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Abstract

Understanding how groups of neurons interact within a network is a fundamental question

in system neuroscience. Instead of passively observing the ongoing activity of a network,

we can typically perturb its activity, either by external sensory stimulation or directly via

techniques such as two-photon optogenetics. A natural question is how to use such per-

turbations to identify the connectivity of the network efficiently. Here we introduce a

method to infer sparse connectivity graphs from in-vivo, two-photon imaging of population

activity in response to external stimuli. A novel aspect of the work is the introduction of a

recommended distribution, incrementally learned from the data, to optimally refine the

inferred network. Unlike existing system identification techniques, this “active learning”

method automatically focuses its attention on key undiscovered areas of the network,

instead of targeting global uncertainty indicators like parameter variance. We show how

active learning leads to faster inference while, at the same time, provides confidence

intervals for the network parameters. We present simulations on artificial small-world

networks to validate the methods and apply the method to real data. Analysis of frequency

of motifs recovered show that cortical networks are consistent with a small-world topology

model.

Introduction

A fundamental question of system neuroscience is how large groups of neurons interact,

within a network to perform computations that go beyond the individual ability of each one.

One hypothesis is that the emergent behavior in neural networks results from their organiza-

tion into a hierarchy of modular sub-networks, or motifs, each performing simpler computa-

tions than the network as a whole [1].
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To test this hypothesis and to understand brain networks in general we need to develop

methods that can reliably measure network connectivity, detect recurring motifs, elucidate the

computations they perform, and understand how these smaller modules are combined into

larger networks capable of performing increasingly complex computations.

Here we focus on the first of these problems, which is a pre-requisite to the rest: the identifi-

cation of network connectivity from in-vivo, two-photon imaging data. Advances in two-pho-

ton imaging are giving us the first look at how large ensembles of neurons behave in-vivo
during complex behavioral tasks [2–4]. Developing methods capable of analyzing the connec-

tivity between a large number neurons, from noisy, stochastic activations, and limited record-

ing time, is a significant challenge.

It is often the case that we can probe the networks under study, instead of merely observing

their ongoing activity. For example, in studying visual cortex we can select a specific visual

stimulus [5–8], or we can stimulate individual neurons directly via two-photon optogenetics

[9, 10]. This active observation has been shown critical for system identification beyond brain

networks, and is the direction here pursued.

We introduce a method that infers a sparse connectivity graph from available simultaneous

recording of external stimuli and individual neural spiking rates, and recommends the future

distribution of external stimuli to apply in order to optimally refine the inferred network. We

show how such iterative “active learning” leads to faster inference while at the same time pro-

viding confidence measurements for the computed network components. The proposed deci-

sion-making approach takes into account information we may already have about network

connectivity, the stochastic nature of the neural responses, and the uncertainty of connection

weights.

It is important to note that the inferred connectivity graph implies functional, but not nec-

essarily anatomical, connectivity. The recovered functional connectivity must be interpreted

carefully when the recorded neural population is only a subset of a larger population. A

directed connection might be caused, for example, by a common (but unobserved) driving fac-

tor, or hidden intermediate nodes. Nonetheless, common driving factors associated with stim-

ulus modulations are partially accounted for by including stimulus information, this effect has

also been discussed in [11].

Our framework consists of modelling the neuron spike trains with a Poisson Generalized

Linear Model (GLM) [12], using past spike trains and applied stimuli as regressors. This type

of point process model on neural spiking activity was popularized [13]. The coefficients of

these regressors in the GLM make the edge weights of the directed network. A variable selec-

tion approach is used to make the network sparse (set most edges to zero). Active learning is

then used to decide, at any given point in time, the next sets of stimuli that allow for optimal

inference of the network connectivity. Fig 1 shows a visual representation of the proposed

framework.

While the proposed framework is general, we illustrate it by applying it to two-photon

imaging data from mouse primary visual cortex. We also validate the method’s effectiveness

on in-silico network simulations.

Materials and methods

Following the brief description of the data acquisition, we then describe the foundation of the

proposed active network inference framework. In doing so, we use terminology that will be rel-

evant for the particular application at hand: the estimation of connectivity in neural networks.

However, the framework is general enough to be applied in other contexts and using other

modalities.
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Data acquisition

Animals: All procedures were approved by UCLA’s Office of Animal Research Oversight (the

Institutional Animal Care and Use Committee), and were in accord with guidelines set by the

US National Institutes of Health. The present study used data already collected for other stud-

ies. Thus, no new animal experiments were performed for the purposes of the present study. A

detailed account of the experimental methods can be found elsewhere [14]. A brief description

follows.

Imaging: Imaging of GCaMP6f expressed in primary visual cortex was performed using a

resonant, two-photon microscope (Neurolabware, Los Angeles, CA) controlled by Scanbox

acquisition software (Scanbox, Los Angeles, CA). The light source was a Coherent Chameleon

Ultra II laser (Coherent Inc, Santa Clara, CA) running at 920nm. The objective was an x16

water immersion lens (Nikon, 0.8NA, 3mm working distance). The microscope frame rate

was 15.6Hz (512 lines with a resonant mirror at 8kHz). Eye movements and pupil size were

recorded via a Dalsa Genie M1280 camera (Teledyne Dalsa, Ontario, Canada) fitted with a

740 nm long-pass filter that looked at the eye indirectly through the reflection of an infrared-

reflecting glass. Images were captured at an average depth of 260 μm.

Fig 1. Active learning framework for network inference. Recordings of spiking activity of a neuron population and the presented visual stimuli are fed into a

GLM. The GLM and Variable Selection blocks work in tandem to decide which connections are relevant for explaining the system’s behaviour (the data) and

building the directed connectivity graph (network). The active learning component analyzes the data obtained so far to optimize the visual stimuli to be presented

for the next step of data acquisition, this is done to reduce graph uncertainty. This process is iteratively repeated. The bottom row shows how the network is

gradually reconstructed as a function of acquired samples. Gray edges represent yet undiscovered edges present in the network, while red and blue edges represent

discovered excitatory and inhibitory edges respectively.

https://doi.org/10.1371/journal.pone.0196527.g001
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Sequences of pseudo-random sinusoidal gratings [5, 15] and sparse noise stimuli were gen-

erated in real-time by a Processing sketch using OpenGL shaders (see http://processing.org). A

detailed description is provided in [16]. The duration of the sequences was either 20 or 30

min, and gratings were updated 4 times a second on a screen refreshed at 60Hz. In a 20 min

sequence, each combination of orientation and spatial frequency appeared at least 22 times on

average.

In all experiments we used a BenQ XL2720Z screen which measured 60 cm by 34 cm and

was viewed at 20 cm distance, subtending 112 x 80 degrees of visual angle. The screen was cali-

brated using a Photo-Research (Chatsworth, CA) PR-650 spectro-radiometer, and the result

used to generate the appropriate gamma corrections for the red, green and blue components

via an nVidia Quadro K4000 graphics card. The contrast of the stimulus was 80%. The center

of the monitor was positioned with the center of the receptive field population for the eye con-

tralateral to the cortical hemisphere under consideration. The location of the receptive fields

were estimated by an automated process where localized, flickering checkerboards patches,

appeared at randomized locations within the screen. This experiment was run at the beginning

of each imaging session to ensure the centering of receptive fields on the monitor.

Image processing: The image processing pipeline was the same as described in detail else-

where [14]. Briefly, calcium images were aligned to correct for motion artifacts. Following

motion stabilization, we used a Matlab graphical user interface (GUI) tool developed in our

laboratory to define regions of interest corresponding to putative cell bodies manually. Follow-

ing segmentation, we extracted signals by computing the mean of the calcium fluorescence

within each region of interest and discounting the signals from the nearby neuropil. Spikes

were then estimated using the algorithm described in [17], available at https://github.com/

darioringach/Vanilla. The present results are based on the inferred spiking activity.

Generalized linear models: Poisson point process

Let X 2 Zm;nc
þ

and R 2 Rm;nr be two sets of random matrices called the target variables and

regressor variables respectively. Each column c of the X matrix, denoted Xc;Xc 2 Zm
þ

contains

the spike train series of neuron c. Similarly, each column r of the R matrix, denoted

Rr;Rr 2 Rm, is a time series that can be either the past spiking activity of an observed neuron

or the history of one of the presented external stimuli.

We say that the set X is a Poisson Point Process if the conditional probability distribution

(CPD) of each column Xc is of the form

XcjR � Poissonðf ðRÞÞ: ð1Þ

where f is a non-negative function, 8c = 1, . . ., nc.
A Poisson Generalized linear model (GLM) is a special case of a general Poisson point pro-

cess where

XcjR � Poissonðlðbc þ
X

i2PAc

Ri � wicÞÞ: ð2Þ

λ : R! R+ is a predefined nonlinearity, wic are the influence weights, bc is the bias weight, and

PAc is the parent set of Xc, and is the subset of the regressors R that carry information on the

behaviour of neuron c. In our case PAc consists of visual stimuli and past neuron activity that

directly affect the spiking rate of neuron c. The parameter wic represents the magnitude of that

influence.

