasis in breast  
cancer (40).

UNC5CL promotes peptidase activity via the positive 
regulation of the I-κB/NF-κB signaling pathway (41). To 
the best of our knowledge, the present study was the first to 
recognize UNC5CL as a prognostic indicator in BC.

ICD is usually accompanied by anti-tumor immunity, 
which is induced by the release of a series of DAMPs from 
dying malignant cells (42). The relationship between the 
survival-associated gemcitabine resistance-related ICD 
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DEGs and immune cell infiltration was examined by the 
TIMER online database. A high-risk score was correlated 
with a higher immune score and stromal score, and the 
infiltration of activated CD4+ T cells, M0 macrophages, 
M1 macrophages, and M2macrophages. Conversely, a high 
risk score was correlated with a lower infiltration of Tregs, 
resting DCs, and activated DCs.

Conclusions

To the best of our knowledge, this study was the first to 
identify a series of gemcitabine resistance-related ICD-
associated DEGs, establish a prognostic model for 
prognostic assessment, and explore promising targets for 
overcome gemcitabine-resistance in BC. The specific 
mechanisms of gemcitabine-resistance will be further 
explored in future research.

Limitations

The present study had several limitations. It was based 
on data obtained from TCGA and GEO database, and 
more data sets from multi-centers are required for further 
analyses. Additionally, given the lack of research focused on 
the key ICD-related gemcitabine-resistance genes identified 
in the present study, further integrated analyses need to be 
conducted to reveal their specific biological mechanisms  
in BC.
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