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Abstract: Photoluminescence properties of cubic zinc blende ZnO thin films grown on glass substrates
prepared by the spray pyrolysis method are discussed. X-ray diffraction spectra show the crystalline
wurtzite with preferential growth in the (002) orientation and a metastable cubic zinc blende phase
highly oriented in the (004) direction. Raman measurements support the ZnO cubic modification
growth of the films. Photoluminescence (PL) spectra of zinc blende films are characterized by a new
PL band centerd at 2.70 eV, the blue emission, in addition there are two principal bands that are also
found in hexagonal ZnO films with the peak positions at 2.83 eV and 2.35 eV. The origin of the 2.70 eV
band can be attributed to transitions from Zn-interstitial to Zn-vacancies. It is also important to
mention that the PL intensity of the 2.35 eV band of the zinc blende thin films is relatively higher than
in the band present in hexagonal ZnO films, which means that zinc blende films have more oxygen
vacancies, as was corroborated by means of the energy dispersion spectroscopy (EDS) measurements.
PL spectra at 77 ◦K were measured and the 2.70 eV band was confirmed for the zinc blende films.
Some PL bands of cubic films also appeared for the hexagonal phase, which is due, to a certain extent,
to the similar ions stacking of both wurtzite and zinc blende symmetries.

Keywords: highly oriented crystals; ZnO thin films; spray pyrolysis technique; photoluminescence;
wurtzite; zinc blende; optical properties

1. Introduction

Zinc oxide (ZnO) is a highly versatile compound material because of its multiple industrial
applications. As a semiconductor, ZnO thin films have many important applications, principally as
sensors and optoelectronic materials [1–6]. Another interesting application is related to its use as a
transparent conductor [7,8]. Therefore, researching its structural, electrical and optical properties is of
wide importance. For example, Martínez Pérez et al. [7] reported the synthesis of good quality ZnO
thin films by means of the spray pyrolysis technique. When chemical methods are used for depositing
films, such as spray pyrolysis, it is well known that the physical properties of the resultant ZnO thin
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films depend on the molar concentration of the solvents and the preparation conditions of the source
solution [7]. Therefore, for the same molar concentrations in the spray pyrolysis technique, if the
ambient conditions of the source solution are modified then the physical properties of the deposited
thin films should be different. In this research work, we show an example proving this hypothesis,
and consequently a phase change from wurtzite (WZ) to zinc blende (ZB) was obtained at ambient
conditions in the growth of undoped ZnO thin films on glass substrates. Ashrafi and Jagadish [9]
remarked on the importance of obtaining a stable ZB phase of ZnO thin films for their potential
applications. Also, investigations on the growth of the cubic phase in ZnO thin films have recently
been reported. Rosales-Córdova et al. [10] reported the detection of the zinc blende phase in doped
wurtzite ZnO thin films. Wang Xiao-Dan et al. [11] reported on cubic ZnO thin films deposited at a low
pressure by means of the molecular beam epitaxy technique. In a previous work [12], we reported the
synthesis of metastable zinc blende ZnO thin films. Their structural nanometric properties and the
optical band gap were studied. In relation to their optical emission properties, in this work it is shown
that the traditional photoluminescence (PL) bands [13–19] for hexagonal wurtzite ZnO thin films are
maintained and new bands appear for cubic zinc blende ZnO thin films. The luminescent properties of
hexagonal ZnO as material with a wide band gap has been widely studied in a very recent review [20],
in which a large variety of electronic and optoelectronic devices were described. Cubic ZnO, with a
band gap of approximately the same value and with very similar physical properties as those studied
in this work, can cover the same applications. ZnO offers the prospect of replacing the gallium nitride
used in most opto-luminescent devices, with the advantage of being a cheaper material. To date, ZnO
nanorod-based light-emitting lasers have been reported, for which enhanced stimulated emission from
very small size structures has been demonstrated [21]. Hybrid nanostructures have been fabricated
by means of ZnO and graphene, which emit white light [22]. Jin et al. [23] reported violet and UV
from ZnO thin films deposited on sapphire by using the laser ablation technique. Additionally, optical
oxygen gas sensing by means of exciton emission detection extends the optical applications of this
semiconductor [24]. Doping is also used to improve some properties with a specific purpose, as is
the case where ZnO:B widens the range of luminescent emission [25], and for Zn1-xCrxO where Cr
increases the optical conductivity with respect to the undoped material [26].