The overall goal of network learning is finding the set (PAc, wic), for each neuron c, that best

represents the recorded data (stimuli and neural activity).
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In the following sections we will present the model in more detail and the chosen algorithm

for selecting the relevant regressors PAc and influence weights wic. Then we will introduce an

experimental design method to select the stimuli that are more relevant in discovering the

structure of the network. We want to emphasize that we are especially interested in correctly

inferring the regressor set PAc, this can be seen as a binary classification problem, since a given

regressor either belongs or does not belong on PAc for any given neuron c. This will directly

translate into the decision of which sets of stimuli are relevant. This decision will be based on

improving the PAc classification performance.

Model description

The system under study consists of a set of nc neurons {C} and ns stimuli or external inputs {S},

that can be used to perturb the neuron’s activity.

To differentiate the influence of spiking activity and visual stimuli we will split the set of

regressors R explicitly into spike activity Xj(t), j = 1, .., nc, and stimuli activity Ii(t), i = 1, .., ns.
To incorporate information about the past observations we further redefine the regressors

as X̂ jðtÞ ¼
Pt� Dl

c
u¼t� Du

c
XjðuÞ ¼ ð1½t� Dl

c;t� D
u
c �
� XjÞðtÞ, j = 1, .., nc, and Î iðtÞ ¼

Pt� Dl
s

u¼t� Du
s
IiðuÞ ¼

ð1½t� Dl
s;t� D

u
s �
� IiÞðtÞ, i = 1, .., ns, which are the convolution of past spiking activity (Xj, j = 1 .. nc)

and past stimuli activity (Ii, i = 1 .. ns) with the boxcar influence function up to delays Du
c and

Du
s respectively.

To model the spiking train of neuron c, we also define the sets of relevant regressors of neu-

ron c: C0c ¼ fPAc \ Cg and S0c ¼ fPAc \ Sg.
Under these conditions, the spiking train of neuron c can be modeled as

ZcðtÞ ¼ bc þ hWT
c ; fX̂uðtÞgu2C0ci þ hH

T
c ; fÎ vðtÞgv2S0ci 8t; ð3Þ

lcðZcðtÞÞ ¼
logð1þ ekZcðtÞÞ

k
; ð4Þ

XcðtÞjfX̂uðtÞgu2C0c ; fÎ vðtÞgv2S0c � PoissonðlcðZcðtÞÞ; ð5Þ

where< . > denotes inner product. The parameters of interest are:

• Wc 2 RjC0cj: Edge weights between parent neurons in C0c and c. These weights collectively rep-

resent the inter-neuron connectivity matrix

W ¼ fwic : i; c ¼ 1; . . . ; ncg ¼
0$ i =2 PAc;

WcðiÞ $ i 2 PAc:

(

• Hc 2 RjS0cj: Edge weights between parent stimuli in S0c and c. These weights collectively repre-

sent the direct stimuli response matrix

H ¼ fhjc : j ¼ 1; . . . ; ns; c ¼ 1; . . . ; ncg ¼
0$ j =2 PAc;

HcðjÞ $ j 2 PAc:

(

• bc 2 R: Bias of neuron c. This number encodes the base spiking rate of neuron c indepen-

dently of the state of the other regressors.

Note that the model is time homogeneous, i.e., Wc, Hc and bc do not depend on time. The

motivation for using the nonlinearity function Eq (4) instead of the canonical exponential

nonlinearity is that Eq (4) is approximately exponential for low values of ηc, but saturates to a

linear dependency for large ηc. This allows the model to capture strong inhibitions while at the
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same time ensuring excitations in the model do not grow out of control. The nonlinearity pro-

posed in Eq (4) depends on a static calibration constant k, we provide additional insight into

what this parameter does in the context of model selection in the Appendix.

Parameter estimation

For each observed neuron c we want to find the regressor sets C0c and S0c that best explain the

data without over-fitting.

We first define the likelihood function of the proposed model,

LðXcjfX̂gC0c ; fÎgS0c ;Wc;HcÞ ¼ log½fðXcjfX̂gC0c ; fÎgS0c ;Wc;HcÞ�

¼
Xm

t¼1

½XcðtÞlog½lcðZcðtÞÞ� � lcðZcðtÞÞ� þ C:
ð6Þ

where C is an additive constant A good regressor should provide a significant improvement in

the model likelihood, and should have a tight confidence interval around its estimated edge

weight. These notions are formalized using the Bayesian Information Criterion (BIC) [18] and

the Wald test [19] respectively. A derivation of both in the context of our model is provided

below.

To estimate the values for a set of parameters θ = {Wc, Hc, bc} we utilize the standard

Maximum Likelihood Estimation (MLE) framework. The MLE estimate is denoted as

ŷ ¼ fŴ c; Ĥ c; b̂cg and is obtained as the solution of

ŷ ¼ fŴc; Ĥc; b̂cg ¼ argmax
fWc ;Hc ;bcg

Xm

t¼1

½XcðtÞlog½lcðZcðtÞÞ� � lcðZcðtÞÞ�: ð7Þ

Furthermore, the parameter obtained from this estimation asymptotically follows a Normal

distribution around the true value θ0 [20]. Under further regularity conditions [21], the vari-

ance of the estimator can be computed as shown in Eq (8) (this will form the theoretical basis

for the notion of tight confidence intervals),

lim
t!1

Pðjŷ � y0j > �Þ ¼ 0 8� > 0;

ŷ � N½y0; fIðy0Þg
� 1
�:

Iðy0Þ ¼ � E½@
2L=@y0@y

0

0
�:

ð8Þ

The quantity Iðy0Þ is the Fisher information matrix [21]. Since we do not have access to

the true parameter θ0 we use the observed Fisher information (J ðŷÞ ¼ � @2L=@ŷ@ŷ 0Þ as an

approximation. The observed Fisher information is sometimes referred to as the Hessian of

the negative log-likelihood. The quantity Ifðy0Þg
� 1

is a lower bound for the variance of any

unbiased estimator, as stated by the Cramér-Rao lower bound [22, 23]. The observed Fisher

information of the model can be found on Eq (29) in the Appendix.

It is important to note that, in general, the Fisher information matrix is singular in the

under-sampled regime (i.e., when there are more parameters than observations). This issue is

later circumvented by the regressor selection process described below. This is accomplished

naturally since the largest observed variance is bounded from below with a number that grows

arbitrarily large for ill-conditioned Fisher Information matrices. A more detailed explanation

is given in the Appendix.
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This Gaussian assumption in the non-asymptotic regime is partly justified by the fact that

the log-likelihood function is concave with respect to the model parameters, with a single, well

defined global optimum. This property is also shared by the Gaussian distribution. From these

observations we realize that both the finite sample and the asymptotic parameter distributions

are log concave and have a well defined global optimum. This makes the Gaussian approxima-

tion in the finite sample case a more reasonable approximation. This approximation has also

been used in [24] for similar reasons.

The MLE estimators combined with the observed Fisher information provide a confidence

interval for each parameter of interest. We start from the null hypothesis H0 that the edge is

irrelevant (zero value), and use the Wald test [19], to accept or reject this. The probability of

parameter θj belonging to the null hypothesis can be computed as

ŷ2

j

½Î ðŷÞ�� 1

j;j

� X 2

1
; ð9Þ

pH0
¼ 1 � FX2

1
ð

ŷ2

j

½Î ðŷÞ�� 1

j;j

Þ; ð10Þ

where X 2

1
is the chi-square distribution with one degree of freedom, FX2

1
ðzÞ is the cumulative

distribution function X 2

1
evaluated at z, and pH0

is the p-value associated with the null

hypothesis.

At this point we have derived a measure of the probability of the parameter being different

from zero.

To measure how informative a given regressor is we use the Bayesian information criteria

(BIC). This quantity decreases with a higher likelihood L̂ and increases with the number of

parameters currently used in the model ðjcPAcjÞ, and the number of observations (m):

BIC ¼ lnðmÞ � jcPAcj � 2� L̂: ð11Þ

When comparing two models, the model with the lowest BIC value is preferred. The quantity

lnðmÞ � jcPAcj penalizes model complexity, reducing the number of noisy weak connections.

This quantity is introduced to favor sparsely connected networks, since edges that have

a low overall effect on the predicted likelihood of the model are ignored in favor of model

sparsity.

For each observed neuron c, our objective is finding the parent set estimate P̂A c that mini-

mizes the BIC, subject to a p-value restriction γ which forces the selected regressors to have a

tight confidence interval:

fcPAcg ¼ argminPAc
fBICðL̂½fPAcg�g;

s:t: maxðpH0
ðPAcÞÞ � g:

ð12Þ

This combined approach looks for a sparse model representation able to capture most of

the information present in the observed spike trains using a series of parameters (edge weights)

with well-defined values, with tight uncertainty intervals.

In the following section we will briefly explain how we approach this minimization.

Active learning of cortical connectivity from two-photon imaging data
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Selecting relevant regressors

The optimization problem presented in Eq (12) can be stated concisely as the problem of find-

ing the set of regressors cPAc that yields the best BIC score (Eq 11) subject to a p-value restric-

tion. This is done to ensure that the regression model has good prediction capabilities and

generalizes well to non observed data points.

The problem as stated in Eq (12) is combinatorial in nature and cannot be directly opti-

mized. There is a rich literature on model selection using various search strategies and evalua-

tion criteria [25–31]. Usual model evaluation criteria include BIC and Akaike Information

Criterion (AIC) [32] among others, while search algorithms include stochastic search variable

selection [31], forward model selection, backward elimination, and stepwise methods in gen-

eral, among others [26].

