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hand, the temporal convolution models summation of postsynap-
tic potentials over time together with axonal propagation delay.

Note that even more general versions of neural fi eld equations 
contain a distribution of propagation velocities ρ(c), instead of a 
fi xed velocity c. Accordingly, they involve a third integration over 
dc at the r.h.s. of the neural fi eld equation (Nunez, 1995; Hutt and 
Atay, 2006). Hutt and Atay (2006) were able to demonstrate that the 
variance of the velocity distribution affects the frequency of bifur-
cating periodic solutions and the phase speed of travelling waves. 
More interestingly, they discovered that the introduction of velocity 
distributions lead to the maximization of travelling front speed.

Equation 1 can be substantially simplifi ed by assuming spatial 
homogeneity of time constants, τ(x) = τ, infi nite signal propaga-
tion c = ∞ and instantaneous postsynaptic processing, G(t) = δ(t). 
As a result, one obtains the Amari equation (Amari, 1977) with 
inhomogeneous kernel in the form
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where the nonlinear activation function f is given as
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with constants gain β > 0, and threshold η ∈ R. The Amari equa-
tion characterizes a simple neural fi eld theory and serves as a basic 
model to discuss and implement neural fi eld architectures and 
neural fi eld phenomena. We shall restrict our attention to basic 
important phenomena here.

INTRODUCTION
Neural fi eld theories are continuum approximations for high-
dimensional neural networks (Griffi th, 1963; Wilson and Cowan, 
1973; Amari, 1977; Ermentrout and McLeod, 1993; Jirsa and Haken, 
1996; Robinson et al., 2001; beim Graben, 2008). In a rather general 
form (Wilson and Cowan, 1973; beim Graben, 2008), the neural 
fi eld equation can be given by an integro-differential equation
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where u(x,t) describes the spatio-temporal activity of the neural 
tissue at position x ∈ D and at time t ∈ R. The spatial domain 
D ⊂ Rn with n = 1, 2 or 3 are typical dimensions in applications. 
The function τ(x) describes a spatially dependent time constant 
for neural activation, while the integral kernel w(x, x′) indicates 
the synaptic connectivity and strength between sites x and x′ in the 
neural tissue. The temporal kernel G(t) is the postsynaptic impulse 
response function, and c the neural propagation velocity. Finally, 
f is a sigmoidal activation function describing the conversion of 
membrane potential u(x,t) to spike rates at the axon hillock.

The interpretation of Eq. 1 is therefore as follows: The left-
hand side describes the intrinsic decay dynamics of neural activa-
tion u(x,t) with time constant τ(x), whereas the right-hand side 
accounts for the net input to u(x,t) via synaptic connections. 
The spatial integral generalizes the usual weighted summation of 
activity delivered to neurons at x from neurons at x′. On the other 
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constructing neural computing architectures as well as for analyzing 
natural phenomena in biological neural systems (Jirsa and Kelso 
2000; Bressloff and Cowan 2002). We will realize this dynamics by 
using basis transformations from special embedded dynamics, in 
particular we employ basis transformations from simple localized 
basis functions onto distributed global functions on our neural 
domain which are realized as vectors with random components.

We will realize some generic logical tasks like AND, OR, XOR and 
more complex tasks like binary addition with three binary inputs 
and a gating pulse on the basis of neural fi eld theory. To this end 
we fi rst design the processes on an abstract logical level and then 
describe different realizations and embeddings in the framework 
of a neural fi eld theory.

In Section “Solving Inverse Neural Field Problems” we provide 
an introduction into main tools from the theory of inverse prob-
lems which can be used to solve low or high-dimensional inverse 
problems. We will use the tools in subsequent sections for con-
structing low-dimensional neural fi eld kernels for prescribed neural 
dynamics. Section “Embedding One-dimensional Processes into 2d 
or 3d Neural Tissue” is the fi rst key section to describe embedding 
techniques and to construct basis kernels for elementary logical 
functions based on a neural fi eld environment. Section “Embedding 
0D Logic into Neural Tissue” serves to describe a zero-dimensional 
version of the embedding theory. This can also be viewed as an 
embedding of a classical neural network into a neural fi eld environ-
ment. An abstract view based on Hilbert space theory is provided 
in Section “An Abstract View and Basis Transformations”. We dis-
cuss Hilbert space based dynamics and basis transformations in 
the framework of Amari neural fi elds with a particular focus on 
the stable construction of global neural dynamics. This leads to 
a distributed non-local logical dynamics, which is described and 
implemented. Numerical examples for each of the above sections 
are provided.

SOLVING INVERSE NEURAL FIELD PROBLEMS
This section serves as summary and introduction into solving 
inverse problems in the framework of the Amari equation 2 as 
carried out by beim Graben and Potthast (2009), Potthast and beim 
Graben (in press) and Potthast and beim Graben (in press). It will 
be employed many times for the one-dimensional pulse construc-
tion in the following sections.

We prescribe one or several complete time-dependent patterns 
vξ(x, t), ξ = 1,…,n for x ∈ D, t ≥ 0 with some domain D ⊂ R

p
. For 

our further discussion we assume that the nonlinear activation 
function f  :  R → [0,1] is known. Then, we search for kernels w(x,y) 
for x, y ∈ D, such that the solutions of the Amari equation with ini-
tial conditions u(x, 0) = vξ(x, 0) satisfi es u(x, t) = vξ(x, t) for x ∈ D, 
t ≥ 0, and ξ = 1,…,n.

As a fi rst step, we transform Eq. 2 into a linear integral equa-
tion. Defi ning

ϕξ(x, t) = f[vξ(x, t)], x ∈ D, t ≥ 0, (4)
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and employing the integral operator

Interpreting the domain D ⊂ Rn of the Amari equation 2 not 
as a physical substrate realized by actual biological neurons, but 
rather as an abstract feature space for computational purposes, one 
also speaks about dynamic fi eld theory (Thelen et al., 2001; Erlhagen 
and Schöner, 2002).

The description of logical reasoning and digital computation by 
means of neural network architectures is at the focus of research 
since the pioneering work of McCulloch and Pitts in the 1940s 
(McCulloch and Pitts, 1943) and has been investigated, e.g. by 
Balkenius and Gärdenfors (1991), Mizraji and Lin (2001), Blutner 
(2004), in the sequel. In the framework of neural or dynamic fi eld 
theory, Wennekers (2006, 2007) used operational cell assemblies as 
such a computing paradigm. Here, we will study another approach 
to this goal on the basis of neural fi eld theory. The general task 
of implementing cognitive or logical processes can be described 
by a hierarchy of three tiers (compare beim Graben and Potthast 
2009). The top level is the cognitive level where cognitive proc-
esses are modelled with tools from symbolic logic. The second 
level is the representation level, which contains fi elds represent-
ing the cognitive processes in terms of wave fi elds, states and fi eld 
dynamics. The third and bottom level is a neural fi eld level where 
neural fi elds and neural kernels implement the dynamics of the 
representation level.

