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Hemoglobin-vesicles (Hb-V) are being developed as red blood cell (RBC) substitutes. In this study, we
report on quantitative and qualitative alterations of hepatic cytochrome P450 (CYPs) and the pharma-
cokinetics of CYP-metabolizing drugs, with a focus on four CYP isoforms (CYP1A2, CYP2C11, CYP2E1 and
CYP3A2), after Hb-V resuscitation from a massive hemorrhage. The results of proteome analysis and
western blot data indicate that resuscitation with both Hb-V and packed RBC (PRBC) resulted in a
decrease in the protein levels of CYPs. Along with a decrease in the protein expression of CYPs, phar-
macokinetic studies showed that the elimination of CYP-metabolizing drugs was prolonged in the Hb-V
and PRBC resuscitation groups. It is also noteworthy that the CYP-metabolizing drugs in the Hb-V
resuscitation group was retained for a longer period compared to the PRBC resuscitation group, and
this is attributed to the CYP isoforms having a lower metabolic activity in the Hb-V resuscitation group
than that for the PRBC resuscitation group. These findings suggest that resuscitation with Hb-V after a
massive hemorrhage has a slight but not clinically significant effect on drug metabolism via CYPs in the
liver due to decreased protein levels and the metabolic activity with respect to the CYPs.

© 2020 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Transfusion of red blood cells (RBC) are the primary intervention
in the treatment of patients withmassive hemorrhages and this has
contributed to saving thousands of human lives world-wide, each
year. However, several social and medicinal issues have surfaced
concerning such transfusions, such as a decrease in the amounts of
donated blood due to low birth rates, viral contamination and short
storage life of RBC, make it difficult to assure a stable supply and the
safety of RBC preparations. Furthermore, an international and a
national pandemic emergency, such as the appearance of a novel
virus such as COVID-19, would likely interfere with the current
hospital-based transfusion service [1]. To compensate for these
ku, Tokyo, 105-8512, Japan.
chi).
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problems, attempts have been made to develop artificial RBC for
more than a half century [2].

Hemoglobin-vesicles (Hb-V) are a cellular type of artificial RBC,
in which human hemoglobin is encapsulated within a lipid bilayer
(liposome) the surfaces of which are modified with polyethylene
glycol (PEG) [3]. Accumulated preclinical evidence indicate that Hb-
V has favorable characteristics that would allow it to be used as an
artificial RBC preparation, as follows: (i) there is no risk of viral
contamination and no need for blood typing because viruses and
blood group antigens are completely removed during the prepa-
ration process [3]. (ii) Hb-V can be preserved for over 2 years at
room temperature [4,5]. (iii) The oxygen carrying capacity of Hb-V
is comparable to that for RBC [6e8]. (iv) Hb-V shows no serious
adverse effects and good pharmacokinetic properties (no bio-
accumulation) [9e11]. Based on the above evidence, we are now in
the preparation to start clinical studies of Hb-V with the goal of
vier Ltd. All rights reserved.
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realizing a stable supply of an RBC preparation that can be used
safely.

Assuming that Hb-V would be administered to patients with
massive hemorrhages, they would also be likely to be receiving one
or more additional medications, such as narcotic, anti-arrhythmic,
analgesic, anti-seizure and steroid medication, in response to
their systemic condition. About three-quarts of prescribed drugs
that are cleared via metabolism are metabolized by cytochrome
P450 (CYP) [12,13], while Hb-V is mainly metabolized by Kupffer
cells in the liver [14]. Because of this, risks associated with such
drugs interacting with Hb-V have never been a concern. However, it
was previously reported that the pharmacokinetics of CYP-
metabolizing drugs, such as mephenytoin, chlorzoxazone,
dapsone and flurbiprofen, are altered in injured patients who
receiving RBC transfusions [15]. Furthermore, our previous studies
showed that resuscitation from a massive hemorrhage by RBC was
accompanied by a reduction in hepatic CYP protein expression,
resulting in an increase in the plasma concentration of CYP-
metabolizing drugs [16e18]. These facts lead us to the hypothesis
that resuscitation from massive hemorrhage by Hb-V induced an
alteration in hepatic CYP protein expression similar to that for a RBC
transfusion, resulting in changes in the pharmacokinetics of
concomitantly administered CYP-metabolizing drugs. Since an
alteration in the plasma concentration of a drug sometimes leads to
an insufficient curative effect and adverse events, accumulating
meaningful evidence that clarifies the effects of Hb-V transfusion
on the pharmacokinetics of co-administered CYP-metabolizing
drugs after massive hemorrhage and resuscitation would be highly
desirable.