For this particular problem, we decided to use a greedy elastic-forward subset selection

algorithm; an extensive overview of subset selection strategies can be found in [26]. In addi-

tion, we take several randomly selected subsets from the training dataset, each containing a

fraction ν of available samples, and we evaluate the BIC performance and p-value restriction

for regressor candidates across all bootstrapping subsets to find candidates that are consis-

tently relevant across subsets. In our experiments the fraction ν is set to 0.7. We show the per-

formance of varying the ν parameter on simulated data in the Appendix.

The algorithm starts from PAc = ;, and iteratively includes regressors that improve the

median BIC score across the random subsets, as well as the BIC score over the full dataset,

while satisfying the p-value constraint. Since this algorithm is rerun for every new batch of

data, this effectively means that edges can be “removed” between successive data acquisitions

The algorithm is described in detail in the Appendix. The results section compares the perfor-

mance of this algorithm against the LASSO method for variable selection [33].

Now that we have described the model and algorithm, we proceed to describe the active

learning strategy.

Experimental design—Active learning

Our goal is to develop a method to select, at any time, the optimal action (or network perturba-

tion) that is expected to yield the maximum information about its currently computed connec-

tivity. For the purposes of this paper, our action set will consist of selecting which set of visual

stimuli will be presented next.

We are interested in gathering samples from network connections (edges) that show a

promising improvement in the likelihood of the model but have not yet been added to it, we

refer to these edges as candidate edges. That means we want to improve the parent set estimate

cPAc, c = 1, . . ., nc, and edge weight estimates wic, i = 1, . . ., nr, c = 1, . . ., nc, as in eqs (12) and

(7) respectively. The samples are collected by presenting stimuli that directly or indirectly gen-

erate activations in the parent nodes of the promising candidate edges.

To address this, we define a relevance score for each potential stimulus. This score considers

the expected rate change of every regressor when presenting a given stimulus more frequently

than the rest, weighted by the deviance statistic [34] of every edge associated with that regres-

sor not currently present in the model. This in effect means that stimuli that directly trigger

neurons associated with good candidate edges will be presented more often than other stimuli

during the next intervention. The exact formulation is presented next.

Defining a score for each stimuli. Define Ŵ l, Ĥ l as the estimated adjacency and stimuli

response matrices up to sample ml, where l is an iteration counter. Our objective is to obtain a

Active learning of cortical connectivity from two-photon imaging data
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probability distribution vector Plþ1 ¼ ½plþ1
1
; . . . ; plþ1

s ; . . . ; plþ1
ns
� for presenting each stimulus

s = 1, . . ., ns at intervention l + 1.

Future stimuli sequences will be sampled from this distribution. We introduce this interme-

diary stimuli distribution probability instead of simply applying the stimulus with the highest

expected change in utility for two reasons. Firstly, we can sample several consecutive stimuli

from this distribution, this way, we can apply a small batch of stimuli before recomputing the

optimum stimulus, reducing the computational costs. Secondly, this approach is less greedy

than exclusively presenting the stimulus that has the highest expected change in utility. This

can be beneficial in settings where the inferred model has high uncertainty.

We start by computing the expected firing rate change on every neuron c = 1, . . ., nc of pre-

senting each stimulus s = 1, . . ., ns more frequently. For each stimulus s, we define a surrogate

probability distribution vector associated with it: P̂s ¼ fp̂s j : j ¼ 1; . . . ; nsg, where stimulus s
has the highest occurrence probability. Given the previous observations, we want to predict

the expected change in spiking rate of each neuron c when preferentially applying stimulus s
using P̂s , as opposed to the baseline where all stimulus are presented equally: P̂ ¼ f 1

ns
g. For-

mally the probability vector that favors stimulus s (P̂s) is defined as

P̂s ¼ fp̂s j : j ¼ 1; . . . ; nsg;

p̂s j ¼ ð1 � bÞ � ds� j þ b�
1

ns
;

ð13Þ

where p̂s j is the j-th element of the probability vector P̂s and corresponds to the probability of

presenting stimulus j in the surrogate probability distribution vector associated with s, β is a

smoothing constant that satisfies 0� β� 1 and controls the overall probability of other stimuli

appearing, and ns is the number of available stimuli. We will define gERCs;c as the expected rate

change of stimulus s on neuron c.

The estimated firing rate change on neuron c caused by stimulus s at iteration l + 1

(gERCs;c½lþ 1�) is presented in Eq (14) next. This compares the expected firing rate of using a

stimuli distribution P̂s on neuron c when compared to using the baseline (uniform) distribu-

tion P̂. The quantity gERCs;c½l þ 1� shows the rate increase of preferentially presenting stimuli s
on the spiking rate of neuron c (λc) according to our previous ml observations,

gERCs;c½l þ 1� ¼
EX;S�P̂s

½XcjŴ l; Ĥ l�

EX;S�P̂ ½XcjŴ l; Ĥ l�

¼
EX;S�P̂s

½lcjŴ l; Ĥ l�

EX;S�P̂ ½lcjŴ l; Ĥ l�

ð14Þ

Next we compute the deviance statistic [34] for every possible outbound edge of neuron c that

did not satisfy the parameter selection criteria in Eq (12) and therefore c =2 cPAci
for some neuron

ci. This is twice the log-likelihood difference (noted as D̂c;ci
½ml�) between the network model up

to sample ml (where c =2 cPAci
) and a network model where c is included as a parent of ci:

D̂c;ci
½ml� ¼ 2ðL̂½X̂ ci

ðmlÞjð
cPAci
[ cÞðmlÞ � L̂½X̂ ci

ðmlÞj
cPAci
ðmlÞ�Þ�: ð15Þ

To compute the deviance statistic to any given edge from neuron c to neuron ci, we need to

recompute the Maximum Likelihood (ML) estimate under the new regressor subset cPAci
[ c.
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Fortunately, this ML estimate is fast to compute, the computation can be made faster by initial-

izing the ML minimizer to the previously obtained regressor values.

Note that Eq (15) is always non-positive, a highly negative value indicates a strong possibil-

ity of neuron c influencing neuron ci. By acquiring more samples from this interaction (sam-

ples where the candidate parent node is active), we can either disprove this notion, or gather

enough evidence to add this edge into the regressor set (by satisfying the BIC and p-value crite-

ria for adding an edge to the model).

We therefore define the score of stimulus s associated with inter neuron edges W as

cSCs;W ½lþ 1� ¼
X

c2C

½gERCs;c½l þ 1� �
X

ci :c=2bPAci ðmlÞ

D̂c;ci
½ml�

jfci:c =2 cPAci
ðmlÞgj

�: ð16Þ

We have so far assigned a score that considers the deviance impact of preferentially apply-

ing a stimulus s on the inter neuron connectivity matrix W. It is important to note that the set

fci:c =2 cPAci
ðmlÞg refers to the set of cells that up to sample ml were not included as children

of cell c, and therefore are considered as candidate edges for the purpose of the score. In this

score, the first summation considers the impact of stimulus s over each cell c multiplied by the

second summation, which is the mean log-likelihood difference over all the cells that were not

considered as children of neuron c up to sample ml.

In a similar fashion, we also need to consider the effect of prioritizing any given stimulus s
on the stimuli response matrix H. In this case, the expected rate change of prioritizing stimulus

s over stimulus si is the quotient of the si entry of the stimuli probability distribution vector

associated with s (P̂s) over the baseline (uniform) probability distribution vector (P̂),

gERCs;si
½lþ 1� ¼

EX;S�P̂s
½Isi jŴ

l; Ĥ l�

EX;S�P̂ ½Isi jŴ
l; Ĥ l�

¼
p̂s;si
1

ns

¼ ð1 � bÞ � ns � ds� si
þ b:

ð17Þ

The deviance score of the output edges of s that did not satisfy the parameter selection crite-

ria in Eq (12) and the score of stimulus s associated with the stimuli response matrix H can be

analogously defined:

D̂si;ci
½ml� ¼ 2ðL̂½X̂ ci

ðmlÞjð
cPAci
[ siÞðmlÞ� � L̂½X̂ ci

ðmlÞj
cPAci
ðmlÞ�Þ; ð18Þ

cSCs;H½l þ 1� ¼
X

si2S

(

gERCs;si
½l þ 1� �

X

ci :si =2bPAci ðmlÞ

D̂si ;ci
½ml�

jfci : si =2 cPAci
ðmlÞgj

)

: ð19Þ

Finally, the combined score given to stimulus s is

cSCs½l þ 1� ¼ cSCs;W ½l þ 1� þ cSCs;H½l þ 1�: ð20Þ

At this point we have a score for each stimulus s that is able to capture how informative this

stimulus might be based on the expected rate change it has on edges that are not included in

the model so far. The next step is mapping these scores into a probability vector. For that we
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first compute the z-score of each stimulus; this is done as a normalization step of the score val-

ues, and allows the detection of outlying stimuli. The z-scores are then converted into a proba-

bility vector with the use of the well known softmax function. To avoid giving unnecessarily

small or large probabilities to any given stimulus, we truncate the computed z-score into the

[−2, 2] range.