When the dynamical fi elds in the representation level are given, 
we need to solve the inverse problem of constructing appropriate 
neural kernels implementing the dynamics, compare beim Graben 
and Potthast (2009), Potthast and beim Graben (in press). Usually, 
for more complex tasks of cognition these are high-dimensional 
inverse problems, which exhibit signifi cant computational cost as 
well as high degree of instability or ill-posedness.

In this work, we mainly address two tasks. The fi rst task is to 
provide a method for constructing neural fi eld kernels for more 
complex cognitive tasks which is less computationally expensive 
and less ill-posed than the earlier approaches (beim Graben and 
Potthast, 2009; Potthast and beim Graben, in press).

Usually the term problem reduction is used when a diffi cult prob-
lem is solved by reducing it to easier problems. In this sense the term 
dimensional reduction describes the process from an inverse prob-
lems perspective, since we reduce the multi-dimensional inverse 
problems to the solution of low-dimensional tasks.

We will solve the problem by constructing low-dimensional 
embeddings of neural kernels into higher-dimensional neural 
domains. In particular, we will describe zero-dimensional and one-
dimensional embeddings into two- (or possibly three-dimensional) 
neural tissue. This is employed for the construction of paths for 
neural pulses, for gluing different path patches together, for design-
ing AND, OR and XOR gates as well as delay gates which can be 
used for synchronization of neural pulses.

The second task is to study more general Hilbert-space based 
implementations of cognitive processes on the basis of neural fi eld 
theory. Neural fi eld equations such as Eq. 1 or the Amari equa-
tion 2 are often transformed into partial differential equations 
for further analysis (Jirsa and Haken 1997; Coombes et al., 2003). 
This, however, restricts the synaptic weight kernels considerably, 
by presupposing local interactions. On the other hand, generating 
and understanding non-local distributed cognitive dynamics with 
complex logical decisions is of high interest both for controlling and 
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leads to a reformulation of the inverse problem into the equation

ψξ(x,t) = Wϕξ(x, t), x  ∈  D, t ≥ 0, ξ = 1,…,n, (7)

where here the kernel w(x,y), x,y ∈ D, of the linear integral opera-
tor W is unknown. Equation 7 is linear in the kernel w. It can be 
rewritten as

Ψ = WΦ (8)

with

Φ = (ϕ
1
,…,ϕ

n
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1
,…,ψ

n
). (9)

For every fi xed x ∈ D we can rewrite Eq. 7 as
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with

w
x
(y) = w(x,y), x,y ∈ D, ψξ,x

(t) = ψξ(x,t), x ∈ D, t ≥ 0.

If ϕ is continuous in y and t, then for fi xed x, Eq. 10 is a Fredholm 
integral equation of the fi rst kind with continuous kernel ϕ. This 
equation is known to be ill-posed (Kress, 1989), i.e. we do not 
have (a) existence or (b) uniqueness in general and even if we have 
uniqueness the solution does not depend in a (c) stable way on the 
right-hand side.

In order to cope with ill-posedness and instability, several 
regularization techniques have been proposed in the literature. 
Among them, Tikhonov regularization is a very general scheme 
which can be derived via three different approaches: (i) by a 
spectral approach, (ii) from matrix algebra, or (iii) as an opti-
mization procedure for solving an ill-posed equation Vg = f. 
Clearly, a solution to the equation Vg = f can be searched by 
the minimization

min
g X

Vg f
∈

−
 

(11)

where X denotes some appropriate Hilbert space X, for example 
the space L2(D) of square integrable functions on some domain D. 
The normal equations (compare Kress, 1999) for the minimization 
problem are given by

V*Vg = V*f.

The operator V*V does not have a bounded inverse. Stabilization is 
reached by adding a small multiple of the identity operator I (Kress, 
1999), i.e. by solving

(αI + V*V)g = V*f, (12)

which corresponds to adding a stabilization term α|| g ||2 to 
the minimization (Eq. 11), leading to the third form of the 
Tikhonov regularization

min( )
g X

Vg f g
∈

− + .2 2α
 

(13)

The operator Eq. 12 is usually discretized by standard procedures 
and then leads to a matrix equation which can be solved either 
directly or by iterative methods (Kress, 1999).

The Moore–Penrose pseudoinverse is given by the limit of the 
Tikhonov regularization for α → 0, i.e. it is

V V V V I V V V† ( * ) * lim( * ) *= = + .−

→

−1
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However, as discussed above this limit will lead to satisfactory 
reconstructions only for well-posed problems. For the above-
 mentioned ill-posed inverse problem we have to employ α > 0.

These techniques were applied to neural pulse construction 
problems by Potthast and beim Graben (in press), Potthast and 
beim Graben (in press) and beim Graben and Potthast (2009). In 
particular, the authors demonstrated the feasibility of regularized 
construction techniques for synaptic kernel construction. Properties 
of the solutions were investigated and the ill- posedness of the prob-
lem was proven and demonstrated by particular examples.

Challenges for multi-dimensional inverse problems. As a 
preparation to the next parts of this work here we discuss one 
major disadvantage of the above approach when more complex 
problems are addressed.

It is well-known that solving multi-dimensional inverse prob-
lems is a diffi cult and challenging task of current research (Colton 
and Kress, 1998). In particular, it is well-known that in general the 
ill-posedness of an inverse problem increases if

I. we use higher discretizations for the simulations of the 
forward problem,

II. the dimension and complexity of the mapping under conside-
ration increases.

The reason for this phenomenon in both cases is that the calcula-
tions take into account more singular values and singular functions. 
The singular values strongly decay and taking more singular values 
into account corresponds to larger instability.

For cognitive neuroscience this means that both increasing the 
dimension and complexity of the simulated dynamics as well as 
enhancing the simulation algorithms by higher discretization will 
cause more severe instabilities for kernel construction problems. 
In addition, the computational costs are strongly dependent on the 
size of the problem under consideration, measured in terms of

a. the dimension of the neural domain,
b. the complexity of the dynamics,
c. the number of time discretization points,
d. the spatial discretization of the problem,

where c) and d) usually depend to some extent on a) and b), for 
example discretizations of a multi-dimensional problem needs 
much more discretization points than discretization of a one-
dimensional problem.