The aim of this study was to investigate the influence of resus-
citation from a massive hemorrhage by Hb-V on hepatic CYP and
the in vivo pharmacokinetics of CYP-metabolizing drugs. For this
purpose, we first quantitatively evaluated the protein expression of
four CYP isoforms, CYP1A2, CYP2C11, CYP2E1 and CYP3A2, which
are homologized to human CYP1A2, CYP2C9, CYP2E1 and CYP3A4,
respectively, in sham rats and hemorrhagic shock model rats
resuscitated with Hb-V and packed RBC (PRBC). Changes in the
plasma concentrations of the above four CYP-metabolizing drugs
were then evaluated in sham rats and hemorrhagic shock model
rats that were resuscitated by Hb-V and PRBC. Finally, themetabolic
activities of the hepatic CYP isoforms after massive hemorrhage
and resuscitation with Hb-V and PRBC were also evaluated.

2. Materials and methods

2.1. Animals and ethics

All Sprague-Dawley rats (male, 8 weeks of age or retired; Japan
SLC, Inc) were housed in a conventional room with 12-hour light-
dark cycles. All experiments conducted in this study were
reviewed and approved by the institutional Animal Care and Use
Committee (Approval #: 2015-P-026). The handling and care of the
rats were done according to the National Institutes of Health
guidelines. All surgical procedures for rats were performed under
isoflurane anesthesia.

2.2. Preparation of PRBC and Hb-V solutions

PRBC suspended in saline ([Hemoglobin]¼ 10 g/dL)was prepared
from whole blood collected from retired rats (n ¼ 14) as reported
previously [5]. Hb-Vs suspended in saline ([Hemoglobin] ¼ 10 g/dL)
were prepared as reported previously [7]. The lipid membrane of the
Hb-V was composed with 1,2-dipalmitoyl-sn-glycero-3-phosphati-
dylcholine, cholesterol and 1,5-bis-O-hexadecyl-N-succinyl-L-gluta-
mate (5/4/0.9 at a molar ratio) with 0.3 mol% of 1,2-distearoyl-sn-
glycero-3-phosphatidylethanolamine-N-PEG. The particle diameter
of Hb-V was regulated to ca. 280 nm. Before the start of the exper-
iments, the Hb-V and PRBC suspensions were mixed with human
serum albumin (final concentration: 5 g/dL) to maintain the colloid
osmotic pressure of the suspensions at around 20 torr [8].

2.3. Preparation of hemorrhagic shock model rats and resuscitation
by PRBC and Hb-V

All rats (n ¼ 36) were introduced with a polyethylene catheter
(PE-50 tubing) into the right artery for monitoring the mean arte-
rial pressure (MAP) and heart rate (HR) and into the femoral vein
for bleeding and transfusion. Whole blood was removed from
twenty-four rats at a rate of 1 mL/min using a syringe pump, and
MAP was maintained at under 40 mmHg for 40 min (Fig. 1A). At
40 min after the start of bleeding, the rats were resuscitated with
equal amounts of either PRBC (n¼ 12) or Hb-V (n¼ 12) (1 mL/min).
After resuscitation, MAP and HR values were monitored for 20 min,
and the catheters were then removed. Sham rats (n ¼ 12) were
subjected to the same surgical procedures but without bleeding
and any administration.

2.4. Clinical chemistry

Before bleeding (baseline) and at 24 h after resuscitation, blood
samples were collected from the jugular vein, and plasmawas then
obtained by means of centrifugation (3,000 g, 10 min). Hb-V in the
plasma were then removed by means of ultracentrifugation
(50,000 g, 30 min) due to interference with some of clinical
chemistries [19]. All samples were stored at �80 �C until used in an
analysis. Aspartate aminotransferase (AST) and alanine amino-
transferase (ALT) were analyzed using Alanine Aminotransferase
Activity Assay Kit (Fujifilm Wako Pure Chemical Corp.).