The formulation is as follows:

Zs½l þ 1� ¼
cSCs½lþ 1� � meanðfcSCs½lþ 1�g

ns
s¼1
Þ

stdðfcSCs½l þ 1�g
ns
s¼1
Þ

; ð21Þ

Z�s ½l þ 1� ¼ maxðminðZs½l þ 1�; 2Þ; � 2Þ; ð22Þ

and the probability distribution vector for presenting each stimulus at intervention l + 1 ends

up being:

Plþ1 ¼

(
expZ�s ½l þ 1�

Pns
j¼1
expZ�j ½lþ 1�

; s ¼ 1; . . . ; ns

)

: ð23Þ

The use of the z-score as a normalization step allows the algorithm to dynamically pick up

on the “relative quality” of the stimulation actions, and the truncation of the score provides a

limit on how frequently or infrequently any given stimulus can be shown.

Active learning. The active learning strategy consists of iteratively evaluating the current

network model using Algorithm 1 in the Appendix, then using eqs (20) and (23) to compute

the stimuli distribution probabilities for the next time interval. The full algorithm is described

in Algorithm 2 in the Appendix.

Results

Simulated data

In order to validate the method before applying it to real datasets, we generated a number of

artificial datasets where the connectivity is known.

Network topology was simulated using the small-world Watts-Strogatz model [35]. This

type of network architecture has been used to model functional cortical connectivity in cats

and macaques [36, 37], and has been theorized to be of use in understanding human functional

connectivity [38].

We defined two separate networks SW1CL and SW3CL, network SW1CL is a single small-

world cluster network with 18 neurons, while network SW3CL has three separate small-world

clusters, each cluster has 18 neurons. All clusters have an average connectivity degree of 0.03.

The increase in spiking rate for neuron to neuron edges in network SW1CL were drawn from

a normal distribution N(0.05, 0.005), the edge weights in the adjacency matrix were set accord-

ingly. Similarly, the increase in spiking rate for neuron to neuron edges for the three clusters

in network SW3CL were drawn from normal distributions N(0.075, 0.005), N(0.05, 0.005) and

N(0.035, 0.005) respectively. Thirty percent of inter-neuron edges were made inhibitory.

These simulated networks were presented with 30 possible excitatory stimuli, most of

which were designed to have no effect on the network. This was done to test that the active

learning algorithm has the ability of navigating through confounders. The increase in spiking

rate fro stimuli to neuron connections were drawn from the normal distribution N(0.10,

0.014). Fig 2 shows the connectivity matrix W and stimuli response matrix H for networks

SW1CL and SW3CL. Boxcar influence functions as defined for Eq (3) were set to Dl
s ¼ Dl

c ¼ 5
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and Du
s ¼ Du

c ¼ 2 (1[t−2,t−5](t)). These values were selected so that the average spiking rate of

the simulated neurons were similar to the ones obtained in real data.

In the following sections we will present two experiments. The first experiment will show

the performance difference in regressor selection when using the proposed Algorithm 1 com-

pared against the Lasso method [33]. The second experiment will compare the performance

in regressor selection when stimuli are chosen according to active learning Algorithm 2 versus

random stimuli selection.

Algorithmic performance will be presented based on precision, recall, and F1 metrics:

precision ¼

P
c2Cj
cPAc \ PAcj

P
c2Cj
cPAcj

;

recall ¼
P

c2Cj
cPAc \ PAcjP
c2CjPAcj

;

F1 ¼ 2�
precision� recall
precisionþ recall

:

ð24Þ

cPAc is again the recovered set of regressors, and PAc is the true set of regressor edges for

neuron c.
Relevant regressors. We first checked the performance of the regressor selection methods

on networks SW1CL and SW3CL. We compare the performance of the elastic-forward BIC

Fig 2. Adjacency matrices for networks SW1CL and SW3CL. Red entries in the adjacency matrices denote an excitatory relation between the regressor and

the child neuron, while blue entries denote inhibitory connections. The block diagonal structure present in the W matrix for network SW3CL evidences the

three cluster structure of the network. These connectivity matrices were computed to generate the required spiking rate change for model parameter κ = 10. On

both networks, we can observe the large number of stimuli that have no effect on the network.

https://doi.org/10.1371/journal.pone.0196527.g002
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selection Algorithm 1 with bootstrapping versus standard Lasso [33] regression using the

pyglmnet implementation [39].

Stimuli were sampled uniformly with replacement, each stimulus was presented for 4 con-

secutive frames. Spiking trains for the simulations were sampled from a Poisson random pro-

cess with a spiking rate corresponding to the ground truth model from Eq (5).

The l1 regularization parameter for the Lasso method was selected using an oracle to pro-

vide the best possible F1 score. This method was selected for comparison because it is one of

the most common approaches to variable selection. The modified log-likelihood function used

for the Lasso method was:

Ll1
ðXcjfX̂gC0c ; fÎgS0c ;Wc;HcÞ /

Xm

t¼1

½XcðtÞlog½lcðZcðtÞÞ� � lcðZcðtÞÞ� � l1jjWcjj1 � l1jjHcjj1: ð25Þ

Fig 3 shows the results; 10 independent trials were used to provide confidence intervals for

the metrics.

Fig 3 shows that the elastic-forward BIC method described in Algorithm 1 outperforms

lasso for larger sample sizes, even when the l1 regularization parameter is selected using an ora-

cle. The improvement is more noticeable for network SW3Cl which has diverse edge weights.

In all tested cases, the precision metric in edge recovery was better for elastic-forward BIC sub-

set selection.

Active learning: Stimuli selection. We now evaluate the performance of the proposed

active learning method, Algorithm 1. We compare it against uniformly sampling from all 30

possible stimuli.

Both strategies start from the same initial 500 samples, and each intervention adds an addi-

tional 500 samples. At the beginning of each intervention step, we compute the best network

estimate so far using Algorithm 1, and show the performance in recovering the set of regressor

edges PAc using the F1, precision and recall metrics. At this stage, the active learning strategy

described in Algorithm 2 recomputes the stimuli probability distribution to apply for the fol-

lowing 500 samples. Active learning parameter β was set to β = 1/4.

Fig 4 compares the performance of uniform (Random) stimuli sampling and active learning

(AL) sampling, while Fig 5 shows the performance difference only on the entries of the stimuli

response matrix H. Experiments were repeated 10 times to provide confidence intervals for the

metrics.

Active learning outperforms random sampling by a large margin, the inter-quartile ranges

for random sampling and active learning do not overlap over a significant sample count. As

expected, both strategies converge for large sample sizes, but the process is sped-up by select-

ing the correct set of stimuli. The most noticeable performance difference is obtained when

recovering the stimuli response edges H, since these are the edges we have direct influence on.

Fig 6 shows a comparison between the elastic-forward BIC method described in Algorithm

1 and oracle lasso when applied to samples drawn from the recommended active learning dis-

tribution proposed in Algorithm 2. Both regressor selection methods perform similar under

these conditions.

Fig 7 shows a visual representation of the edge discovering process over network SW1CL

using active learning versus random sampling. Fig 8 shows the difference between ground

truth and the active learning and random sampling estimates as a function of interventions.

Here we can clearly see that H edges are quickly recovered using active learning, while W
edges show a slower improvement that is network dependent.
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Fig 3. Comparison of elastic-forward BIC selection versus oracle lasso. Whisker plot of performance indicators as a function of number of samples; elastic-

forward BIC selection is shown in red, oracle lasso in blue. The whisker plot is obtained from 10 independent trials. External stimuli are drawn randomly from a

uniform distribution; network SW1CL has a total of 24 non-zero parameters out 864 potential regressors, while network SW3CL has a total of 58 non-zero

parameters out of 4536 potential regressors. The elastic-forward BIC selection outperforms the oracle lasso for larger sample sizes. This performance

improvement is more noticeable in the SW3CL network, where edge weights are more diverse.

https://doi.org/10.1371/journal.pone.0196527.g003
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Fig 4. Comparison of performance between the proposed active learning method versus uniformly sampling from all stimuli. The experiment consisted of 500

sample interventions, with an initial 500 sample observation. Whisker plots are obtained from 10 independent trials. Left column show F1, precision, and recall

performance on network SW1CL and right column on network SW3CL.

https://doi.org/10.1371/journal.pone.0196527.g004
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Fig 5. Comparison of performance between the proposed active learning method versus uniformly sampling from all stimuli only over the direct stimuli

response matrices H. The experiment consisted of 500 sample interventions, with an initial 500 sample observation. Whisker plots are obtained from 10

independent trials. Left column shows F1, precision, and recall performance on network SW1CL and right on network SW3CL. On average, computing the active

learning intervention step took 20s ± 9s on network SW1CL, and 98s ± 50s on network SW3CL.

https://doi.org/10.1371/journal.pone.0196527.g005
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Fig 6. Comparison of elastic-forward BIC selection versus oracle lasso under active learning sampling. Whisker plot of performance indicators as a function

of number of samples; elastic-forward BIC selection is shown in red, oracle lasso in blue. The whisker plot is obtained from 10 independent trials. External

stimuli are drawn from the recommended Active Learning distribution; network SW1CL has a total of 24 non-zero parameters out 864 potential regressors,

while network SW3CL has a total of 58 non-zero parameters out of 4536 potential regressors. The elastic-forward BIC selection still outperforms the oracle lasso

for larger sample sizes. Both methods show a performance gain on the samples drawn from the Active Learning distribution when compared to their uniform

sampling counterparts.

https://doi.org/10.1371/journal.pone.0196527.g006
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Fig 7. Comparison of the edge discovering process for network SW1CL using active learning versus random

stimulation. Rows show inferred connections over a simulated cluster as a function of samples. Red and blue edges

show correctly detected excitatory and inhibitory connections respectively, while grey edges show connections as not

yet detected. Left column shows detected edges as a function of time when the active learning stimulation policy is

used, right column shows the same cluster with a completely random stimulation policy. Rightmost cluster shows the
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Real data

We worked with two datasets: lt3-000-002 and lt3-000-003, hereafter called datasets 1 and 2,

containing a population of 57 and 63 neurons respectively. The presented visual stimuli con-

sisted of sinusoidal gratings defined using Hartley basis functions of the form:

Hðkx; kyÞ ¼ A� cas ½kxx þ kyy�
2p

M

� �

; ð26Þ

where the function cas(x) is cos(x) + sin(x), A = ±1, (x, y) are the pixel coordinates in the moni-

tor, M is the image size, and kx, ky = {−12, . . ., 12} are the frequency components. Parameters

A, kx, ky were uniformly sampled from all possible values, and each stimuli persisted for 4

frames.