Here, the size and condition number of the matrix Φ defi ned in 
Eq. 9 will strongly increase with the number of time-discretization 
steps. A detailed discussion of these effects can be found in Potthast 
and beim Graben (in press) and Potthast and beim Graben (in 
press). Yet the above works do not propose any approach to resolve 
the problems. They focus on the study of simple problems with 
basic tools from the theory of inverse problems. Our goal here is 
to introduce a computational technique which resolves the issue 
by use of embedding techniques. Our approach is related to similar 
approaches such as operational cell assemblies and  continuous 
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attractor networks (Thelen et al., 2001; Erlhagen and Schöner, 
2002; Wennekers, 2006, 2007) and we expect that the algorithms 
developed here can be employed to such approaches as well. The 
techniques allow stable and effi cient solutions to complex and 
distributed neural modelling problems, we expect it to be an 
important step towards addressing more realistic questions of 
cognitive dynamics.

EMBEDDING ONE-DIMENSIONAL PROCESSES INTO 2D OR 3D 
NEURAL TISSUE
The approach in this work is to solve low-dimensional inverse prob-
lems with mild or no instability and to embed the solution into a 
higher-dimensional space. To this end we will fi rst introduce an 
embedding technique in the next subsection and then apply it to 
plain pulse kernels and delay kernels. We show how different paths 
can be linked together leading to different types of branching point 
dynamics. Then, the construction of simple and more complex 
logical functions on the basis of embedded pulses is described.

The embedding technique here is independent of the technique 
which is used to calculate the kernels which are embedded. We will 
fl exibly employ two different approaches to calculate low-dimen-
sional kernels which are then embedded into higher-dimensional 
neural domains:

(1) analytical solutions/kernels given explicitly in closed form or
(2) kernels constructed numerically by solving the inverse pro-

blem of Section “Solving Inverse Neural Field Problems” on a 
low-dimensional set.

PATH EMBEDDING
Let � �w s s( ),  for s s a b, ∈ ,� [ ] be a one-dimensional neural kernel. 
Our neural tissue is given by a domain D ⊂ R2. We consider a 
path γ: [a,b] → D given by parametrization s s6 γ( ), and defi ne 
its trace by

Γ: = {γ(s): s ∈  [a,b]}. (15)

We will use | · | for the Euclidean norm in Rn and d(x,G) for 
the Euclidean distance of a point x to the domain or set G. We 
assume that

A1.  γ is differentiable, i.e. for every point x ∈ Γ there is a tangen-
tial vector ζ(x) ∈ R2 and a normal vector ν ζ( ) ( )x x⊥ ,

A2.  the size of the derivative γ′(s) is strictly positive, i.e. there is a 
constant c

1
 such that |γ′(s)| ≥ c

1
 > 0 for all s ∈ [a,b],

A3.  the mapping s s6 γ( ) is injective, i.e. there are no crossing 
points and double points of the path,

A4.  the path embedding has suffi cient distance to the boundaries 
of our neural tissue, i.e. d(Γ, ∂D) ≥ c

2
 > 0 with some suffi -

ciently large constant c
2
.

The last condition is convenient to avoid technical overload 
of the arguments below. We are then prepared to defi ne a tube of 
diameter ρ > 0 around a path Γ by

Γ Γρ ρ:= ∈ : , ≤{ }x D d x( )
 

(16)

where d denotes the distance from x to Γ. If ρ is suffi ciently small, 
the tube Γρ can also be defi ned as the set

Γρ = {x + rv(x): x ∈ Γ, | r | < ρ}. (17)

In this case, for x ∈ Γρ there is a unique pair of parameters 
(s,r) = T(x) such that x = γ(s) + rv[γ(s)]. We use the abbreviation 
γρ(s,r): = γ(s) + rv[γ(s)] for s ∈ [a,b] and r ∈ [−ρ, ρ].
Defi nition 3.1. (Kernel Embedding) For ρ suffi ciently small as 
in Eq. 17 depending on c

2
 and Γ we defi ne the embedding of �w 

into D by

w x y

w s s

s
x y s r T x s r T y

( )

( )
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othherwise.
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An example of such a kernel embedding is shown in Figure 1.

FIGURE 1 | The image (A) shows several path embeddings, where for 

a point x ∈ D in the neural tissue D we visualize the index of the path 

vector Γ which is mapped onto x. The colour in (A) shows the parameter 
of a particular path. Where red overlaps light blue, two paths patches are 
glued together. The embedded kernel (calculated by a Tikhonov–Hebbian 

approach described in Section “Solving Inverse Neural Field Problems”) 
for the fi rst of these path and a point y = (2.4276, 2.5724) is shown 
in image (B), illustrating the embedded kernel (Eq. 18). Here, the 
neuron located at the black point is exciting the red area and 
inhibiting blue areas.
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We later study the processing of pulses similar to the work shown 
in beim Graben and Potthast (2009), Potthast and beim Graben 
(in press) and Potthast and beim Graben (in press). In particular, 
later we use Gaussian pulses

v x t e x tx ct( ) ( ), := , , ∈− ⋅ −σ 2

\,  (19)

with σ > 0 and speed c > 0. With the embedded kernel under the 
conditions A1–A4 we will obtain a two-dimensional pulse which is 
analogous to the one-dimensional pulse dynamics, but now follows 
the prescribed path Γ or tube Γρ, respectively.

The construction of the two-dimensional kernels (Eq. 18) is 
carried out such that the kernel is the same for all points in a tube 
which are on a line

L(x): = {x + rv(x) : | r | < ρ}. (20)

This also leads to an equivalence of the neural dynamics gen-
erated by the one-dimensional kernel and the two-dimensional 
embedded kernel (18).

We call a function u
0
 embedded into Γρ, if it is constant on lines 

L(x) defi ned by Eq. 20 for all x ∈ Γ. In this case u
0
 corresponds 

to a one-dimensional function 0�u  defi ned on the parametrization 
interval [a,b] of Γ such that u

0
 is the embedded version of 0�u .

Theorem 3.2. Consider a path embedding Γ which satisfi es 
A1–A4 and let the initial value u

0
 be an embedded function from 

0�u C a b∈ ,([ ]) according to Defi nition 3.1. Then, the dynamics for 
the embedded kernel w with initial value u

0
 on Γ and the dynamics 

of the one-dimensional kernel �w  with initial values 0�u  are equiva-
lent, i.e. the diagram

embedding

dynamics

dynamics
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0
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2
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u t
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→
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↓

⋅,

D

D
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( tt)
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is commutative, i.e. we can either fi rst carry out the one- dimensional 
dynamics and then embed the resulting dynamical fi eld or we can 
fi rst embed the initial condition and then carry out the embedded 
two-dimensional dynamics.