2.5. Quantitative proteomic analysis of hepatic CYP protein
expression

At 24 h after resuscitation, the livers were collected after perfu-
sion with phosphate-buffered saline (PBS) (n ¼ 3/each group), and
homogenized on ice in buffer (Tris-HCl (10 mM, pH 7.4), 1.25 mM
phenylmethylsulfonyl fluoride, 1.5 mM magnesium chloride, 10 mM
sodium chloride, 1 v/v% protease inhibitor cocktail). The homoge-
nized liver preparations were centrifuged (10,000 g, 4 �C) for 10 min
and the supernatant was then further ultracentrifuged (100,000 g,
4 �C) for 1 h. After suspending the precipitates in Tris-HCl (10 mM,
pH 7.4) containing 250 mM sucrose, the protein content in the
samples was measured by a BCA protein assay kit. The samples were
analyzed by means of quantitative proteomics, as previously
described [20]. The analysis system consisted of a TripleTOF® 5600
system (SCIEX) and a DIONEX Ultimate™ 3000 RSLCnano system
(Thermo Scientific). Target peptides were identified by Protein Pilot
(SCIEX) with MS/MS data from information-dependent acquisition.
Targeted peptide peaks extracted from the SWAHT-MS data by the
Peak View Software (SCIEX). Protein peak areas were calculated as
the sum of the peak area of unique peptides for each protein.

2.6. Western blot

At 24 h after resuscitation, the livers were collected after
perfusion with PBS (n ¼ 3/each group), and homogenized on ice in
buffer (Tris-HCl (10 mM, pH 6.8), 1.25 mM phenylmethylsulfonyl
fluoride,1.5mMmagnesium chloride,10mM sodium chloride,1 v/v
% protease inhibitor cocktail). The homogenized liver preparations
were centrifuged (10,000 g, 4 �C) for 10 min and the supernatant
was then further ultracentrifuged (100,000 g, 4 �C) for 1 h. After



Fig. 1. (A) Scheme showing the experimental procedure. Changes in (B) mean arterial pressure (MAP) and (C) heart rate after bleeding and resuscitation with Hb-V and PRBC. (D)
Plasma aspartate aminotransferase (AST) and (E) alanine aminotransferase (ALT) levels in sham and hemorrhagic shock model rats at baseline (before hemorrhage) and at 24 h after
resuscitation with Hb-V or PRBC.
Values are means ± SD. (n ¼ 4) *p < 0.05 vs. baseline.
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suspending the precipitates in Tris-HCl (10 mM, pH 7.4) containing
250 mM sucrose, the protein content in the samples was measured
by a BCA protein assay kit. Each sample was suspended in loading
buffer (Tris-HCl (150 mM, pH 6.8), 6% sodium dodecyl sulfate, 30%
glycerol, 300 mM dithiothreitol, 0.03% bromophenol blue) and
boiled at 100 �C for 3 min. The protein samples were separated by
SDS-PAGE on a 10% polyacrylamide gel and transferred to PVDF
membranes. After being blocked with 5% skim milk, the mem-
branes were incubated with primary antibodies specific against
each CYP isoform or b-actin (Table S1) in TBS-T (Tris-buffered sa-
line, 0.1% Tween 20). Followed by three washings with TBS-T, the
membranes were further incubated with secondary antibodies
(Table S1). Finally, the bands on themembranewere visualized, and
their intensities were analyzed using ImageJ (http://rsbweb.nih.
gov/ij/).
2.7. Pharmacokinetic experiments

The pharmacokinetic experiments of substrates for the CYP
isoforms were performed by the administration of a CYP cocktail as
previously reported by Ogaki et al. with minor modification [18]. In
a typical experiment, at 24 h after resuscitation (n ¼ 4 each time),
the CYP cocktail (10 mg/mL caffeine, 5 mg/mL tolbutamide, 10 mg/
mL chlorzoxazone and 15 mg/mL midazolam) was intravenously
administered to rats via the tail vein at a dose of 2 mL/kg. At 10 time
points after the administration of the CYP cocktail (5, 15, 30 and
45min and 1,1.5, 2, 3, 5, 8 h), blood samples (150 mL) were collected

http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/


Table 1
Fold changes in protein expression levels of hepatic CYP isoforms (CYP1A2, CYP2C11,
CYP2E1, CYP3A2) in hemorrhagic model rats at 24 h after resuscitationwith Hb-V or
PRBC in comparison with sham rats, as determined by quantitative proteomics.