To prevent excessive data fragmentation, the stimuli basis (A, kx, ky) was encoded into an

(r, ϕ) pair using Eq (27) with the r and ϕ parameters discretized into 7 values each,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x þ k2

y

q
;

� ¼ atanðky; kxÞ:
ð27Þ

For both spike and stimuli regressors, we used 1[t−2,t−7](t) as the influence function as

defined for Eq (3) (Dl
s ¼ Dl

c ¼ 7 and Du
s ¼ Du

c ¼ 2).

7,000 samples of each dataset were used for training, and 2000 samples were reserved for

model validation. Models were computed under two conditions, the first model used all avail-

able regressors (full model), while the second model was restricted to self regression coeffi-

cients and direct stimuli to neuron connectivity (AR model).

We first show the predictive power of both models when evaluated over the validation sam-

ples, that is to say, we evaluate the log likelihood (Eq (6)) of both models over the test samples.

We then utilize the model that we obtained from all samples in the dataset as a template for

simulations (“ground truth”), and compare the simulated performance between the proposed

active learning Algorithm 2 and random sampling.

We go on to show that observed neurons tend to respond more to low frequency stimuli.

We then show the recovered adjacency matrix (networks) for both datasets, and spiking trains

time series for neurons belonging to the largest cliques in the network.

Recovered models. We now show the recovered connectivity matrices W and stimuli

response matrices H for both datasets for the full model and the AR model in Fig 9.

The recovered inter-neuron connectivity matrix W for both datasets was 93% sparse. Both

datasets also show a large number of stimuli connections in the H matrix corresponding to

low spatial frequency stimulation values (r), and consistently selected the self regression coeffi-

cient as an important regressor. This was consistent for both regression models.

Out of sample prediction power. To test the prediction power of the regressor model, we

first evaluate the log likelihood of the full model and AR model over the test samples. We com-

pute ηc and λc for each neuron on the test samples using the observed spike trains and visual

stimuli as presented in eqs (3) and (4). We then evaluate the log likelihood according to Eq (6).

The results are shown in Fig 10.

ground truth. This example shows a clear advantage in edge recovery when using active learning compared to random

stimulation.

https://doi.org/10.1371/journal.pone.0196527.g007

Active learning of cortical connectivity from two-photon imaging data

PLOS ONE | https://doi.org/10.1371/journal.pone.0196527 May 2, 2018 19 / 46

https://doi.org/10.1371/journal.pone.0196527.g007
https://doi.org/10.1371/journal.pone.0196527


Fig 8. Comparison of the edge discovering process for networks SW1CL and SW3CL using active learning versus

random stimulation. Rows show misclassified edges in the adjacency matrices W and H as a function of samples.

Rows 1 and 3 show misclassified edges as a function of time when the active learning stimulation policy is used, while

rows 2 and 4 show the same network probed with a random stimulation policy. The misclassified edge matrix under

active learning quickly becomes sparse as the number of misclassifications goes to zero, random stimulation produces

the same results but in a longer time frame.

https://doi.org/10.1371/journal.pone.0196527.g008
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Fig 9. Recovered adjacency matrices for datasets 1 and 2. Top and bottom rows show the recovered adjacency matrices for datasets 1 and 2 respectively.

Columns from left to right show the full model and the AR model respectively. Inhibitory connections are shown in blue, and excitatory connections are

shown in red. We can observe that self regression coefficients are always added to the model. We also observe that the overall sparsity of the recovered

network is consistent across datasets, and that the first few rows of the H matrices show a heavy concentration of excitatory connections. These rows

correspond to low spatial frequency (r) values in the Hartley basis functions (Eq (26)).

https://doi.org/10.1371/journal.pone.0196527.g009
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Fig 10 shows that, for many neurons, the full model generalizes well to out of sample (unob-

served) data, when compared to the AR model. This shows that inter-neuron connectivity is

predictive of spiking rates.

Long range prediction is also possible using the recovered model parameters (Ŵ ; Ĥ ; b̂) and

the visual stimuli sequence to be presented ({Ik(t)}). Instead of using the observed past spike

trains Xj(t) as regressors, we use the expected spiking rate λj(t). This experiment iteratively

computes the expected spiking rate for each neuron in the network using a fully observed

external stimulation sequence and the past computed expected spiking rate. It is important to

note that here we are computing the entire behaviour of the system given a stimuli sequence.

Formally, we define the long range spiking rate as

l
lr
c ðtÞ ¼ E½Xc j fl̂

lr
j ðtÞg; fÎ kðtÞg; Ŵ ; Ĥ ; b̂�; ð28Þ

where l
lr

c ðtÞ is the expected spiking rate at time t for neuron c, fl̂ lr
j ðtÞg ¼ f

Pt� Dl
c

t� Du
c

l
lr

j ðtÞg is

Fig 10. Log likelihood difference of full model and AR model over the test samples. The graph shows that, on average, spiking rate predictions are

better on the full model than on the auto-regressive model. This grounds the idea of neuron to neuron interaction as being predictive of neuron

behaviour.

https://doi.org/10.1371/journal.pone.0196527.g010
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the set of past expected spiking rates as seen through the boxcar influence function, and

fÎ kðtÞg ¼ f
Pt� Dl

s
t� Du

s
IkðtÞg is the applied visual stimuli as seen through the boxcar influence

function.

Here we compare the difference between the log likelihood when simulating the 2000 test

samples with the stimuli that were presented versus a simulation of the system under a random

equally likely stimuli selection.

The log likelihood of the sequences is computed against the observed spike trains for each

neuron, experiments are repeated over 20 trials to provide error estimates. Results are shown

in Fig 11.

Iterated simulations like these integrate the influence of stimuli to neuron connectivity and

neuron to neuron connectivity. The large majority of neurons for both datasets showed a like-

lihood increase when presented with the true stimulation sequence, showing that the recov-

ered models really capture interactions between regressors and spiking rates.

Fig 11. Difference in log likelihood of forecasted sequences. Real stimulation sequence versus randomized stimulation sequences. Error bars

represent one standard deviation over 20 trials.

https://doi.org/10.1371/journal.pone.0196527.g011
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Active learning on real data. In lieu of validating the proposed active learning framework

on live animals, we utilize the recovered full model networks from Fig 9 as ground truth. For

this experiment, we simulate data using the recovered inter-neuron and stimuli response

matrices (W, H) as ground truth. A separate model is trained on data drawn from this new

simulation. We compare the performance of the network inference algorithm when samples

are drawn uniformly from all 49 possible stimuli against samples drawn from the inferred

active learning distributions.

Both strategies start from the same initial 1,000 samples, and each intervention adds an

additional 500 samples. As a reminder, the ground truth network was recovered from 9,000

samples. At the beginning of each intervention step, we compute the best network estimate so

far using Algorithm 1, and show the performance in recovering the set of regressor edges PAc

using the F1, precision and recall metrics as defined in Eq (24). At this stage, the active learning

strategy recomputes the stimuli probability distribution to apply for the following samples.

These results are shown in Fig 12. Additionally, Fig 13 shows the stimuli probability distribu-

tion (Pl+1) obtained from Algorithm 1, averaged over all realizations.

The F1 score of the active learning experiment is consistently better than random stimuli

selection. While the performance gain is not large for these networks, the result spreads are

tight and consistent; there is thereby no reason for not using the active learning strategy over

random stimulation. We also observe that the AL algorithm preferentially presents low fre-

quency stimuli, even though no explicit variable in the AL algorithm distinguishes between

low and high frequency stimuli. In the following section we will show this is a reasonable

result, since we found that neurons in these datasets tend to respond considerably more to low

frequency stimuli.

Network analysis. Now that we showed the performance of the proposed methods we will

present some observations over the recovered biological models.

We first analyze the obtained input response matrices H for both datasets. Fig 14 shows the

percentage of neurons in each dataset that directly respond to each stimulation pattern. We

can conclude that low frequency stimulation patterns have an out-sized proportion of directly

responding neurons when compared to higher frequency patterns.