Proof. The proof is a direct consequence of the particu-
lar embedding technique. The two-dimensional dynamics 
includes the two-dimensional integral with the excitation or 
forcing term

F x w x y f u y t dy x D
D

( ) ( ) ( ( )):= , , , ∈ .∫
 (22)

We evaluate this integral for points x = γρ(s,r), s ∈ [a,b] and 
r ∈  [−ρ,ρ] in the tube Γρ as follows. Substituting dy s dsdr=| ′ |γ ( )� � � 
for �F s r F s r( ) ( ( )), := ,γ ρ  we calculate
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which is the r.h.s of the one-dimensional Amari equation, 
thereby reducing the two-dimensional dynamics to a one-
 dimensionalcase. 

PLAIN PULSES
The goal of this section is to set up simple kernels which lead to one-
dimensional travelling neural pulses v(x,t) for x ∈ R and t ∈ R on the 
real line R. The generation of neural pulses by homogeneous kernels 
has been intensely studied, compare Amari (1977), Ermentrout and 
McLeod (1993), Coombes et al. (2003), Potthast and beim Graben (in 
press). Here, we will either provide an analytical solution or employ the 
Tikhonov–Hebbian approach described in Section “Solving Inverse 
Neural Field Problems”. We apply the techniques of the preceding 
Section “Solving Inverse Neural Field Problems” to construct a kernel 
to generate the dynamics of a pulse of the form (Eq. 19).

Alternatively, we may obtain stable pulse-like solutions as 
follows. We defi ne a one-dimensional kernel with backward 
Gaussian inhibition and forward Gaussian excitation by explicit 
analytical construction

� \w s c e c e ss s s s( ) ( ) ( ):= − , ∈+
− ⋅ −

−
− ⋅ +σ σ0

2
0

2

 (26)

with constants c+, c− > 0 and s
0
 > 0. For an appropriate choice of con-

stants c± and s
0
 by w x y w x y( ) ( ), := −�  and initial conditions by

v x e xx( ), = , ∈ ,−0 0
2σ \  (27)

we obtain travelling pulses in one dimension for the Amari fi eld 
equation 2. This can be verifi ed by numerical simulation or, for 
particular cases, by elementary arguments. We skip the details of 
the arguments since they work along the lines of Potthast and beim 
Graben (in press).

DELAY GATES
Delay gates are logical elements which synchronize pulses travel-
ling with different speed or which have to travel over a different 
distance. A delay gate keeps a pulse active over some time interval, 
such that pulses arriving earlier and pulses arriving later as input 
into some logical element lead to simultaneous excitation of the 
input areas. Delay gates are neural fi eld implementations of delay 
lines for neural networks (Hertz et al., 1991).

Here, we will construct delay gates which realize an excitation 
at the exit of the gate as soon as a pulse enters the gate area and 
keep the excitation at the exit constant while the pulse is passing 
through the delay gate. This synchronizes pulses over a time window 
of the travel time of a pulse through the gate.

In more detail, a delay gate is a kernel w(x,y) defi ned on an 
interval [a,b] ⊂ R such that any pulse with suffi ciently large active 
support entering the interval [a,b] leads to an excitation of the 
neural fi eld in a neighbourhood of suffi cient size of b as long as 
the pulse is travelling through the interval I

[a,b]
.

The construction of delay gates can be done by solving neu-
ral inverse problems or by direct construction. Here, we employ 
the inversion technique of Section “Solving Inverse Neural Field 
Problems”. A delay gate is obtained by solving the inverse problem 
(Eqs. 7–10) with training pulse given by

v x t e f t e x a bx x b
ct a
cT a( ) ( ) [ ]( ) ( )

( )

, := + ⋅ , ∈ ,− ⋅ −
,

− −−
−σ

η β
σ2

0

2

 
(28)
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for t ∈  [0,T], where f η β0 ,  denotes the sigmoidal activation  function 
defi ned in Eq. 3. The constants η

0
 and β control the time delay 

after which the excitation at the exit point of the delay gate 
becomes active.

Without an initial fi eld the fi eld in the gate will just be 0. If a pulse 
enters the gate, it corresponds to the initial training pattern (Eq. 28) 
and excites the complete path of the training pattern, which leads to 
an excitation of the exit pulse after a time interval η

0
 which is kept 

constant for the duration of pulse travel through the gate.
We numerically demonstrate a delay gate in Figure 2. The fi gure 

shows one time slice of the dynamics for two different pulses. In 
the upper image the pulse entered the gate earlier than in the lower 
image, both pulses simultaneously excite a pulse at the exit area 
around coordinate x = 10.

BRANCHING POINTS AND GLUING PATHS TOGETHER
We employ the following technique for branching points and glu-
ing paths together. As a preparation we note that the kernel for a 
plain path provides a direction for this path. A pulse has an entry 
point at one side of the tube and an exit point at the other. Pulses 
will only propagate from the entry point to the exit point. A pulse 
entering an exit point will die.

We speak of gluing together two or more paths at a point when 
we overlap an exit area with one or several entry areas or an entry 
area with several exit areas of different paths. We have employed 
the following elementary assumption for our constructions:

A5.  We assume that there is a positive distance between 
any two tubes given by two paths, except for overlap in 
the case where we glue together two or more paths at a 
branching point.

The following points describe the gluing process in 
more detail:

1.  If we want to glue together two paths Γ
1
 and Γ

2
, they 

need to be embedded with suffi cient overlap such that a 

pulse exciting the tube Γ
1,ρ (which does not have neural 

 connections from the interior of Γ
1,ρ into the exterior 

of Γ
1,ρ) excites the pulse travelling through the tube Γ

2,ρ. 
Here, we used an overlap as described in A5. containing a 
ball of radius ρ.

2.  Consider the embedding w
1
 for path Γ

1
 and the embed-

ding w
2
 for path Γ

2
, with overlap constructed as deman-

ded in Item 4. Then a glued pulse is constructed by

w(x,y): = w
1
(x,y) + w

2
(x,y), x,y ∈ D. (29)

3.  According to the embedding technique for kernels the 
intersection of the support of w

1
 and w

2
 is a subset of the 

path overlap, i.e. where both x and y are in Γ
1
 ∩ Γ

2
. For 

most kernels considered in this work the kernels do not 
have a signifi cant size when x and y are very close to each 
other, such that the summation (Eq. 29) does not disturb 
the pulse behaviour signifi cantly in Γ

1
 ∩ Γ

2
.

We demonstrate the gluing of paths in Figure 1. Our numerical 
tests with travelling pulses below confi rm the above arguments and 
show that we can glue paths together without diffi culty. The technique 
has been employed for the example of binary addition in Section “An 
Abstract View and Basis Transformations”, compare also Figure 5.