PRBC/sham Hb-V/sham

CYP1A2 0.47 ± 0.07 0.53 ± 0.16
CYP2C11 0.77 ± 0.23 0.88 ± 0.19
CYP2E1 0.44 ± 0.33 0.40 ± 0.05
CYP3A2 0.89 ± 0.25 0.81 ± 0.23

The values are means ± SD; n ¼ 3 each group.
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from the jugular vein, and then centrifuged (3,000 g, 10 min, 4 �C)
to obtain plasma. The concentration of each drug was simulta-
neously measured by high-performance liquid chromatography
(HPLC) as previously reported with minor modifications [21]. The
HPLC system consisted of a Hitachi L-2300 (set at 40 �C), Hitachi L-
2130 (flow rate: 0.8 mL/min), Hitachi L-2400 UV detector (fixed at
230 nm) and YMC-Pack ODS-AM (5 mm particles, 4.6 mm
ID � 250 mm) (YMC). The linear gradient elution of the solvents
(sodium phosphate (50 mM, pH 3.4) and methanol (MeOH)) was
programmed for the quantitation as follows: 0e5 min: 30% MeOH,
5e6 min: 30%e65% MeOH, 6e19 min: 65% MeOH, 19e20 min: 65-
30% MeOH, and 20e28 min: 30% MeOH.

2.8. CYP metabolic activity

At 24 h after resuscitation, the livers were collected after perfu-
sionwith PBS (n¼ 5/each group), and homogenized on ice in a buffer
(Tris-HCl (10 mM, pH 7.4), 1 mM EDTA and 250 mM sucrose). The
homogenized liver preparations were centrifuged (10,000 g, 4 �C) for
10 min, and the supernatant was then further ultracentrifuged
(100,000 g, 4 �C) for 1 h. After suspending the precipitates in Tris-HCl
(10 mM, pH 7.4) containing 250 mM sucrose, the protein content in
the samples was measured by BCA protein assay kit. CYP metabolic
activities of each isoform were assessed by the formation of acet-
aminophen, 4-hydroxytolbutamide, 6-hydroxychlorzoxazone and
6b-hydroxytestosterone from phenacetin (CYP1A2), tolbutamide
(CYP2C11), chlorzoxazone (CYP2E1) and testosterone (CYP3A2),
respectively, as previously reported by Sun et al. [22] with minor
modifications. In a typical experiment, each substrate was mixed
with microsomal protein in Tris-HCl (50 mM, pH 7.4) containing a
NADPH-regenerating system (NADPþ, magnesium chloride, glucose-
6-phosphate, glucose-6-phosphate dehydrogenase). After incuba-
tion for 30 min (phenacetin, chlorzoxazone and testosterone) or for
60 min (tolbutamide) at 37 �C, the reactions were stopped by the
addition of ice-cold acetonitrile (ACN) containing an internal stan-
dard (metacetamol for CYP1A2, chlorpropamide for CYP2C11, and
phenacetin for CYP2E1 and CYP3A2) and then centrifuged (13,000 g,
12 min). The supernatant was mixed with ethyl acetate using an
Intelli-mixer for 30 min. After centrifugation (8,000 g, 8 min, 25 �C),
the ethyl acetate layer was collected and evaporated to dryness. The
residue was dissolved in each mobile phase for the HPLC analyses.
The configuration of the HPLC system was the same as described in
“2.7. Pharmacokinetic experiments” section. The linear gradient
elution of the solvents (A: sodium phosphate (50 mM, pH 3.4), B:
ACN) and flow rate were programmed for the quantitation of acet-
aminophen, 6-hydroxychlorzoxazone and 6b-hydroxytestosterone
as follows: (acetaminophen; 0e5 min: 10% ACN, 5e8 min: 10%e40%
ACN, 8e14 min: 40% ACN, 14e15 min: 40%e10% ACN, and
13e21 min: 10% ACN, 1 mL/min), (6-hydroxychlorzoxazone;
0e5 min: 20% ACN, 5e9 min: 20e40% ACN, 9e14 min: 40%e20%
ACN, and 14e20 min: 20% ACN, 1 mL/min), and (6b-hydrox-
ytestosterone: 0e2 min: 25% ACN, 2e10 min: 25e50% ACN,
10e15 min: 50% ACN, and 15e16 min: 50e25% ACN, 1 mL/min). For
the quantitation of 4-hydroxytolbutamide, the mobile phase was
composed of sodium phosphate (50 mM, pH 3.4) and ACN (60:40,
vol/vol) with a flow rate of 1 mL/min. The UV detector wavelength
for the acetaminophen, 4-hydroxytolbutamide, 6-
hydroxychlorzoxazone and 6b-hydroxytestosterone analysis was
fixed at 245 nm, 230 nm, 287 nm and 245 nm, respectively.