For each dataset, we then examine the adjacency matrices W and extract two of the largest

cliques in the network. Fig 15 shows these cliques, and the spike trains of all neurons in the

clique.

We additionally count the occurrence rate of motif triplets in the recovered networks, and

do a simple hypothesis test to check if these motifs could have arisen from a small-world net-

work topology, Fig 16 show these results. The high p-values observed in Fig 16 show that the

recovered network motifs are at least compatible with the small-world topology hypothesis.

We also compared the distribution of number of children and parents per cell between the

inferred networks and a small-world network ensemble. In Fig 17 we can see that the inferred

networks are compatible with a small-world topology in terms of number children and parents

per neuron. Finally, we count the percentage of cells involved in multiple cliques, and further

show the percentage of cells involved in multiple cliques of a set size. The percentage counts

also appear to be within the expected counts of a small-world network, this is shown in Fig 18.

This is in accordance with other observations like the ones in [36–38].

Discussion

There is a large body of work done in reverse-engineering neural circuits from data across dif-

ferent modalities [40, 41]. Some of these methods learn a directed graph, which provides a

compact and interpretable way of encoding Granger causal [42] relations between neurons
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Fig 12. Comparison of performance between the proposed active learning method versus uniformly sampling from all stimuli. The experiment consisted of 500

sample interventions, with an initial 1,000 sample observation. Whisker plot is obtained from 10 independent trials. Left column shows F1, precision, and recall

performance on network recovered from dataset 1 and right column shows F1, precision, and recall performance on network dataset 2. On average, computing the

Active learning intervention step took 108s ± 60s on dataset 1, and 86s ± 46s on dataset 2.

https://doi.org/10.1371/journal.pone.0196527.g012
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Fig 13. Distribution of recommended stimuli (Pl+1) across interventions. Initially, the distribution is uniform (top).

The experiment consisted of 500 sample interventions, with an initial 1,000 sample observation. Left column shows the

stimuli probability distribution history for dataset 1, while right column shows the distribution for dataset 2.

https://doi.org/10.1371/journal.pone.0196527.g013
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Fig 14. Percentage of neurons that have an excitatory or inhibitory response to each possible visual stimuli. Visual stimuli are

represented in matrix form, where rows represent spatial frequency r and columns spatial orientation ϕ. The value for each entry in the

matrix is the percentage of neurons in the datasets that show a response to that visual stimuli. This visualization shows that both datasets

show a large number of directly responding neurons for low spatial frequency visual stimuli.

https://doi.org/10.1371/journal.pone.0196527.g014
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Fig 15. Example of recovered cliques and corresponding spike trains. Figures a), c), e), and g) show the excitatory

(red) and inhibitory (blue) edges detected for neuron cliques in datasets 2 (a) and c)) and 3 (e) and g)). Figures b), d),

f), and h) show the spike time series of the neurons in the clique. The nodes are numbered according to the

corresponding neuron index. We can visually see that spike trains from neurons in the selected cliques show similar

spiking behaviour throughout the experiment.

https://doi.org/10.1371/journal.pone.0196527.g015

Active learning of cortical connectivity from two-photon imaging data

PLOS ONE | https://doi.org/10.1371/journal.pone.0196527 May 2, 2018 28 / 46

https://doi.org/10.1371/journal.pone.0196527.g015
https://doi.org/10.1371/journal.pone.0196527


and covariates. Several works have been published on the use of Gaussian Bayesian Networks

to learn connectivity strengths from data [43, 44]. For cases where the framework is not appli-

cable, as in the case of spike train time series, Generalized Linear Models (GLMs) have been

successfully used [24, 45–51].

Parameters for these models are most commonly estimated using Maximum Likelihood

Estimation or Maximum a Posteriori estimation [24, 46–51]. The parameters obtained from

the GLM can be interpreted as a directed graph capturing dependencies between variables of

interest, or nodes (neuron spiking rates and visual stimuli). The presence of an edge in this

graph represents a directed influence from one node to another, and the weight of the edge

represents the magnitude of that influence. The graph can be made sparse with the use of sub-

set selection, where only a limited number of edges are assigned non-zero weights (no influ-

ence). Subset selection can be performed using deviance tests [52] or by the use of priors [50].

In parallel, there is a corresponding push for actively estimating the best stimuli subset for

network inference, with variants based on mutual information and Gaussian approximations

of MAP parameters [24, 46, 48, 49, 53–62].

Methods like the one proposed in [53] use of mutual information for intervention selection,

but rely on a specific Gaussian Bayesian Network framework, making them unsuitable for

count data. Methods like [63] generalize D-Optimal factorial design for GLMs and to multi-

level regressor covariates, but require full control over the regressor covariates.

The proposed variable selection algorithm is focused on subset selection of parent regres-

sors. It is posed as an optimization problem where the objective is to find a set of regressors

Fig 16. Motif triplet counts in recovered adjacency matrix. We count the occurrences of motif triplets for both

datasets (we ignore edge weight and sign) by enumerating all neuron triplet combinations in the recovered networks

and checking for graph isomorphism against all 5 motif triplet types. Top and bottom rows show results for datasets 1

and 2 respectively. We compare the obtained motif counts against a base model of small-world network topology and

show the obtained p-values. These p-values are obtained by computation of the mean and standard deviation of each

motif type in a small-world network with the same node count and edge density. The relatively large p-values obtained

show that the small-world model is a good fit for the recovered network topology.

https://doi.org/10.1371/journal.pone.0196527.g016
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that minimize the BIC score, subject to a confidence interval restriction. Using BIC as the

score to optimize fosters prediction improvement while penalizing model complexity. The use

of p-value as a restriction criteria ensures that the regressors in the model are highly signifi-

cant. A local minimal set of regressors is constructively obtained following a simple rule-set.

For the purposes of this work, the delay time window (boxcar length) was set directly to

incorporate a delay of 5 time bins (* 0.3s). In a more general setting, the delay parameter

could be set by fitting a model to data with various values of this parameter, and choosing the

one with the highest likelihood.

The variable selection method was tested on simulated data and compared against oracle

Lasso. It performed worse than oracle lasso for very small sample sizes, but otherwise proved

to be better on the F1 and recall metrics. On settings where no ground truth is available, Lasso

would require some other sub-optimal method for parameter tuning. The p-value restriction

parameter present in the elastic-forward model selection algorithm is easily interpretable as

the desireable confidence level on the regressor parameters, this makes the parameter easy to

set beforehand for any experiment.

Note that the time complexity of the forward model selection scales as the product of the

number of available regressors and true edges in the network. For the worst case scenario

(fully connected network), this means the forward model selection strategy scales quadratically

with the number of regressors. For sparse networks, this computational cost can be brought

down significantly by preselecting regressors based on the approximate p-value computation

shown in Eq (47).

Fig 17. Edge density distribution of recovered inter neuron connectivity. We compare the edge density distribution

of the recovered inter neuron connectivity matrices in both datasets. Edge counts shown from left to right are all edges

(number of neurons connected to node, either as parent or child), outbound edges (number of child nodes), and

inbound nodes (number of parent nodes). The edge counts are compared against a base model of small-world network

topology, error bars denote two standard deviations obtained from simulation of small-world networks with the same

number of nodes and connectivity degree.

https://doi.org/10.1371/journal.pone.0196527.g017
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Fig 18. Percentage of cells in multiple cliques. We count the percentage of cells participating in multiple cliques. The

counts are compared against a base model of small-world network topology, error bars denote two standard deviations

obtained from simulation of small-world networks with the same number of nodes and connectivity degree.

https://doi.org/10.1371/journal.pone.0196527.g018
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The proposed active learning algorithm follows a simple design philosophy, it looks for prom-

ising edges not added into the model so far, and increases the appearance frequency of stimuli

that drive up the spiking rate of the parent nodes of these edges. To achieve this, it defines a score

for each possible stimulus based on the previous learned model, it takes into account the spiking

rate difference (impact) of presenting one stimulus more frequently than the others on every par-

ent node in the system, and weighs it by the potential log-likelihood improvement of adding

every edge associated with this parent node to the model. The log-likelihood value of an edge is

tightly related with the BIC score the elastic-forward model selection attempts to optimize.

Active learning proved to be faster than random stimulation in recovering edges on the

simulated networks, this was especially true for edges whose spiking rate could be greatly

affected by changing the stimuli distribution (first order connections). On the simulations

from networks recovered from real data, the performance of active learning was consistently

better than random stimulation, and the measured metrics had a tighter spread. There is there-

fore no reason not to use active learning during data acquisition.

We measured three basic properties of the recovered inter-neuron connectivity networks

from on real data: edge distribution, motif type distribution, and number of cliques per neu-

ron. Counts were compared to simulations of small-world networks with an identical number

of nodes and connectivity degree. All three properties measured fell well within the expected

values for these types of networks, pointing at a small-world-like structure in the recovered

inter-neuron connectivity networks.

All codes used for this work are available at https://github.com/MartinBertran/

ActiveLearningCortical.

Conclusion

In this paper we propose a simple framework for actively learning network connectivity for

GLMs by selecting external forcing actions. The algorithm has the advantage of making rela-

tively few assumptions on the exact distribution of the model, and the amount of control the

experimenter has over the regressor covariates.

