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Abstract
Autism spectrum disorder (ASD) is a developmental disorder which is currently only diagnosed

through behavioral testing. Impaired folate-dependent one carbon metabolism (FOCM) and trans-

sulfuration (TS) pathways have been implicated in ASD, and recently a study involving multivariate

analysis based upon Fisher Discriminant Analysis returned very promising results for predicting an

ASD diagnosis. This article takes another step toward the goal of developing a biochemical diag-

nostic for ASD by comparing five classification algorithms on existing data of FOCM/TS

metabolites, and also validating the classification results with new data from an ASD cohort. The

comparison results indicate a high sensitivity and specificity for the original data set and up to a

88% correct classification of the ASD cohort at an expected 5% misclassification rate for typically-

developing controls. These results form the foundation for the development of a biochemical test

for ASD which promises to aid diagnosis of ASD and provide biochemical understanding of the dis-

ease, applicable to at least a subset of the ASD population.
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1 | INTRODUCTION

Autism Spectrum Disorder (ASD) encompasses a large group of early-

onset developmental disorders that are collectively characterized by

deficits in social interaction and communication as well as the

expression of restricted, repetitive behaviors and interests.1 ASD is cur-

rently estimated to affect 1 in 68 children,2 incurring an annual expend-

iture of $268 billion in the United States,3 and this prevalence

continues to rise.2,4 The median age of diagnosis is still 50 months in

the United States,2 with some evidence that this age is lowering.5 In
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the United Kingdom, the average age of diagnosis is estimated to be

55 months with no evidence of decreasing.6 Part of this discrepancy

can be attributed to the difference in positions on national screening

between the two countries: in 2007, the American Academy of Pedia-

trics in the U.S. called for general screening followed by a comprehen-

sive evaluation for ASD by 24 months7,8 while the National Health

Service in the U.K. advocates against universal screening.9 Camarata10

indicates that this difference in recommendations largely lies in the reli-

ability of ASD diagnosis at 24 months11,12 and that the stimulus behind

the case for universal screening lies in early intervention. Numerous

studies (e.g., Refs. 13–17) have related improved clinical outcomes to

early intervention, providing motivation for diagnosing individuals as

early as accurate diagnosis is possible.

The “spectrum” nature of ASD coupled with the rapid, highly vari-

able development processes present early in life elevates the chal-

lenges of early diagnosis of ASD. Miller et al.18 illustrate this point by

comparing two hypothetical children:

“An active, verbose child who speaks primarily in ster-

eotyped phrases and is preoccupied with train sched-

ules might be immediately recognized as autistic.

Likewise, a child who is nonverbal, does not respond to

his name despite normal hearing, and who spins things

repetitively might also be immediately recognized as

autistic. Both children have underlying impairments in

social communication and restricted interests, but the

surface presentation is quite different.”

A wealth of psychometric tools available to healthcare professio-

nals aid in diagnosing ASD; however, a biological signature of the disor-

der promises to lower the age of diagnosis without the challenges

associated with a behavioral diagnosis of a developmental disorder.

Heterogeneity in typical development patterns limits the earliest age at

which ASD is reliably diagnosed; prospective studies on social behav-

iors such as gaze to faces, shared smiles, and vocalizations to others

found that these behaviors were not different at 6 months of age, but

group differences began to appear at 12 months.19 However, bio-

marker signatures of ASD, such as imaging of white matter tract organi-

zation20 and EEG complexity,21 have been observed as early as 6

months of age. Recent reports from NeuroPointDX suggest amino acid

panels are predictive of ASD status in children aged 4–6 years22 and

18–48 months23,24 and these promising results suggest extensions

down to even younger participants to evaluate the earliest age at

which these signatures appear. Such biomarker-based metrics have

been shown to aid in the diagnosis of other disorders traditionally

solely diagnosed by behavioral observations such as major depressive

disorder.25

Biomarkers come with their own set of challenges before they

reach clinical translation: less than 0.1% of cancer biomarkers reported

in the literature ever enter clinical practice26 and scores of genome

wide association studies seeking predictive ASD biomarkers have

found few significant findings, most of which are specific to individual

studies.27 Reconciling the “holy grail” potential of successful biomarkers

with the poor predictive power among those reported in the literature

draws into question the manner in which biomarkers are identified. A

better framework is clearly needed for identifying predictive bio-

markers that can accurately and differentially diagnose ASD.