Branching and OR Logic. Branching points are points where 
more than two pulses are glued together. Given three paths Γ

1
,Γ

2
 

and Γ
3
 we construct a branching point from embeddings w

1
,…,w

3
 

which have some overlap around the point p ∈ D by

w(x,y): = w
1
(x,y) + w

2
(x,y) + w

3
(x,y), x,y ∈ D. (30)

Branching points are natural realizations of logical structures. As 
an example consider Figure 3. The fi gure shows path embeddings 
as blue lines between the black points. Three branching points can 
be identifi ed.

Here, as a simple example and fi rst step towards more compli-
cated logic we formulate logical OR and multiplexer elements via 
branching points. A pulse corresponds to the logical input true or 
1. No pulse corresponds to false or 0.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

x

y

Neural Reconstruction, t=7.5/20

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

x

y

Neural Reconstruction, t=7.5/20

FIGURE 2 | We show the time-slice of a delay gate dynamics as described 

in Section “Embedding One-dimensional Processes into 2d or 3d Neural 

Tissue”. Here, the delay gate is the complete interval between x = 0 and 10. In 
the upper graphics the pulse (blue line) entered the delay gate earlier than in the 

second image. Both pulses excite the exit area of the gate simultaneously. The 
dotted curve shows the original training patterns. For the generation of the 
neural kernel we used the inversion technique of Section “Solving Inverse 
Neural Field Problems”.
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FIGURE 3 | A logical design for a gated binary addition, where here the 

last digit as defi ned in Eq. 35 is calculated.

Algorithm 3.3. OR Logic, Multiplexer Branching points where w
1
 

and w
2
 are incoming and w

3
 is outgoing implement the classical 

OR logic in the sense that a pulse is transmitted through Γ
3
 if 

either a pulse enters the branching point through Γ
1
 or through 

Γ
2
 or both Γ

1
 and Γ

2
.

Branching points where w
1
 is incoming and w

2
, w

3
 are outgoing 

implement a multiplexer logic in the sense that a pulse entering the 
branching point will be transmitted into both w

2
 and w

3
.

LOGICAL ELEMENTS
Further logical elements are now constructed using embedded 
pulses, branching points and additional inhibition elements.

An inhibition element is a neural kernel w
i
 defi ned on two subsets 

V
1
 ⊂ Γ

1
,ρ and V

2
 ⊂ Γ

2
,ρ such that

w x y
c x V y V

i ( ), :=
− , ∈ , ∈

, .
⎧
⎨
⎩

− 2 1

0 otherwise
 

(31)

An inhibition element establishes an inhibition which is 
activated by a pulse travelling through V

1
 and is applied to any 

fi eld in V
2
.

We are now prepared to defi ne all standard logical elements within 
the neural fi eld environment. Here, we pick selected examples.

XOR Logic. Consider three points p
in,1

, p
in,2

 and p
out

 ∈ D in a 
neural tissue. We consider p

in,1
 and p

in,2
 as input nodes and p

out
 as 

output node for logical processing, i.e. we expect input pulses in 
a neighbourhood Bρ(p

in,1
) or Bρ(p

in,2
) of these points as input. The 

output will be a fi eld activation u which is above the threshold η on 
Bρ(p

out
). We need to assume that

d(p
in,1

, p
in,2

), d(p
in,1

, p
out

), d(p
in,2

, p
out

) >> ρ (32)

where d(p, q) denotes the Euclidean distance between points p 
and q in D.

1. Let w
plain,ξ be an embedded kernel for a plain pulse from p

in,ξ to 
p

out
 along a path Γξ, where the tube Γξ,ρ has distance larger than 

ρ to the point p
in,η for η ≠ ξ, η, ξ = 1,2. We assume that the 

tubes Γ
1,ρ and Γ

2,ρ intersect only on the exit area around p
out

.
2. Let w

i,ξ be an inhibition kernel for the subsets Γξ,ρ\V and Γη,ρ\V 
with V: = Γξ,ρ ∩ Γη,ρ for ξ ≠ η, ξ, η = 1,2, i.e. w

i,ξ establishes an 
inhibition of fi elds in Γη,ρ \ V when a pulse in the tube area 
Γξ,ρ\V is active.

If the constants are chosen appropriately, the above setting real-
izes a logical XOR functionality.

Algorithm 3.4. XOR Logic. The kernel

w x y

w x y w x y w x y w x y xi i

( )

( ) ( ) ( ) ( )

, :=
, + , + , + , , ,, , , ,plain plain1 2 1 2 yy D∈

 
(33)

establishes a XOR functionality for pulses entering the tubes Γ
1
 

and Γ
2
 connecting p

in,1
 and p

in,2
 with p

out
. The functionality will be 

satisfi ed for pulses entering the paths Γ
1
 and Γ

2
 at any point and 

during the time window defi ned by the remaining travel time of a 
pulse through these paths.

We have numerically tested the above scheme independently 
and for realizing the binary addition logic described in Section “An 
Abstract View and Basis Transformations” and shown in Figure 5, 
where traces of time-dependent travelling pulses are shown. The 
underlying logical structure is visualized in Figure 3. We assume 
that an input excitation is given to the input nodes at (0,−1), (0,1) 
and (0,3), the node (0,−3) serves as a gating pulse to activate the 
complete logical gate. As before, a pulse corresponds to the logical 
input true or 1. No pulse corresponds to false or 0. The inhibition 
components lead to mutual inhibition between the pulses in the 
paths of the XOR elements.

Here we have combined analytical parts (the inhibition ele-
ments are explicitly prescribed) with results of the inversion of 
Section “Solving Inverse Neural Field Problems” for obtaining 
travelling pulses in the lines between the nodes. The elements 
are constructed in one dimension and then embedded into the 
two-dimensional neural domain by the embedding technique 
of Defi nition 3.1.

AND Logic. There are at least two basic options to realize the 
classical AND logic for pulses. The fi rst option combines the OR 
logic given by Algorithm 3 with a damping of the kernels in the 
overlap of the exit point.

Algorithm 3.5. AND Logic I. Let w
or

 be the kernel constructed in 
Algorithm 3 and V: = Γξ,ρ ∩ Γη,ρ. We defi ne a damped kernel by

w x y
c w x y x V

w x y
d

and
or

or

( )
( )

( )
, :=

⋅ , ∈
, .