The use of a greedy regressor selector using BIC and Wald testing allows for an easy identi-

fication of edges that seem beneficial for the model, but do not yet have a sufficient number of

interaction samples to be included in the model. By utilizing external triggers to these interac-

tions, the algorithm prioritizes interventions that provide information over uncertain edges.

The greedy regressor selector outperforms the oracle Lasso in identifying the proper regres-

sor subsets in simulations for non-small sample sizes, even when accounting for the oracle

selection of the l1 prior.

Even on the recovered real datasets, the use of the active learning algorithm proved to be

beneficial as well. The algorithm is very quick at recovering directly connected edges, making

its application in conjunction with optogenetics an interesting proposition.

Finally, we note the method is not restricted to one modality or domain, it can be applied in

any situation where there is a family of possible actions available to probe the activity of a net-

work, in both biological and artificial systems.

We note that for all measured properties, the recovered network structure on the real data-

sets was consistent with a small-world topology.

Appendix

Derivation of the observed Fisher information

Given a neuron c and the MLE estimators ŷ ¼ fŴ c; Ĥ c; b̂cg, the element k, j of the observed

Fisher information matrix Î cðŷÞ for the given model can be expressed as
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where R is the concatenation of all the considered regressors (neurons and stimuli),
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Replacing Eqs (31) and (32) in Eq (29) we get:
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Approximate Wald test dependence on model parameter κ
We now relate the Fisher information matrix to the κ parameter and other quantities that do

not depend on the Maximum Likelihood estimate of the model. To achieve this, we make sev-

eral approximations. We start by expressing Eq (33)
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The first simplification we make is approximating the summation in Eq (34) by its expected

value. If we define Mi, j as the number of samples where Ri Rj 6¼ 0, we get
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We further approximate this expression by moving the expectation inside the function,
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where

• yijc ¼ E½ycðtÞjRiðtÞRjðtÞ 6¼ 0�,

• Rij
i ¼ E½RiðtÞjRiðtÞRjðtÞ 6¼ 0�,

• Rij
j ¼ E½RjðtÞjRiðtÞRjðtÞ 6¼ 0�,
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From the definition of λc(ηc) (Eq (4)) we can express ekZ
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We relate this Fisher information matrix approximation to the z-score of any given regres-

sor. To avoid computing the inverse of the Fisher information matrix, we take the following

approximation:
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By replacing this approximation into Eq (9), the Z-score of regressor i on neuron c can be

very roughly approximated to:
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Our final task is relating the term wicRi
i to quantities that do not depend on the Maximum

Likelihood estimate. To do this, we again note that for any well fitted model we can write:
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We conveniently express Zi
c ¼ wicE½RijRi 6¼ 0� þ Znfigc where Znfigc is the contribution of all

regressors beside regressor i. Similarly, we express Z� ic ¼ Znfigc , where we further assumed that
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the total contribution of all other regressors to the ηc parameter is mostly independent on the

state of regressor Ri.

Working both equations, we obtain:
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We finally conclude that, after several approximations, the Z-score of a parameter can be

roughly approximated with an expression that only depends on the rates of our data and the

parameter κ of our model,
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Using this approximation, we can gain some intuition on how the Z-score will behave

under certain conditions. In particular, we see that the Z-score depends approximately linearly

on the number of observed interactions, it also depends on what is essentially a ratio between

E[yc|Ri 6¼ 0] and E[yc|Ri = 0]. The dependence on the κ parameter is not easy to discern at a

glance, but we can observe how the Z-score behaves for various combinations of spiking rate

parameters and κ values.

Fig 19 shows how this approximate Z-score function behaves for several κ as a function of

the fractional rate
lic

l� ic
and l

� i
c . Rates and base spiking rates where selected to be in accordance

to the rates measured in our real datasets.

Numerical issues arise from picking very large values of κ. We decided to choose κ = 10 for

all experimental results since it seemed to provide a nice middle ground between dampening

the Z-score for low spiking rate inhibitions and not giving disproportionately large Z-scores

for small excitatory rates.

Fisher information: Model selection and the under-sampled regime

We analyze the behaviour of ill-conditioned but non-singular Fisher matrices, where there is a

potentially large difference between the largest and smallest eigenvalues present in the Fisher

information matrix, and show how the Wald test present in the model selection strategy copes

with this issue. We use this analysis as we take the limit of the smallest eigenvalue going to 0 to

illustrate what this test does for singular matrices.

Overall, we provide a link between the smallest eigenvalue of the Fisher information

matrix, and the largest observed parameter variance we obtain from the diagonal elements of

the inverse Fisher information matrix. From this we finally conclude that regressor subsets

that produce nearly singular matrices are consistently rejected from our model selection

process.

We first note that, for any non-singular matrix A, if λ is an eigenvalue of A, then λ−1 is an

eigenvalue of A−1. So the inverse of a matrix with a very small eigenvalue has a correspondingly

large eigenvalue.

We also note that the Fisher information matrix is positive (semi) definite, we can thus sort

its eigenvalues in descending order and write λ1� λ2� . . .� λr� 0, where r is the number of
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rows (regressors) of the matrix. The corresponding eigenvalues of the inverse Fisher matrix

are ordered: l
� 1

r � . . . � l
� 1

1
� 0

Since the inverse Fisher information is symmetric, we can use the Schur-Horn theorem to

see that its diagonal elements are majorized by its eigenvalues. By definition of majorization,

this means that:

x1 þ . . . :þ xi � l
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r þ . . .þ l
� 1
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; 8i ¼ 1; . . . ; r ð48Þ

where xi is the i-th largest entry in the diagonal elements in the inverse Fisher matrix, the

equality holds exactly for i = r. These values are the fisher variances of the regressors in Eq (9),

sorted by descending variance.

From this, we can easily see that the largest observed fisher variance is at least
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From this we can conclude that as the smallest value of the Fisher information matrix goes

to 0, at least one regressor’s Fisher variance grows arbitrarily large. Relating this back into Eqs

(9) and (12) we can see that for any reasonable p-value threshold, a parameter subset PAc yield-

ing an ill-conditioned Fisher information matrix will be rejected.

Fig 19. Single sample (M = 1) Z-score approximation. We show the single sample (M = 1) Z-score approximation according to Eq (46)

for several κ parameters as a function of the ratio
lic

l� ic
and l

� i
c (E(yc|Ri = 0)). The l

� i
c values were chosen to be representative of the observed

rates in our real datasets.

https://doi.org/10.1371/journal.pone.0196527.g019
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Regressor selection: Fraction parameter ν
We evaluate the effect of varying the sample fraction ν used for the random subset selection

step of the elastic-forward model selection method. The ν parameter is tested in the 0.5 to 0.9

ranges. This is compared against the baseline oracle lasso method and model selection where

no random subset selection is performed (no-subset).

All methods are evaluated on samples drawn from simulated network SW1CL using the F1,

precision, and recall performance metrics. Results are shown in Fig 20.

We can observe from Fig 20 that all ν parameters perform similarly for all but the smallest

sample sizes. Additionally, the use of no-subset model selection had a large performance

decrease for small sample sizes when compared to all ν parameters, but similar performance

on larger sample sizes.

Poisson model selection on non-Poisson models

A natural question that may arise is if the Poisson GLM model can still capture directed inter-

actions between neurons when the data does not come from a Poisson distribution.

To that effect, we repeated the simulated experiments using the same connectivity matrices

defined for networks SW1CL and SW3CL, but this time, the spiking activity was obtained

using a Leaky Integrate and Fire model [64].

The equations of the model can be summarized as

_vcðtÞ ¼ � vcðtÞ þ bðtÞ þ
Xnc

u¼1

Wu;c � suðtÞ⊛ hðtÞ þ
Xns

v¼1

Hv;c � IvðtÞ⊛ hðtÞ;

hðtÞ ¼ a2 � e� aðt� tDÞ � ðt � tDÞ � 1t� tD�0;

IfvcðtÞ � 1 ¼

( vcðtÞ ¼ 0;

scðtÞ ¼ 1;

ð50Þ

where vc is the membrane potential of neuron c, and sc its corresponding spike train.

W and H are the inter-neuron and stimuli-neuron connectivity matrices respectively. The

parameter h(t) represent the influence kernel, and depends on the synaptic density (a) and ker-

nel delay (tD). b(t) is the direct current parameter.

For our simulations we sampled b(t) from a uniform distribution (b(t) * U[0, b]), where b
was chosen such that the average spiking rate of each neuron is the same as in the original

Poisson GLM simulations. The W and H connectivity matrices were linearly scaled with

respect to the original SW1CL network to preserve the conditional spiking rates. For these

simulations, we set a = 1.5 and tD = 2.

Fig 21 compares the performance of the Active Learning algorithm and Uniform sampling

when applied to the non-Poisson, Leaky Integrate and Fire network.

From Fig 21, we see that, at least for this tested configuration, the Poisson GLM is still able

to recover the correct directed connections even when the originating data model does not fol-

low a Poisson distribution.