Classic biomarker development measures a plethora of candidate

biomarkers but evaluates this panel by a series of univariate tests that

considers each measurement as independent from all others. Further-

more, the population-level hypothesis tests that are almost synony-

mous with this approach are ill-suited for quantifying the separation of

two or more groups.28 Multivariate biomarkers evaluated by separa-

ting individuals (e.g., C-statistic, confusion matrix, etc.) have become

increasingly popular since they can incorporate many pieces of infor-

mation to arrive at a diagnosis. However, since they require

more parameters than their univariate counterparts, special attention

has to be paid to avoid overfitting when investigating multivariate

biomarkers.

The folate-dependent one-carbon metabolism (FOCM) and trans-

sulfuration (TS) pathways comprise a promising source for a multivari-

ate biomarker for ASD. These pathways incorporate both genetic and

environmental factors linked to ASD liability.29 The authors have previ-

ously developed a multivariate biomarker, based upon Fisher Discrimi-

nant Analysis (FDA) for ASD that achieved a positive predictive value

and negative predictive value of 97.6 and 96.1%, respectively.29 This

investigation will be extended in this article in two different directions:

(a) By comparing univariate analysis with four different multivariate

methods on FOCM/TS data for ASD biomarker development to ensure

that the identified results are not restricted to FDA and (b) to test and

validate multivariate FOCM/TS biomarkers on data collected from a

new cohort of ASD participants.

2 | MATERIALS AND METHODS

2.1 | Training data

The training data used in this study have been published previously.29

Briefly, data come from the Arkansas Children’s Hospital Research

Institute’s autism IMAGE study and detailed study design, inclusion/

exclusion criteria, and demographic information have been published

elsewhere.30 Children between the ages of 3 and 10 years were

recruited locally and enrolled to assess levels of oxidative stress. ASD

was assessed by a diagnosis of “Autistic Disorder” as defined in the

Diagnostic and Statistical Manual for Mental Disorders, Fourth Edition, the

Autism Diagnostic Observation Schedule (ADOS), and/or the Child-

hood Autism Rating Scales (CARS; score>30); children with other

diagnoses on the autism spectrum or rare genetic diseases with similar

symptoms to ASD (e.g., fragile X syndrome) were not eligible for partic-

ipation. TD participants had no medical history of behavioral or neuro-

logic abnormalities by parent report. FOCM/TS metabolites from 83

and 76 case (ASD) and age-matched typically-developing (TD) control

children, respectively, were used for classification. The protocol was

approved by the Institutional Review Board (IRB) at the University of

Arkansas for Medical Sciences and all parents signed informed consent.
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2.2 | Validation data

The validation data are taken at baseline from three previously pub-

lished studies investigating pharmaceutical interventions to normalize

metabolic abnormalities of children with ASD31: (1) a combination of

methylcobalamin and low dose folinic acid32,33 (2) high dose folinic

acid,34 and (3) sapropternin.35 Given that these studies all focused on

evaluating treatment strategies for ASD, all participants had a con-

firmed diagnosis of ASD. FOCM/TS metabolites were available for 154

(76% male) participants with ASD with a mean age of 8.8 years (range

2–17 years). These ages are different than reported by Delhey et al.34

because this study only required that measurements be available at

baseline, rather than both at baseline as well as the conclusion of the

treatment phase. Furthermore, stratifying patients by age or gender did

not reveal any differences in the univariate metabolite distributions.

The first two studies were approved by the IRB at the University of

Arkansas for Medical Sciences and the third study was approved by

the IRB at the University of Texas Health Science Center at Houston.

All parents gave written, signed consent and patients provided assent

when appropriate.

2.3 | Metabolites

The metabolites under investigation are presented in Table 1 and addi-

tional details of these measurements and derivations are presented in

Melnyk, et al.30 This is only a subset of the measurements investigated

previously29 because “% DNA methylation” and “8-OHG” were absent

from the validation data set and were therefore removed from this

study to ensure that a consistent set of metabolites are used for train-

ing and testing.