⎧
⎨
⎩ otherwise

 

(34)

with damping factor c
d
 ∈ (0,1). If the damping factor is chosen 

appropriately (depending on ρ and the kernel setup), then w
and

 
establishes the AND functionality for pulses entering Γ

1
 and 

Γ
2
. The time window for synchronization here is rather short, 

since both pulses need to arrive at ρ
out

 simultaneously. This can 
be enhanced by using delay gates in both of the tubes which 
are involved.

An alternative implementation of AND is provided by the fol-
lowing architecture, visualized in Figure 4.
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Algorithm 3.6. AND Logic II. We construct path embed-
dings as  visualized in Figure 4 with the following path kernels 
and inhibitions:

1. From two input nodes we construct two paths each by a multi-
plexer branching point according to Algorithm 3.3. This leads 
to four paths labelled 1, 1a, 2 and 2a. We use the numbers as 
abbreviations for either paths or tubes.

2. We now apply inhibition from 1 to 2a and from 2 to 1a on the 
fi rst half of the paths.

3. After that in the second half of the path we apply inhibition 
from 1a to 1 and from 2a to 2.

4. Then, we connect 1 and 2 to the endpoint by a simple OR gate.

The combination of the steps 1 to 4 generates a logical AND 
gate embedded into neural tissue.

To show the validity of the above setup we need to check four 
situations, with no pulses or with pulses entering in either p

in,1
, p

in,2
 

or in both points. No pulse represents 0&0 = 0, which is clearly 
satisfi ed. Consider the situation 1&0. In this case we get pulses in 
1 and 1a. Then 1a inhibits the pulse in 1 such that it dies and there 
is no output pulse, i.e. 1&0 = 0 is satisfi ed. The same logic applies 
to the pulses in 2 and 2a. Now, consider two pulses 1&1. Then fi rst 
they split into four pulses 1, 1a, 2, 2a. Now we apply step 2, such 
that the pulses in 1a and 2a die by inhibition from 2 and 1. Then the 
remaining pulses in 1 and 2 go through and via the OR gate reach 
the fi nal point p

out
, which establishes the logic 1&1 = 1.

The advantage of the AND logic of Algorithm 3.5 is that it is a 
very simple and natural implementation depending on the special 
size of the kernel w. The second implementation is much more 
independent of this size and much more stable with respect to 
strength variations of w. Both designs are implemented in a neural 
domain by the embedding techniques of Defi nition 3.1.

Binary Addition. Finally, we would like to show a more com-
plex implementation of binary addition. Here, we have realized 

the addition of three binary numbers triggered by a gating pulse, 
i.e. we realize

a) 0 + 0 + 0 = 0, b) 1 + 0 + 0 = 1, c) 0 + 1 + 0 = 1, d) 0 + 0 + 1 = 1, e) 
1 + 1 + 0 = 0, f ) 1 + 0 + 1 = 0, g) 0 + 1 + 1 = 0, h) 1 + 1 + 1 = 1. (35)

The logical design is summarized in Figure 3. The idea is that the 
pulses enter the neural domain at points (0,−1), (0,1) and (0,3), where 
we also added a gating pulse with entry at (0,−3). We will study differ-
ent solutions of the realization of the above logical structure. The fi rst 
solution is a pulse-based approach where the pulses are constructed 
in one dimension fi rst on the basis of Section “Solving Inverse Neural 
Field Problems”. They are embedded into a two-dimensional neu-
ral domain, combined with inhibition elements, glued together at 
branching points or simple connection points. The second and third 
approach will be described in the following sections.

In Figure 5 we show the trace of the pulses – not their time-
behaviour, i.e. we show all points red where the pulse is above the 
threshold at some point of time. The binary inputs are the fi rst 
three input nodes on the left-hand side of the tissue, the output 
node is the centred node on the right-hand side.

EMBEDDING 0D LOGIC INTO NEURAL TISSUE
Our approach here to a 0D embedding is the reduction of neural 
pulse dynamics. We consider the neural tissue D to be global in 
the sense that every point x can be infl uenced by a neural fi eld at 
the point y ∈ D. But this means that we do not need to process an 
infl uence by a travelling pulse, but we can directly excite the cor-
responding areas in a non-local fashion.

In contrast to a path embedding, here we need only to embed 
two or more points with their neighbourhoods into the neural tis-
sue to realize a logical function. Since a point is a zero-dimensional 
manifold, we call the embedding zero-dimensional (0D).

The implementation of such 0D embeddings refl ects old issues of 
implementing logical functions in neural networks (Hertz et al., 1991). 
For example, a logical XOR functionality cannot be implemented by 
directly linking two input nodes to the output node. We need to 
include at least two further points with their neighbourhoods.

With the neural fi eld we have a highly integrated continuous 
auto-associative network in which we may embed classical neural 
network logic. But we also gain new options for these embeddings 
and the deep tools of mathematical analysis and functional analysis 
are available to investigate and control such embeddings. These 
further options will be explored in our fi nal section, here we will 
provide more details on the 0D embedding.

Pulses. Zero-dimensional versions of pulses are direct excitations 
of the target areas within the neural tissue. To obtain a speed of pulse 
propagation comparable to the speed of elementary logical elements 
we have used a one-stop pulse realization, i.e. from an area around an 
input point p

in
 we have fi rst excited an auxiliary area around a point 

p
aux

 and then this area excites the target area around p
out

.
XOR Logic. For the XOR gate we have used a zero-dimensional 

logic with fi ve points, two input points p
in,1

, p
in,2

, two auxiliary points 
p

aux,1
, p

aux,2
 and the output point p

out
. Excitation is taking place from 

p
in,ξ to p

aux,ξ and from p
aux,ξ to p

out
 for ξ = 1,2. Inhibition is realized 

from p
in,ξ to p

aux,η with ξ = η, ξ, η = 1,2.
AND Logic. For the AND gate as for XOR we have used a zero-

dimensional logic with six points, two input points p
in,1

, p
in,2

, three 

FIGURE 4 | A structural design for a stable logical AND gate. The dashed 
line separates different parts of the logical paths for 1, 2, 1a and 2a where 
different inhibition effects are employed, details are introduced in the points 
1–4 in Algorithm 3.6. Pulses enter at the nodes in (0,−1) and (0,1). The output 
node is at (8,0).
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FIGURE 5 | The images show the traces of neural pulses for the last binary digit of a gated binary addition logic (Eq. 35a–h) corresponding to the 

panels A–H via the one-dimensional embedding technique in combination with low-dimensional inverse problems and analytical elements for the 

logical components.

auxiliary points p
aux,1

, p
aux,2

, p
aux,3

 and the output point, p
out

. Excitation 
is taking place from p

in,ξ to p
aux,ξ for ξ = 1,2, from p

in,ξ to p
aux,3

 and 
from p

aux,ξ to p
out

 for ξ = 1,2. Inhibition is realized from p
aux,3

 to p
out

. 
Here, a single input in either p

in,1
 or p

in,2
 will excite either p

aux,1
, p

aux,3
 or 

p
aux,2

,p
aux,3

. Then the inhibition of p
aux,3

 to p
out

 will cancel the excitation 
if there are not two simultaneous excitations from p

aux,1
 and p

aux,2
.