The principal aim of this work is to show a new PL band of the cubic films at 2.70 ± 0.05 eV when
compared with the hexagonal phase emissions, and the possible relation between the band and the
structural properties of the material. The emission at 2.7 eV (λ = 460 nm) corresponds to a light blue
color, which is precisely the emission of InGaN Light-Emitting Diodes [27,28]. This fact could conduce,
after some engineering process, to the preparation of cubic ZnO-based blue emission devices.

2. Materials and Methods

Using the procedure detailed in [7], an ultrasonic spray pyrolysis deposition system was used
to synthesize ZnO thin films. Source materials solutions of 0.3032 molar concentrations of zinc
acetylacetonate, from Sigma Aldrich (México), dissolved in N,N-dimethylformamide (N,N-DMF), from
Mallinckrodt México, were prepared. A source solution was prepared at the same conditions (stirred
for 24 h) as those reported in [7] and is denoted as solution A (Samples Z5, Z6, Z7, Z8). Another solution
was prepared under different conditions (stirred for 48 h) and is denoted as solution B (Samples Z1, Z2,
Z3, Z4). A spray from the solutions was produced by means of an ultrasonic generator operated at
0.8 MHz. High purity air at flow rates of approximately 10 L/min was used as the carrier of the spray
to the top of the substrate for 5 minutes. To achieve pyrolysis, a molten tin bath was the substrate
heater. Corning glasses were used as substrates, which were carefully cleaned using a well-known
cleaning procedure [16]. The depositions were carried out at substrate temperatures of 400 ◦C (Z1,
Z5), 450 ◦C (Z2, Z6), 500 ◦C (Z3, Z7) and 550 ◦C (Z4, Z8). To explore the structural properties and
stoichiometry of the ZnO thin films, a field emission JEOL (Tokyo, Japan) scanning electron microscopy
was used. Images of the sample surfaces and energy dispersion spectroscopy (EDS) measurements
were carried out. To identify the crystalline phases, X-ray diffraction (XRD) measurements were
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made using a D-5000 Siemens (Germany) Diffractometer. For the photoluminescence measurements a
Spectrofluorometer Rf5301 from Shimadzu (Japan) was used. Raman spectroscopy was carried out in
a Horiba Jobin Yvon LabRAM micro-Raman system equipped with a He–Ne laser emitting at 632.8 nm.
All the characterizations were carried out at room temperature (RT).

3. Results and Discussion

EDS measurements show 49.78% of oxygen (O) and 50.22% of zinc (Zn) atomic concentrations
for type A samples, and 45.37% (O) and 54.63% (Zn) for type B samples, as was reported in [12].
It can be noted there was a lack of oxygen of the order of 4.63% in the crystalline network of the B
samples. Figure 1 shows the X-ray diffraction patterns for the thin films A (samples Z5, Z6, Z7, Z8) and
B (samples Z1, Z2, Z3, Z4). From Figure 1, the hexagonal wurtzite crystalline phase for type A films,
highly oriented in the c-axe direction (002), can be observed. The B films showed high orientation in
the (004) direction at 2θ equals 44.6 degrees. Such a peak is characteristic of the cubic zinc blende
crystalline phase, as reported in the literature [9,17–19]. The thicknesses of the hexagonal thin films are
in the range of 450 ± 30 nm and the cubic thicknesses are in the 350 ± 20 nm range, as estimated by
profilometer measurements.
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Figure 1. X-ray diffraction patterns of the films showing the cubic (zinc blende) and hexagonal phases.
Substrate temperatures are 400 ◦C (Z1, Z5), 450 ◦C (Z2, Z6), 500 ◦C (Z3, Z7) and 550 ◦C (Z4, Z8). The inset
illustrates the lattice of both ZnO phases and their preferred orientation of the films.

XRD data are used to calculate the average crystallite size (d) from the full-width at half-maximum
(FWHM) of highest-intensity XRD peaks applying Debye–Scherrer’s equation [29–32]:

d =
Kλ

∆(2θ)cosθ

where λ = 1.5406, Å is the wavelength of the X-ray source, θ is the Bragg diffraction angle at a
peak position, ∆(2θ) is the FWHM of the corresponding peak y and K ∼ 0.9 is a correction factor.
The average crystallite sizes were estimated in the range of d = 14–20 nm for the hexagonal wurtzite
phase (using the (002) reflection) and from 15 to 17 nm for the zinc blende phase (using the (004)
reflection). The results for each sample are presented in Table 1. From the values in this table, a decrease
of the crystallite size as the deposition temperature increases can be observed. No appreciable
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shifts of the characteristic XRD peaks were observed. The sizes of the crystallite correspond to the
nanostructures formed in zinc blende films, as can be observed in the SEM image in Figure 2.