2.4 | Kernel density estimation

Kernel density estimation (KDE) is a nonparametric density estimation

technique that overcomes many shortcomings of the common histo-

gram, including discontinuities at bin boundaries, sensitivity with

respect to the origin, and zero-valued outside of a certain range.36 In

this work, all KDE procedures use Gaussian kernels. The probability

density function (PDF) estimates provided by KDE are then used to

evaluate both the C-statistic and misclassification errors at specific

one-sided thresholds on the p value for membership in the ASD class

to characterize the various statistical models described below.

2.5 | Statistical techniques

Multivariate classification for ASD diagnostic status was explored

through classification and regression trees, principal component analy-

sis, fisher discriminant analysis, and logistic regression. The presented

techniques can be extended to classification tasks with more than two

classes; however, only binary classification (i.e., classification into two

different groups) will be discussed below. Sample x can belong to one

of two classes P1 and P2.

2.5.1 | Univariate classification

Perhaps the simplest way to develop a classifier for a diagnostic bio-

marker is to place a simple threshold on a single measurement. For

multivariate data, the modeler would then evaluate each measurement

independently and choose the measurement with the best discriminat-

ing power. In this work, single measurements are mean-centered and

normalized to unit variance before estimating the PDFs of the ASD and

TD groups.

2.5.2 | Classification and regression trees

When univariate techniques fall short, the modeler must turn to multi-

variate techniques (i.e., techniques that incorporate multiple features to

determine the classification). One intuitive extension from the simple

univariate classification scheme is to sequentially place thresholds on

many variables in the data set. The most common application of this

principle is through recursive partitioning via the classification and

regression tree (CART) methodology.37 Since sequential thresholds are

placed on variables and multiple thresholds on the same variable are

permitted, CART-based classifiers are generally nonlinear.

The tree-growing process begins with a node s and a node impu-

rity function i sð Þ. A proposed split s generates two daughter nodes sL

and sR that contain pL and pR proportions of the samples in s. Defining

the node impurity function i sð Þ to be the conditional probability that a

sample is in P1 , the change in impurity is given by

Di s; sð Þ5i sð Þ2pLi sLð Þ2pRi sRð Þ (1)

and the split with the greatest reduction in impurity over all variables

and all thresholds is chosen. This procedure is repeated for each node

until each node contains fewer than some minimum splitting threshold.

Each terminal node (i.e., a node with no daughter nodes) is associated

with either the ASD or TD class. Next, the tree is pruned upwards by

estimating the misclassification rate or risk R sð Þ of the entire tree ver-

sus subtrees with one terminal node removed, regularized by the num-

ber of terminal nodes Ts via parameter a:

Ra sð Þ5R sð Þ1ajTsj (2)

With a chosen via 10-fold cross-validation (see section “Avoiding

Overfitting: Cross-validation”), the tree that minimizes Ra sð Þ is chosen

TABLE 1 Variable identifiers (ID) and names

ID Variable name ID Variable name

x1 Methionine x12 GSSG

x2 SAM x13 fGSH/GSSG

x3 SAH x14 tGSH/GSSG

x4 SAM/SAH x15 3-ClT

x5 Adenosine x16 3-NT

x6 Homocysteine x17 Tyrosine

x7 tCysteine x18 Tryptophane

x8 Glu-Cys x19 fCystine

x9 Cys-Gly x20 fCysteine

x10 tGSH x21 fCystine/fCysteine

x11 fGSH x22 % oxidized glutathione
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as the final tree. In other words, the tree that balances the misclassifi-

cation rate with the number of terminal nodes/splits is chosen as the

final tree. The classification trees were carried out using the R package

“rpart”38 with i sð Þ defined by the Gini index and the minimum splitting

threshold set to eight.

2.5.3 | Principal component analysis

Rather than making many sequential decisions through CART meth-

odology, the original data can be projected onto a line and a single

binary threshold can be applied to the resulting univariate score.