In the results of Figure 6 the auxiliary points have been inserted 
into the path between the input and output nodes. As in Figure 5 
here we show the trace of the pulse, not its time-behaviour, i.e. we 

show all points red where the pulse is above the threshold at some 
point of time.

Binary Addition. Finally, we have integrated the zero-dimensional 
embeddings into a binary addition logic. It is shown in the results of 
Figure 6. The design is analogous to the one shown in Figure 3.

AN ABSTRACT VIEW AND BASIS TRANSFORMATIONS
The goal of this section is to formulate an abstract view into 
state space dynamics of logical computations. Logical dynamics 
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Defi nition 5.1. Let X be a Hilbert space and consider a param-
eterized mapping

S 
t
: X → X, t > 0, (36)

with the property

S
t+s

 = S
t°S

s
 (37)

for all t,s > 0. A mapping of the type (Eq. 36), (Eq. 37) establishes 
a Hilbert space dynamics.

Remark. Given an initial value u
0
 ∈ X, the dynamics S

t
 defi nes 

a time-dependent fi eld

is often regarded as processing from one logical state to another 
(Wennekers, 2006, 2007; beim Graben and Potthast, 2009). Here, 
we will construct particular logical states and neural mappings 
from one state to another using the zero-dimensional embeddings 
from Section “Embedding 0D Logic into Neural Tissue” and Hilbert 
space basis transformations. Thus, we stably construct complex 
distributed state-space dynamics for neural processes.

HILBERT SPACE DYNAMICS
We aim to discuss a Hilbert space dynamical implementation of 
logical structures. Let X be some Hilbert space.

FIGURE 6 | The images show the traces of neural pulses for the last binary digit of a gated binary addition logic (Eq. 35a–h) corresponding to the panels 

A–H via the zero-dimensional embedding technique with purely analytical elements for the logical components, compare Section “Embedding 0D Logic 

into Neural Tissue”.
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u
t
: = S

t
u

0
,t ≥ 0 (38)

with the property

u
t+s

 = S
s
u

t
, s,t ≥ 0 (39)

i.e. the operator S
s
 describes the change of the fi eld u

t
 from t to t + s. 

This is well-known as semi-group representation in the mathemati-
cal theory of dynamical systems (Anosov and Arnol’d, 1988). Here, 
it establishes an abstract concept which is realized by the Amari 
neural fi eld equation 2.

We can discretize the dynamics by considering

t
k
 = k · h

t
, k = 0,1,2,… (40)

with some grid constant h
t
. Then, according to Eq. 37 the complete 

dynamics is given by iterating S Sht
:= .

We consider elements p Xk
j( ) ∈  for k = 1,…,n and j = 1,…,m. 

Our goal here is the construction of particular dynamical systems 
which satisfi es

p S p k nk
j

k
j

+ = , = ,..., − ,1 1 1( ) ( )( )  (41)

with initial values p Xj
1
( ) ∈  for j = 1,…,m. For fi xed j the sequence 

of points pk
j( ) , k = 1,…,n is a realization of a particular part of 

logical inference.
The dynamics under consideration in Eq. 41 in general will not 

be linear, but rather highly nonlinear in most cases. For example, 
consider the space R3 and initial elements

p p p1
1

1
2

1
31 0 0 0 1 0 1 1 0( ) ( ) ( )( ) ( ) ( ):= , , , := , , , := , , .  (42)

If we defi ne the second element as

p p p2
1

2
2

2
30 0 1 0 0 1 0 0 0( ) ( ) ( )( ) ( ) ( ):= , , , := , , , := , ,  (43)

we have defi ned the classical logical XOR function in the third 
component, i.e. (1,0) is mapped onto 1, (0,1) is mapped onto 1, 
but (1,1) is mapped onto 0.

The above implementation of a logical XOR gate can be carried 
out in an abstract setting with a general set of Hilbert space ele-
ments. Here, we will realize this on the basis of the above logical 
implementations by a basis transformation of a subspace. This will 
be explained in our next subsection.

BASIS TRANSFORMATIONS, PERMUTATION MATRICES AND 
NEURAL DYNAMICS
A basis transformation is an injective mapping T of a basis 
B

1
: = {g

1
,…,g

n
} of a space X onto a basis B

2
: = {f

1
,…,f

n
} of X with 

Tg fk k= , k = 1,…,n. Here, for simplicity we will restrict our atten-
tion to basis transformations of fi nite dimensional spaces. But all 
arguments will generalize to an infi nite dimensional setting. The 
mapping T defi nes a one-to-one mapping between B

1
 and B

2
, and 

via this mapping a one-to-one mapping of X onto itself given by

T T g Tg f
k

n

k k
k

n

k k
k

n

k kϕ α α α=
⎛
⎝⎜

⎞
⎠⎟

= =
= = =

∑ ∑ ∑
1 1 1

( )
 

(44)

where an element ϕ is expressed in terms of the basis elements by

ϕ α α= , ∈ , = ,..., .
=

∑
k

n

k k kg k n
1

1with \
 

(45)

Consider a set of points p
1
,…,p

N
 representing a discretization of 

some neural tissue. Then we obtain a Haar basis by setting

u x
x p

x pk
k

k

( ) =
, =
, ≠

⎧

⎨
⎪

⎩
⎪

1

0
 

(46)

for x ∈ {p
1
,…,p

N
} and k = 1,…,N.

Simple Example: Permutations. Any permutation Π:{1,…,N} 
→ {1,…,N} now defi nes a basis transformation by

q
k
 = Π(p

k
), k = 1,…,N (47)

Permutations are one-to-one by defi nition, thus we have an 
equivalent representation of any function in the new basis.

We can realize a permutation-based basis transformation by a per-
mutation matrix, i.e. a matrix Π which has exactly one entry 1 in each 
column and row. Given a vector u representing a neural fi eld at point 
t in time, we obtain its representation in another basis by Πu.