2.9. Statistics analysis

Data are expressed as the mean ± standard deviation (SD).
Differences compared among the groups were determined by
ANOVA followed by the Bonferroni method. Comparisons of two
measures between before and after procedures were performed by
paired t-test. Differences were considered to be significant when
the value of p < 0.05. Pharmacokinetic parameters were calculated
using themoment analysis program developed by Tabata et al. [23].

3. Results

3.1. Hemodynamics and hepatic injury after PRBC and Hb-V
resuscitation

The MAP baseline was around 95 mmHg. MAP decreased to
around 30 mmHg immediately after the start of bleeding and was
maintained under 40 mmHg during the removal and infusing of
blood (Fig. 1B). HR was decreased from 330 beats/min (baseline) to
250 beats/min by bleeding, but gradually increased to the baseline
level during hypotension (Fig. 1C). After resuscitation by PRBC and
Hb-V, the MAP value recovered to the baseline, while the HR was
temporary decreased. All hemorrhagic shock model rats resusci-
tated by PRBC and Hb-V survived until they were used for further
experiments. There was no significant difference in total bleeding
volume between the PRBC and Hb-V resuscitation groups (PRBC
group: 34.7 ± 2.1 mL/kg, Hb-V group: 34.2 ± 1.8 mL/kg). The AST
and ALT levels were significantly increased by massive hemorrhage
and resuscitation with Hb-V and PRBC compared to baseline
(Fig. 1D and E). No significant difference in any of the hemody-
namics and clinical chemistries were found between the Hb-V and
PRBC resuscitation group.

3.2. Hepatic CYP protein expression after PRBC and Hb-V
resuscitation

As a result of the quantitative evaluation of the protein
expression of the hepatic CYP1A2, CYP2C11, CYP2E1, and CYP3A2
by quantitative proteomics, the hepatic protein expressions of
CYP1A2 and CYP2E1 in both the PRBC and Hb-V resuscitation
groups were decreased by 2-fold, while that for CYP2C11 and
CYP3A2 were decreased slightly (<1.25-fold) compared to that in
the sham group (Table 1). Furthermore, the protein expressions of
these four CYP isoforms were also quantitatively evaluated by
means of Western blotting. The results showed that all target CYP
isoforms in the Hb-V and PRBC resuscitation groups were
decreased compared to those in the sham group (Fig. 2).

3.3. Pharmacokinetics of CYP-metabolizing drugs at 24 h after PRBC
and Hb-V resuscitation

As a result of administration of substrates for CYP isoforms
(CYP1A2, CYP2C11, CYP2E1 and CYP3A2) at 24 h after Hb-V resus-
citation, the plasma retentions of all four substrates were increased
in the Hb-V resuscitation group compared to the sham group
(Fig. 3). Accompanied with an increase in plasma concentration,
pharmacokinetic parameters, such as the area under the blood
concentration-time curve (AUCinf) and clearance (CLtot), of caffeine