Under the naïve assumption that the most favorable projection for

separating the two classes coincides with the projection with maxi-

mum variance, principal component analysis (PCA) can be used to

establish the projection direction. Principal components are orthogo-

nal and ordered such that the first principal component explains the

majority of the total variance.39 In this work, PCA is applied to the

panel of metabolites with unknown class membership. Then, the den-

sity of the first principal component for each class is estimated via

KDE to construct a binary classifier. A threshold is applied to the first

principal component at an accepted misclassification rate of the ASD

class to develop a simple binary classifier. Although multiple principal

components could be used in a classifier, this work focuses on the

first principal component to better compare with the other

projection-based methods discussed below and to avoid overfitting

by introducing more variables. The PCA analysis was conducted in

MATLAB.

2.5.4 | Fisher discriminant analysis

Since the data contains class labels (i.e., ASD or TD) for each panel of

measurements, a potentially better way to determine the projection

direction would directly use the class membership information to maxi-

mally separate the distance between the two classes of data. FDA40

achieves this by maximizing the ratio of the between-class scatter to

the within-class scatter of the two classes. In other words, the mean of

the ASD group and that of the TD group are separated as far as possi-

ble, while simultaneously minimizing the variance within each group. As

in the PCA analysis, the densities of the FDA scores of the two classes

are estimated via KDE and a threshold is applied at an accepted mis-

classification rate of the ASD class to develop a simple binary classifier.

The FDA analysis was conducted through routines developed in-house

in MATLAB.

2.5.5 | Logistic regression

Using a probabilistic approach, the conditional probability of member-

ship in class i given the data point is given as p Pijxð Þ. The odds ratio

that P1 is the correct class is then

p P1jxð Þ
p P2jxð Þ5

p P1jxð Þ
12p P1jxð Þ (3)

Logistic regression (LR) then assumes that the logarithm of this

odds ratio can be modeled as a linear function of x

L xð Þ5log
p P1jxð Þ

12p P1jxð Þ
� �

5w01wTx (4)

where w and w0 are estimated through maximum likelihood estimation

(MLE). Then, the probability distributions can be directly determined as

p P1jxð Þ5eL xð Þ= 12eL xð Þ� �
without the need for KDE.

There are many theoretical and experimental studies comparing

FDA and LR, resulting in the following outcomes: (a) LR performs better

than FDA for non-normal data,41 (b) LR requires more data to achieve

the same asymptotic error rate as achieved by FDA,42 though it is pos-

sible for LR to achieve its asymptotic error rate with less training data

than FDA,43 and (c) MLE of parameters in LR is unstable for separable

data, requiring regularization approaches or alternatives to MLE. In

practice, these algorithms can be compared on specific data sets to

determine the best algorithm for each scenario. LR analysis was con-

ducted using the “glm” function in R.

2.6 | Avoiding overfitting

Multivariate techniques promise more accurate biomarkers as they

incorporate many measurements into a diagnosis; however, these tech-

niques can also suffer from overfitting where the model fits the training

data exceptionally well but extends poorly to new data sets. Overfitting

can occur when some of the included variables are uninformative or

correlated with other variables. Therefore, variable selection is

employed to choose a minimal set of measurements for use in the clas-

sification procedure. In this work, all combinations of variables were

evaluated and the combination with the highest C-statistic was chosen

for a fixed number of variables. While this presents a large number of

variable combinations, this task was completed on a standard laptop

computer and runtime was no more than an hour for a fixed number of

variables. As the number of variables and/or complexity of the classifier

increases, filter methods, such as the report by Li et al.44 that used this

training data, can be used to separate the variable selection and classifi-

cation problems for improved computational efficiency. Furthermore,

validation strategies such as testing on separate validation data sets

and cross-validation are needed to mitigate overfitting and estimate

the model’s predictive power.

2.6.1 | Validation set

A validation set directly estimates the model’s predictive power by evalu-

ating the model on data which it has not yet seen (i.e., was not used for

training). A validation set can either be collected after the initial model

was trained, or more commonly, a single data set is split into training and

validation sets at the start of the modeling procedure. Here, a new data

set was incorporated to validate previously developed algorithms.