Table 1. Crystallite size of the samples.

Phase Sample Full-Width at
Half-Maximum (◦)

2θ (◦) d (nm)

Z5 0.6160 34.6200 13.362 ± 0.24
Z6 0.4276 34.5014 19.452 ± 0.53
Z7 0.5491 34.6088 15.152 ± 0.27

Hexagonal

Z8 0.6062 34.6200 13.762 ± 0.35

Cubic

Z1 0.5163 44.6148 16.629 ± 0.30
Z2 0.5118 44.6186 16.777 ± 0.55
Z3 0.5500 44.6200 15.613 ± 0.11
Z4 0.5742 44.6000 14.953 ± 0.18
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Figure 2. SEM images of the surfaces of the ZnO thin films. (a) Hexagonal phase. (b) Cubic phase.

Figure 2 shows SEM images of the wurtzite thin films on the left (a), and zinc blende thin films on
the right (b). The scale is 1 × 1 µm. Spheroid-like nanoparticle aggregates of 30 nm in diameter for the
hexagonal wurtzite and nano-worms of 200 nm for the cubic zinc blende can be seen.

Photoluminescence (PL) measurements at RT were carried out on the ZnO thin films using an
excitation wavelength of 310 nm (4.0 eV). Figure 3 shows the PL spectra of the hexagonal wurtzite
ZnO thin films. It can be observed that the spectra include five bands at 2.30, 2.83, 3.34, 3.44 and
3.77 eV, respectively denoted as B1, B2, B3, B4 and B5. The principal band B2 (2.83 eV) is the most
intense in accordance with the literature reports [13–19] on hexagonal films. The B5 (3.77 eV) band at
the ultraviolet range is attributed to some emission near the band gap edge, as reported in Fang et
al. [13] and Tapa et al. [33]. The B5 (3.77 eV) band was also reported by Cui et al. [34] as an unusual
ultraviolet emission for ZnO crystals. The B1 (2.35 eV) band at the visible spectrum is related to the
exciton hole–electron pair at a deep level (DL) of the band gap of the ZnO caused by point defects,
principally oxygen vacancies [33,35–38].
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Figure 3. Photoluminescence spectra for the hexagonal wurtzite ZnO thin films. The dashed lines are
the Gaussians, which were the references for the deconvolutions of the photoluminescence (PL) bands.

Figure 4a,b shows the PL spectra for the cubic zinc blende ZnO thin films. It can be observed that
the principal B2 (2.83 eV) band appears in all samples. However, a new band also appears, denoted
as B6 (2.70 eV). In these figures, the absence of the B5 (3.70 eV) band for the zinc blende films can be
observed. Consequently, a shift to the red of the PL spectra of the zinc blende films with respect to
the wurtzite films can be observed. Detailed deconvolution of the bands can be observed in Figure 5.
The B3 and B4 bands are related to the radiative recombination of donor–acceptor at the edge of the
band gap, as predicted by Reynolds et al. [39]. In our previous work it was reported that the band gap
of wurtzite ZnO (3.29 ± 0.03 eV) has a similar value to that of the zinc blende phase (3.18 ± 0.03 eV) [12].
Consequently, by considering the near resemblance of the ion stacking in the lattice of both structures,
the origin of the B6 band could be proposed to be generated by Zn interstitials [40,41]. The energy
level of Zn vacancies (VZn) in hexagonal ZnO is located at 0.50 ± 0.02 eV, below the bottom of the
conduction band (CB) [40], as illustrated in Figure 4c. It can be plausibly assumed the Vzn level in the
cubic phase is located at 0.50 eV, below the respective CB—taking into account that the exact value
of the center of the emission band, in both cases, depends on the measured band gap value. In this
manner, the B2 band (2.83 eV) of the hexagonal phase is associated with the VZn to valence band
transition [40,41] and, similarly, the B6 band of the cubic phase can be also identified with the Vzn with
a measurement of 2.68 ± 0.02 eV at the center of the band.
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Figure 4. Photoluminescence spectra for the cubic zinc blende ZnO thin films. (a) The sample
synthetized to 400 ◦C (Z1). (b) Samples synthetized to 450 ◦C (Z2), 500 ◦C (Z3) and 550 ◦C (Z4).
The dashed lines are the Gaussians, which were the references for the deconvolutions of the PL bands.
(c) Zn vacancy (VZn) to valence-band (VB) transitions in the hexagonal (left) and cubic (right) phases.
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Figure 5. Deconvolution (green lines) of the PL spectrum of the cubic Z3 sample showing the B6 band.