General Case. Now we study the general case of basis transfor-
mations applied to a neural domain D. The discretization of the 
transformation operator T from Eq. 44 will lead to a transformation 
matrix T, which we express in terms of the Haar basis (Eq. 46), i.e. a 
basis function g

k
 is given by a vector g

k
, the new basis f

k
 is expressed 

as a vector f
k
 and T is a matrix such that

Tg
k
 = f

k
 for k = 1,…,n. (48)

With the sigmoidal function f defi ned in Eq. 3 and time steps 
defi ned in Eq. 40 the discretized Amari dynamics via a fi nite-
 difference method leads to a nonlinear state transition mapping 
given in the form

u
k+1

 = cu
k
 + Wf(u

k
), k = 1,2,3,… (49)

with initial state u
1
 and some constant c. Some basis transfor-

mation T defi nes a transformed state dynamics v
k
 = Tu

k
 for 

k = 1,2,…, with invertible matrix T. Then, the transformed 
dynamics is given by

v
k+1

 = Tu
k+1

 = cTu
k
 + TWf(u

k
) 

                    = cTT−1v
k
 + TWf(T−1v

k
) 

                    = cv
k
 + TWf(T−1v

k
), k = 1,2,… (50)

We write the transformed dynamics as Amari type state dynam-
ics with transformed transition kernel �W

v v W vk k kc f k+ = + , = , ,...1 1 2� ( )  (51)

Thus, the transformation of the kernel W into �W is given by

� �W TW= ΦΦ
†

 (52)

where Φ and �Φ  are given as in Eq. 9 by

Φ Φ:= ( ) , := ( )= , , = , ,
f fk k n k k n( ) ( )u v

1 1… …
�

 
(53)

and 
†�Φ  denotes the pseudo-inverse of �Φ. The arguments to derive 

the transformed dynamics are valid if �Φ has a pseudo-inverse, which 
corresponds to our general condition that the matrix Φ has full 
rank, compare Eq. 9. Note that in the special case where f(x) = x 
and the matrices are square we obtain ΦΦ

†� = −T 1, i.e. then we have 
�W TWT-1= . In general, Eq. 52 provides a transformation of the 

Hebb rule for constructing neural fi eld kernels (Potthast and beim 
Graben, in press).
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Equation 52 provides a simple approach to constructing  complicated 
state space dynamics for neural domains based on the Amari equation 
from some simpler dynamics given by W. If we combine it with the low-
dimensional embedding techniques from previous sections we obtain 
a fl exible and powerful tool to construct global neural kernels.

DISTRIBUTED LOGICAL DYNAMICS
We will use a basis generated by random vectors to obtain  distributed 
logical processing which establishes a state dynamics in a neural 
Hilbert space.

Algorithm 5.2. Complex Distributed Logic. A distributed state-
space dynamics realizing the binary addition dynamics (Eq. 35) as 
designed in Sections “Embedding One-dimensional Processes into 
2d or 3d Neural Tissue” and “Embedding 0D Logic into Neural 
Tissue”, compare also Figures 5 or 6, is constructed by the fol-
lowing steps.

1. We fi rst construct a stable and simple zero-dimensional logical 
kernel W representing the binary dynamics (Eq. 35) visualized 
in Figure 3.

FIGURE 7 | The images show the traces of neural pulses for the last binary digit of a gated binary addition logic (Eq. 35a–h) corresponding to the panels 

A–H via the basis transformation technique of Section “An Abstract View and Basis Transformations” in combination with the zero-dimensional 

embedding technique with purely analytical elements for the logical components of Section “Embedding 0D Logic into Neural Tissue”.
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FIGURE 8 | We illustrate the time dynamics of the distributed processing of 1 + 1 + 1 = 1 with gating pulse, displaying the neural fi eld at eight time steps 

(Eq. 54) for k = 1 for panel A, k = 2 for panel B, k = 3 for panel C, k = 4 for panel D,k = 5 for panel E, k = 6 for panel F, k = 7 for panel G, k = 8 for panel H. The 
fi elds seem to show a random fl ickering due to the distributed nature of the basis activated basis elements. However, the binary logic is fully implemented in the 
distributed neural fi eld dynamics and here leads to the desired excitation of the exit node as a result of the neural processing.

2. Then, we use a basis transformation T based on the mapping 
of our original basis functions onto a set {v

k
, k = 1,2,…,n} 

of states which have been generated by a random set of ones 
and zeros in our discretized neural domain. Here, we kept the 
input nodes and output node intact. The transformed kernel 
�W is defi ned by Eq. 52.

We show the traces of this distributed logical processing in 
Figure 7. The logic is now realized by the excitation and inhibi-
tion of some general Hilbert space elements which are distributed 
randomly over the full neural tissue.

The time dynamics of these fi elds is illustrated in Figure 8, where 
in a), b), c),…,h) we show snapshots of the fi elds at points t

k
 in 

time for

k = m · k
0
, m = 1,…,8 (54)

with some appropriate constant k
0
 ∈ N. It seems to show a ran-

dom (“fl ickering”) dynamics of neural fi elds. But the logic which 
is implemented here is deterministic and according to the transfor-
mation (Eq. 52) equivalent to the pulse logic and zero-dimensional 
logic in the Figures 5 or 6.
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CONCLUSIONS
We have shown that neural fi eld kernels can be constructed in 
a stable and computationally cheap way to carry out complex 
cognitive tasks using embedding techniques which map zero- or 
one- dimensional (computational or analytical) solutions into a 
higher-dimensional neural space.

Further, we have shown a variety of different implementations 
of complex logical tasks like binary addition with several input 
nodes. In particular, we have shown that we can achieve a stable 
and controllable

a) pulse-dynamics,
b) localized state dynamics and
c) distributed Hilbert space-based logical dynamics

in a neural fi eld environment. This provides a basis for the further 
study of artifi cial or natural cognitive dynamics based on continu-
ous connectionist structures.

For the one-dimensional embedding, we constructed local ker-
nels for describing pulses that travel along directed continuous 
paths in the neural domain. This is essentially a continuous version 
of classical connectionist feed-forward architectures.

On the other hand, zero-dimensional embeddings combined 
with basis transformation techniques open a fi eld for non-local 
neural fi eld dynamics that has not been explored so far. In particu-
lar, the abstract Hilbert space representations could be useful for 
implementing even more complex tasks than logical computations 
in neural fi eld models, for example dynamical language processing 
(Maye and Werning, 2007; Werning and Maye, 2007; beim Graben 
and Potthast, 2009).

The oscillatory patterns observed in our simulations also high-
light the functional signifi cance of cortical oscillations in general 
(Basar, 1998). Moreover, the chains of local random patches in 
the distributed dynamics that excite each other mutually can be 
regarded as operational cell assemblies as introduced by Wennekers 
(2006, 2007). Hence the embedding of low-dimensional solutions 
of the neural inverse problem by means of Hilbert space basis trans-
formations provide a promising way for the implementation of 
such processing architectures.
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