2.6.2 | Cross-validation

Since initial clinical investigations aiming to uncover diagnostic bio-

markers usually obtain measurements on a small number of individuals

(e.g., less than 100 participants per group), setting aside too large a por-

tion of data for validation does not leave sufficient samples for proper

model identification. Therefore, the estimated predictive power is artifi-

cially low. To retain as many samples as possible in the training set,

k-fold cross-validation can be used where the samples are divided into

k groups and one group is left out at a time, leaving the remaining k21
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groups available for model training. Then the model is validated on the

group that is left out and the procedure is repeated such that every

group is successively left out, so every sample is validated in a statisti-

cally independent manner. Here, a variation of k-fold cross-validation

known as leave-one-out cross-validation is used such that k is equal to

the number of samples, and this cross-validation strategy is used to

estimate the model’s predictive power within the training data set.

2.6.3 | Binary classification for projection-based methods

The PCA, FDA, and LR models all define a projection direction, but

classification requires transforming the continuous-valued scores into a

single ASD or TD classification. Throughout this work the threshold b

is chosen to fix the estimated probability that a TD participant will be

misclassified as ASD.

3 | RESULTS

The different classification methods are first compared with regard to

their performance on the training data. Variable selection is used in

some cases to determine final FDA and LR models. Once these final

models are identified, the models with the highest classification accu-

racy are evaluated on the validation data.

3.1 | Univariate modeling

Since most biomarker studies focus solely on univariate methods, each

variable is first explored individually on the training data for their

potential predictive power. Univariate classifiers were evaluated via the

C-statistic and cross-validated misclassification errors at thresholds on

the p value for membership in the ASD class. These results point to “%

oxidized glutathione” as the variable with the greatest discriminatory

power (Table 1; Figure 1a). At a threshold of b50:10, this univariate

classifier achieves a cross-validated misclassification of 6/76 and 18/83

for the TD and ASD participants, respectively. While not sufficient for

a diagnostic biomarker, this univariate classifier was used as a baseline

for comparison in the multivariate analyses.

3.2 | Performance of projection methods on the

training data

Next, multiple measurements were combined in linear, projection-

based classifiers. PCA was employed first as it does not make use of

class labels in determining the projection-direction. Using all variables,

PCA obtained a C-statistic of 0.9706 on the training data. Furthermore,

a binary threshold at b � 0:10 membership in the TD class to be classi-

fied as TD results in misclassifying only 6/76 and 3/83 of the TD and

ASD participants, respectively (Table 1; Figure 1b). This result indicates

that the direction of highest variance in the training data also separates

the data fairly well for this problem.

Using the group membership in developing a linear, multivariate

classifier through FDA or LR promises to further enhance the separa-

tion and these methods provide a more solid statistical background for

choosing the projection direction than using the direction obtained

from PCA for classification. Using all variables, both the FDA and LR

models achieve a fitted C-statistic of>0.99 (Table 1; Figure 1c,d).

These results suggest that including the group membership in deter-

mining the separation direction improves the classification perform-

ance, as expected, which is also reflected by the low misclassification

numbers of 7/159 and 13/159 at a threshold of b50:05 for the FDA-

all and LR-all models, respectively.

3.3 | Classification trees

Instead of investigating a single binary threshold on single variables or

scores, multiple thresholds on multiple variables were investigated
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FIGURE 1 Comparison of fitted PDFs for (a) univariate, (b) PCA-
all, (c) FDA-all, and (d) LR-all

FIGURE 2 Final CART tree fitted to the training data
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using the CART methodology. This simple nonlinear classifier was used

to investigate the advantages of moving from linear to nonlinear

descriptions of the data. After growing and pruning a classification tree,

the resulting model fitted to the training data included five variables

(x225 % oxidized, x85 Glu-Cys, x215 fCystine/fCysteine, x105 tGSH,

and x45 SAM/SAH) and this final tree is illustrated in Figure 2. This

model achieves a fitted misclassification of 3/76 and 3/83 for TD and

ASD participants, respectively. Since the CART methodology can

change both the model structure and parameters upon cross-

validation, only fitted results are provided for the classification tree.