Fig. 2. Levels of protein expression of hepatic CYP isoforms ((A) CYP1A2, (B) CYP2C11, (C) CYP2E1 and (D) CYP3A2) in sham and hemorrhagic shock rats at 24 h after resuscitation
with Hb-V and PRBC. b-actin was used as a loading control. Each CYP isoform/b-actin in sham-treated group is arbitrarily set at 100% and data are expressed as the percentage of
that. The values are means ± SD (n ¼ 3). *p < 0.05, **p < 0.01 vs. sham.
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(CYP1A2), chlorzoxazone (CYP2E1) andmidazolam (CYP3A2) in the
Hb-V resuscitation group were significantly increased/decreased
compared to the sham group (Table 2). On the other hand, the
pharmacokinetic parameters for tolbutamide (CYP2C11) were not
significantly changed but were slightly increased/decreased
Fig. 3. Plasma concentration profile of a CYP cocktail consisting of (A) caffeine, (B) tolbutam
shock model rats at 24 h after resuscitation with Hb-V (closed circle) and PRBC (gray circle
The values are the means ± SD (n ¼ 4).
compared to the sham group. In the case of the PRBC resuscitation
group, the plasma concentrations of the four substrates for the CYP
isoforms were increased compared to that for the sham group, but
these changes were not increased as much as those for Hb-V
resuscitation group (Fig. 3). In addition, most of the
ide, (C) chlorzoxazone and (D) midazolam in sham rats (open circle) and hemorrhagic
).



Table 2
Pharmacokinetic parameters of four CYP substrates in sham rats and hemorrhagic
shock model rats at 24 h after resuscitation with PRBC and Hb-V.

Sham PRBC Hb-V

Caffeine (CYP 1A2)
t1/2 (hr) 1.5 ± 0.2 2.1 ± 0.2# 4.7 ± 1.7**
AUCinf (mg � hr/mL) 14.1 ± 1.0 20.0 ± 2.1# 37.0 ± 11.6**
MRT (hr) 2.1 ± 0.3 3.0 ± 0.4# 6.7 ± 2.4**
CLtot (mL/hr) 355.8 ± 24.6 252.2 ± 28.4**## 146.2 ± 48.9**
Vd (mL) 734.5 ± 68.5 756.4 ± 22.9# 902.0 ± 70.0**
Tolbutamide (CYP 2C11)
t1/2 (hr) 4.4 ± 0.2 5.0 ± 0.7# 6.0 ± 0.3**
AUCinf (mg � hr/mL) 173.8 ± 4.3 195.7 ± 30.8 184.3 ± 21.7
MRT (hr) 6.3 ± 0.2 7.2 ± 0.9# 8.7 ± 0.5**
CLtot (mL/hr) 14.4 ± 0.4 13 ± 2.2 13.7 ± 1.7
Vd (mL) 90.7 ± 5.1 92.9 ± 5.4## 118.5 ± 9.1**
Chlorzoxazone (CYP 2E1)
t1/2 (hr) 1.0 ± 0.2 1.3 ± 0.2# 2.0 ± 0.3**
AUCinf (mg � hr/mL) 28.5 ± 1.8 36.5 ± 6.2 41.4 ± 4.0**
MRT (hr) 1.5 ± 0.3 1.9 ± 0.3# 2.8 ± 0.5**
CLtot (mL/hr) 175.8 ± 11.4 140.2 ± 23.9* 121.5 ± 12.1**
Vd (mL) 258 ± 32.9 255.3 ± 8.5## 341.6 ± 37.6**
Midazolam (CYP 3A2)
t1/2 (hr) 0.19 ± 0.04 0.18 ± 0.02 0.23 ± 0.03
AUCinf (mg � hr/mL) 1.0 ± 0.1 1.3 ± 0.1 1.6 ± 0.3*
MRT (hr) 0.25 ± 0.04 0.23 ± 0.03 0.28 ± 0.05
CLtot (L/hr) 7.7 ± 0.4 5.8 ± 0.5* 4.9 ± 1.2**
Vd (L) 1.9 ± 0.4 1.3 ± 0.1* 1.4 ± 0.2*

t1/2, the half-life; AUCinf, area under the concentration-time curve; MRT, mean
residence time; CLtot, clearance; Vd, distribution volume.
The values are means ± SD; n ¼ 4 each group.
*p < 0.05, **p < 0.01 vs. sham group, #p < 0.05, ##p < 0.01 vs. Hb-V group.
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pharmacokinetic parameters, except for midazolam, in the PRBC
resuscitation group were significantly changed compared to those
for the Hb-V resuscitation group (Table 2).