Table of defined variables

Table 1 contains an exhaustive list of all variables defined in this manuscript along with a brief

description.
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Fig 20. Comparison of elastic-forward BIC selection as a function of parameter ν. Whisker plot of performance

indicators as a function of number of samples; elastic-forward BIC selection is compared using several ν parameters

against both oracle Lasso and the special case where the whole dataset is used at once, without splitting into random

subsets (no-subset). The plots show relatively little difference between the various ν parameters, but the use of the ν
parameter is better performing overall to both oracle lasso and no-subset model selection.

https://doi.org/10.1371/journal.pone.0196527.g020
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Fig 21. Performance comparison between active learning and uniform sampling over LIF network. Comparison of

performance between the proposed active learning method versus uniformly sampling from all stimuli. Spiking trains

were simulated using a Leaky Integrate and Fire model, but the recovered networks were done using the proposed

Poisson GLM. The experiment consisted of 500 sample interventions, with an initial 500 sample observation. Whisker

plots are obtained from 10 independent trials.

https://doi.org/10.1371/journal.pone.0196527.g021
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Table 1. Variable reference list.

Variable symbol Variable Definition

m number of acquired samples

nc number of neurons

nr number of regressors

X ¼ fXigi¼1;...;nc
Xi 2 Rm spike time series of target neurons

R ¼ fRigi¼1;...;nr
Ri 2 Rm regressor time series

bc bias of target neuron c
wic influence weight of regressor i on neuron c
PAc set of parent regressors of neuron c
ns number of external stimuli

C set of nc neurons

S set of ns external stimuli

I ¼ fIigi¼1;...;ns
Ii 2 Rm external stimuli time series

X̂ ¼ fX̂ igi¼1;...;nc
past neuron activity

Î ¼ fÎ igi¼1;...;ns
past stimuli activity

Du
s ; Dl

s upper and lower bounds of boxcar influence function for stimuli

Du
c ; Dl

c upper and lower bounds of boxcar influence function for neurons

C0c set of parent neurons of neuron c
S0c set of parent stimuli of neuron c

Wc 2 RjC0c j edge weights between parent neurons of c and neuron c

Hc 2 RjS0c j edge weights between parent stimuli of c and neuron c

W = {wij : i, j = 1, . . ., nc} adjacency matrix

H = {hij : i = 1, . . ., ns, j = 1, . . .,

nc}
stimuli response matrix

λc instantaneous Poisson spiking rate of neuron c
κ spiking rate non-linearity calibration constant

fX̂gC0c ¼ fX̂ jgj2C0c
past neuron activity of parent neurons of c

fÎgS0c ¼ fÎ jgj2S0c past stimuli activity of parent stimuli of c

ŷ ¼ fŴ c; Ĥ c; b̂cg
MLE estimate of model parameters of neuron c

Ŵ ; Ĥ estimators of adjacency matrix W and stimuli response matrix H

cPAc
estimated parent set of neuron c

γ p-value restriction

l active learning iteration counter

ml number of samples acquired up to active learning iteration l

Ŵl ; Ĥl estimators of adjacency matrix W and stimuli response matrix H up to iteration l

Pl+1 probability distribution vector for presenting each stimuli S at intervention l + 1

P̂ s
surrogate stimuli probability distribution vector, where stimuli s is presented

more frequently

P̂ uniform stimuli probability distribution vector

fSgP¼P̂ s sequence of stimuli drawn from distribution P̂ s

dERCs;c expected rate change of neuron c when using stimuli probability distribution P̂ s

D̂c;ci
Deviance statistic in neuron c between model with and without regressor neuron

ci
dERCs;si

expected rate change of stimuli s when using stimuli probability distribution P̂ s

D̂c;si
Deviance statistic in neuron c between model with and without regressor stimuli

si

(Continued)
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Algorithm 1 Elastic-forward selection

Require: Xc; R̂r; k; g

. Xc sequence of observations of neuron c
. R̂r is the full set of regressor observations

. k maximum number of regressors to add per step
. γ minimum allowed regressor p-value

r0 = {} . Initialize set of active regressors to empty set (only
bias is included).

repeat
ŷr0 ; L̂r0 ; Îðŷr0 Þ; pvalsr0 ; BICr0 ¼ EvaluateRegressorsðXc; R̂r; r0Þ
ry; fjig ¼ Forward Model ProposalðXc; R̂r; r0; g; k; BICr0 Þ

. Both sub routines are explained in algorithms 3 and 4
if {ji} = ; then

. No suitable candidate found

return ðŷr0 ; L̂r0 ; Îðŷr0 Þ; pvalsr0 ; BICr0 Þ

end if
success = False
n = |{ji}|
rbest = r0

BICbest = BICr0
while not sucess do
r‡ = r0 + {ji}[: n]

ŷrz ; L̂rz ; Îðŷrz Þ; pvalsrz ; BICrz ¼ Evaluate RegressorsðXc; R̂r; rzÞ
. Update best set found so far using Algorithm 3

if max(pvalsr‡) � γ and BICr‡ � BICbest then
rbest = r‡

BICbest ¼ BICrz

end if
. Already found best set in the descending sequence, update
and exit loop

if BICr‡ � BICbest and rbest 6¼ r0 then
success = True

r0 = rbest
end if
n = n − 1

end while
until True

Algorithm 2 Iterative Active Learning
Require: X, I, k, γ, β

. X Initial observations for all neurons
. I Initial applied stimuli

. k maximum number of regressors to add per step
. γ minimum allowed regressor p-value

Table 1. (Continued)

Variable symbol Variable Definition

cSCs;W ½l þ 1� score of stimuli s associated with inter neuron matrix W

cSCs;H ½l þ 1� score of stimuli s associated with stimuli response matrix H

cSCs½l þ 1� full score of stimuli s

β active learning smoothing constant

Summary of defined variables

https://doi.org/10.1371/journal.pone.0196527.t001
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. β active learning smoothing parameter
for l 2 interventions do

R̂r  Build RegressorsðX; IÞ . Build regressor sequences from X and
I as defined for Eq (3)

for c 2 neurons do
. Perform model selection using Algorithm 4

ðŷr0 ½c�; L̂r0 ½c�; Îðŷr0 Þ½c�; pvalsr0 ½c�;BICr0 ½c�Þ ¼ ElasticForwardSelectionðXc; R̂r; k; gÞ

. Get log-likelihood difference of considering all regressors
that are not parent edges of neuron c

Rnonparent ðcÞ ¼ fr:ŷr0 ½c� ¼ 0g

for r 2 Rnonparent(c) do
Lr, c  Compute Loglikelihood difference . Use Eq (15) for

neuron regressor
and Eq (18) for
stimuli regressor

end for
end for

. Compute the impact and score of each stimuli according to previous
observations
for s 2 stimuli do
for c 2 neurons do
IMs,c  Compute impact of stimuli s on neuron c . Use Eq (14)

end for
for si 2 stimuli do

IMs;s;i
 Compute impact of stimuli s on stimuli si . Use Eq (17)

end for
SCs  Compute score of stimuli s . Use Eqs (16, 19, 20)

end for
Pl+1  Compute Stimuli Probability Vector . Use Eqs (21,23)
(X, I)  Acquire Samples .Acquire samples of X and I drawing

I with probability Pl+1

end for
Algorithm 3 Sub routine: Evaluate Regressors

Require: Xc; R̂r; ry
. Xc sequence of observations of neuron c

. R̂r is the full set of regressor observations (R̂r ¼ ½X̂ ; Î ; 1�)
. r† subset of regressors to consider

ŷry ¼ argmaxyry
LðXc; R̂ry ; yry Þ

L̂ry ¼ LðXc; R̂ry ; ŷry Þ

Îðŷry Þ ¼ � E½ @
2L̂

@ya@yb
�

pvalsry ¼ chi2sf ðŷry=diagð½Îðŷry Þ�
� 1
ÞÞ . Compute X 2

df¼1
survival function for each

parameter in r†

BICry ¼ � 2L̂ry þ lnðnÞ � jryj
return ŷry ; L̂ry ; Îðŷry Þ; pvalsry ; BICry

Algorithm 4 Sub routine: Forward Model Proposal

Require: Xc; R̂r; r; g; k; baseBIC

. Draw nsplits sets from data and regressor sequence randomly, each set
will contain p% of the total sample count

fXc;i; R̂r;igi¼1;...;nsplits
¼ Random SamplesðX; R̂r; p%; nsplitsÞ

. Add regressors individually and compute indicators
for j =2 r do
r† = r + {j}
for i = 1, . . ., nsplits do

; ; ; pvals
y

split
½i�; BIC

y

split
½i� ¼ EvaluateRegressorsðXc;i; R̂r;i; ryÞ

Active learning of cortical connectivity from two-photon imaging data

PLOS ONE | https://doi.org/10.1371/journal.pone.0196527 May 2, 2018 42 / 46

https://doi.org/10.1371/journal.pone.0196527


end for . Evaluate BIC score and p-values on the full dataset
as well. Max function provides an extra safeguard
against bad regressors

; ; ; pvals
y

full
; BIC

y

full
¼ EvaluateRegressorsðXc; R̂r; ryÞ

pvalscore½j� ¼ maxðmedianðpvals
y

split
Þ; pvals

y

full
Þ

BICscore½j� ¼ maxðmedianðBIC
y

split
Þ;BIC

y

full
Þ

end for
. Sort candidates by best BIC in set, and select at most k of
them, subject to γ restriction

{ji} = argsort(BICscore[BICscore < baseBIC ^ p − valuescore < γ])[0: k]
return r† = r + {ji}, {ji}
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