Figure 5 shows the explicit deconvolution of the cubic zinc blende Z3 sample spectrum. The new
B6 band at 2.70 eV can clearly be observed. Also, in the same figure the high intensity of the
photoluminescence of the B1 and B6 bands can be observed. It is important to mention that the high
intensity of the B1 band should be attributed to the lack of oxygen in the cubic zinc blende ZnO thin
films, as found in the EDS measurements.

Figure 6 shows the PL intensity of the Z7 (hexagonal) and Z3 (cubic) samples carried out at 77 ◦K
using an excitation wavelength of 325 nm. Figure 6a shows two bands at 2.42 (B7) which correspond,
respectively, to green emission and to 2.90 (B8) for the hexagonal phase. Moreover, with the aid of
Lorentzian deconvolution, the new B6 band at 2.70 eV for the cubic phase can again be clearly observed,
as shown in Figure 6b, in addition to the B7 and B8 bands. It is important to mention that the emission
of this B6 band corresponds to a blue emission.
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Vibrational properties of the samples were studied by means of Raman measurements. Figure 7
displays the Z2 and Z6 spectra of the samples, which correspond to ZnO in cubic and hexagonal
symmetries, respectively. The spectra look quite similar, which is in accordance with Zahn et al. [42],
who established that frequencies of the cubic modification vibrational modes nearly coincide with
those of the hexagonal phase and generally cannot be used for the purpose of distinguishing the two
structures. In the case of the Z2 and Z6 films, certain differences can be seen in the 350–600 cm−1 region.
First principles calculations by Wang and co-workers [43] predicted for zinc blende ZnO Raman TO
and LO modes at 365 and 516 cm−1. Figure 7 shows (black curve) modes at 340 cm−1 and 525 cm−1

which could be associated with the TO and LO modes reported in [43]. With regard to the wurtzite
phase, the theory predicts the modes A1

TO, E1
TO and E2

high, at 350, 371 and 401 cm−1, respectively.
While A1

TO and E2
high were not observed in this work, E1

TO was at 414 cm−1, in agreement with the
experimental results: 409 cm−1 [43] and 420 cm−1 [44]. This mode could be resolved by deconvolution,
as shown in the inset of Figure 7a. Since the excitation beam is normal to the surface of the film, i.e.,
perpendicular to planes (002) and (004) of the hexagonal and cubic phases, respectively (observe inset
of Figure 1), the electric field of the light is parallel to these planes. So, the excitation of the mode
E1

TO (see inset of Figure 7b) is more favored in the hexagonal phase than in the cubic. Other modes
observed in the hexagonal phase are B1

high: 510 cm−1, A1
LO: 501 cm−1 and E1

LO: 508 cm−1 [43,45].
These three phonons could all be present to shape the band centered at 505 cm−1 of Figure 7, which is
denoted as A1

LO. The modes at around 650 and 800 cm−1 have been identified in hexagonal ZnO with
multi-phonons [46] and surface phonons [47], respectively. In this way, our ZnO Raman results are
reasonably supported for theoretical calculations and experimental reports.
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4. Conclusions

Cubic zinc blende ZnO thin films were grown on glass substrates by means of the spray pyrolysis
technique. Raman measurements supported the growth of ZnO in the cubic phase. The structural
characterization showed spheroid-like nanoparticles with 30 nm diameters for hexagonal wurtzite and
nano-worm-like structures of 200 nm for cubic zinc blende films. In relation to the optical characterization,
the unfolding of the principal band of the photoluminescence spectra of cubic zinc blende ZnO thin films
was shown. A photoluminescence band peaked at 2.70 eV, characteristic for cubic rock-salt ZnO. This was
ascribed to the exciton recombination of the hole–electron pair of the forbidden band gap that presented in
the fabricated zinc blende ZnO thin films. It is important to emphasize that this band corresponds to a blue
emission, which opens the applicability of these films as light-emitting devices. Additionally, EDS and PL
studies suggest oxygen vacancies to be present in the cubic zinc blende ZnO thin films, which promote the
green emission shown by the B7 band in the PL measurements at 77 ◦K. It is important to mention that
some PL bands of cubic films are also observed for the hexagonal phase due to the similar ion stacking in
both wurtzite and zincblende symmetries, which commonly gives place to polytypism in these ZnO thin
films, as was reviewed by Ashrafi and Jagadish [9].
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