3.4. Hepatic CYP metabolic activity at 24 h after resuscitation with
PRBC and Hb-V

The metabolic activities of hepatic CYP1A2, CYP2C11, CYP2E1
and CYP3A2 were evaluated using hepatic microsomal protein
samples collected from sham rats or hemorrhagic shock rats that
had been resuscitated with PRBC or Hb-V. At 24 h after resuscita-
tion, the metabolic activity of all target CYP isoforms in the PRBC
and Hb-V resuscitation groups were significantly decreased
compared to that in the sham group (Fig. 4). Of note, the Hb-V
resuscitation group showed much less metabolic activity than the
PRBC group in all four CYP isoforms (Fig. 4).

4. Discussion

A hepatic ischemia-reperfusion injury is typically accompanied
by reductions in quantitative (protein expression) and qualitative
(metabolic activity) changes of hepatic CYPs, which occur after
massive hemorrhage and transfusion with RBC in human and ani-
mal studies [15,18]. In this study, the results of quantitative prote-
omic analyses andWestern blot showed that the protein expression
of the CYP isoforms (CYP1A2, CYP2C11, CYP2E1 and CYP3A2) were
decreased in hemorrhagic shock rats that were resuscitated by
PRBC and Hb-V compared to sham rats (Fig. 2 and Table 1). In
addition to these four CYP isoforms, proteomic analyses showed
that 10 other CYP isoforms (CYP2A2, CYP2B3, CYP2C23, CYP2C6,
CYP2C7, CYP2D1, CYP2D4, CYP2D26, CYP4F1 and CYP4F4) in the
liver were also decreased in the PRBC and Hb-V resuscitation
groups compared to the sham group (Table S2). It should be noted
that the magnitudes of these reductions were not significantly
different between the PRBC and Hb-V resuscitation groups. It was
previously reported that a reduction of hepatic CYP occurred after a
massive hemorrhage and transfusion with RBC in the case of an
hepatic ischemia-reperfusion injury induced by reactive oxygen
species (ROS) generated by oxygen from the RBC [16,24]. In this
study, the AST and ALT levels were observed to be elevated after
transfusion with PRBC and Hb-V (Fig. 1D and E), leading to the in-
duction of a hepatic ischemia-reperfusion injury. Furthermore, the
hepatic accumulation of nitrotyrosine, a type of oxidative product,
was reported in hemorrhagic shock model rats that had been
resuscitated with both Hb-V and PRBC by virtue of the fact that the
oxygen supply capacity of Hb-V was comparable to that for RBC
[3,25]. Therefore, hepatic ischemia-reperfusion injury induced by
ROS that were generated by oxygen supplied from Hb-V to hypoxic
livers would be attributed to a reduction in the protein expression
of hepatic CYPs. In addition, it is also known that inflammatory
cytokines, such as interleukin-6 and tumor necrosis factor-a, cause
a decrease in CYP expression resulting in the suppression of CYP
genes [26]. Since the levels of some systemic cytokines, including
tumor necrosis factor-a, were elevated at 1 h after the Hb-V
resuscitation from hemorrhagic shock [8], such inflammatory cy-
tokines may be associated with the reduction in the protein
expression of CYPs after massive hemorrhage and Hb-V
transfusion.

Members of the CYP family play a crucial role in drug meta-
bolism, especially the first phase reaction of drug metabolism, and
changes in drug metabolism via these enzymes for assorted rea-
sons, such as degradation, inhibition and induction, has sometimes
caused approved drugs to be removed from the market due to the
induction of severe adverse effects [13,27]. Hence, the influence of
the reduction in the protein expression of CYPs after Hb-V and PRBC
transfusion on the pharmacokinetic alteration in CYPs-
metabolizing drugs is a serious concern. Accompanied with the
decrease in the protein expression of CYPs after Hb-V and PRBC
resuscitation, the blood retention of the substrates for four CYP
isoforms (CYP1A2, CYP2C11, CYP2E1 and CYP3A2) were increased
in hemorrhagic shock model rats at 24 h after Hb-V and PRBC
resuscitation compared to sham rats (Fig. 3, Table 2). It was previ-
ously reported that a hepatic ischemia-reperfusion injury induced a
decrease in hepatic CYP metabolic activity [28,29]. Since Hb-V and
PRBC transfusion induced a hepatic ischemia-reperfusion injury in
this study (Fig. 1C and D), a decrease in CYP metabolic activity
would have pathophysiologically occurred as the result of the Hb-V
transfusion as well as the PRBC transfusion (Fig. 4). Interestingly,
the Hb-V transfusion showed a higher blood retention of CYP-
metabolizing drugs with the CYP isoforms having a lower meta-
bolic activity than the PRBC transfusion (Figs. 3 and 4 and Table 2).
This is thought to be causally related to the lipid composition of the
Hb-V preparation. In a previous study, it was reported that the
physicochemical properties of lipids, such as the degree of satura-
tion of the lipid fatty acyl chain and non-bilayer forming lipids,
regulated CYP metabolic activity [30,31]. A study of CYP-based
drug-drug interactions with Hb-V in healthy rats also showed
that Hb-V administration, but not PRBC administration, prolonged
the blood retention of CYP-metabolized drugs, resulting from the
inhibition of the metabolic activity of CYPs [32]. Taking these facts
into consideration, Hb-V resuscitation from massive hemorrhage
would be predicted to decrease CYP metabolic activity resulting
from either a synergic or additive inhibition by the pathophysio-
logical effects and lipid components of Hb-V.

It should be noted that the Hb-V has an inhibitory effect on the
pharmacology of the concomitantly administered CYP-metabolizing
drugs. In this study, the increase in AUCinf for caffeine (CYP1A2),
tolbutamide (CYP2C11), chlorzoxazone (CYP2E1) and midazolam
(CYP3A2) after Hb-V transfusion in hemorrhagic shock model rats
were 2.64-, 1.06-, 1.45- and 1.6-fold, respectively, compared to sham



Fig. 4. Metabolic activities of (A) CYP1A2, (B) CYP2C11, (C) CYP2E1 and (D) CYP3A2 in the livers of sham rats and hemorrhagic shock rats at 24 h after resuscitation with Hb-V or
PRBC.
The activity of each CYP isoform in the sham group is arbitrarily set at 100% and data are expressed as the percentage of that value. The values are means ± SD. (n ¼ 5) *p < 0.05,
**p < 0.01 vs. sham, #p < 0.05, ##p < 0.01 vs. PRBC.
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rats (Table 2). According to the guidelines on drug interactions for
drug development and the appropriate provision of information
published by the Pharmaceutical and Medical Devices Agency
(PMDA), inhibitors that increase the AUC of substitutes by more than
5-fold, �2-fold but <5-fold, and �1.25-fold but <2-fold after oral
administration are considered to be a “strong inhibitor”, “moderate
inhibitor”, and “weak inhibitor”, respectively [33]. It therefore ap-
pears that the Hb-V transfusion had only moderate effects on the
inhibition of the drug metabolism of CYP1A2, and weakly or rarely
inhibited the metabolism of CYP2C11, CYP2E1 and CYP3A2. These
inhibitory rates for the drug metabolism of CYP isoforms were not
significant difference between the Hb-V and PRBC transfusion,
indicating that the same modern medication in the transfusion of
RBC could also be applied to Hb-V transfusion.

In conclusion, resuscitation from massive hemorrhage by Hb-V
transfusion caused quantitative (protein expression) and qualita-
tive (metabolic activity) changes in the characteristics of each CYP
isoform (CYP1A2, CYP2C11, CYP2E1 and CYP3A2) due to hepatic
ischemia-reperfusion injury after resuscitation with Hb-V from a
massive hemorrhage, leading to the prolonged retention of
concomitantly administered CYP-metabolizing drugs in the blood.
However, the clinical relevance of the extents of inhibition would
not be expected to be clinically relevant. This is a first report to
clarify the effect of Hb-V resuscitation from hemorrhagic shock on
in vivo pharmacokinetics of concomitant drugs with a focus on
CYPs. The data obtained in present study provides useful infor-
mation regarding the risk of drug-drug interactions in developing
Hb-V as an artificial RBC for clinical use.
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