3.4 | Variable selection for the FDA and LR models

Since previous analysis and the CART results suggest that only a subset

of variables is needed to effectively classify the participants into ASD

and TD cohorts, variable selection was performed for both the FDA

and LR models. All variables combinations were evaluated for the fitted

C-statistic. The C-statistic began to saturate at five variables for the

FDA model and at six variables for the LR model. The cross-validated

performance of these models with only a subset of the variables (FDA-

sub and LR-sub) is provided in Table 2. The fitted C-statistic and cross-

validation results are similar for FDA-sub and LR-sub and the variables

selected between these two models overlap substantially. These diag-

nostics indicate that these models are able to find similar patterns in

the data that include the most important variables for classification. At

a threshold of b50:05, using five variables only slightly increased the

cross-validated misclassification error from 7/159 in the FDA-all model

to 8/159 in the FDA-sub model, indicating that many of the variables

provide limited or redundant information for classification of the ASD

and TD cohorts. For the LR models at a threshold of b50:05, decreas-

ing the number of variables decreased the cross-validated misclassifica-

tion error from 13/159 to 10/159, providing further evidence that

TABLE 2 Cross-validation comparison of univariate and projection-based multivariate classifiers

Fitted Cross-validated confusion matrix

Classifier Variables C-statistic b TP FP FN TN

Univariate x22 0.9159 0.01 23 1 60 75

0.05 47 3 36 73

0.10 65 6 18 70

0.20 71 13 12 63

PCA-all All 0.9706 0.01 56 1 27 75

0.05 77 3 6 73

0.10 80 6 3 70

0.20 80 16 3 60

FDA-all All 0.9915 0.01 50 1 33 75

0.05 81 5 2 71

0.10 81 13 2 63

0.20 82 19 1 57

FDA-sub x4; x8; x12; x21; x22 0.9711 0.01 38 1 45 75

0.05 78 3 5 73

0.10 81 8 2 68

0.20 81 16 2 60

LR-all All 0.9972 0.01 73 6 10 70

0.05 78 8 5 68

0.10 79 11 4 65

0.20 81 19 2 57

LR-sub x4; x8; x10; x17; x21; x22 0.9757 0.01 21 1 62 75

0.05 79 6 4 70

0.10 81 8 2 68

0.20 81 15 2 61

The threshold b is the percent membership in the TD class. TP refers to True Positive, FP to False Positive, FN to False Negative, and TN to True
Negative.
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including too many variables can lead to overfitting of these models to

the training data.

3.5 | Validation performance

All previous sections only made use of the training data. Here, the final

classifiers were then fitted to the training data set and evaluated on

the validation set. It should be noted that the validation set only

includes participants with an ASD diagnosis and so the validation can

only test for true positive and false negative ASD classifications. There-

fore, all classifiers are evaluated at a threshold of b50:05 percent

membership in the TD class to provide some measure of the expected

false positive rate for a given classifier. The PDFs of the predicted ASD

class in the validation set are provided in Figure 3. With a threshold of

b50:05 membership in the TD class to be classified as TD, the pre-

dicted binary classification is provided in Table 3. The univariate model

produces a high false negative rate of 86/154 at b50:05 which can be

reduced to 42/154 at b50:10. These results provide further evidence

that univariate models are insufficient for classifying ASD and TD par-

ticipants. In contrast, the FDA-sub model produces a false negative

rate of only 19/154 at b50:05, highlighting the advantages of using

multiple FOCM/TS variables in classifying participants as ASD versus

TD. All of the linear projection-based methods perform reasonably well

on the validation set, but the FDA-sub model has the lowest validation

error. Furthermore, the linear methods are sufficient for separating

these two cohorts, supported by the 38/154 false negative rate pro-

duced by the CART model.

4 | DISCUSSION

This study compares univariate analysis to four different multivariate

statistical techniques through a cross-validation study for the classifica-

tion of ASD versus TD cohorts. The final models are then fitted to the

training data and the resulting models are tested on new validation

data, compiled from three previous studies. Since many biomarker

studies evaluate each variable individually, the best univariate model

was used for comparison. The univariate model using % oxidized indi-

cated a modest separation between the ASD and TD cohorts with a

very high false positive rate of 86/154 at an expected false negative

rate of 5%. This false positive number reduces to 42/154 if the

expected false negative rate is raised to 10%; however, this classifica-

tion accuracy is not sufficient for developing a diagnostic test.

As an alternative to univariate classifiers, multivariate techniques

were introduced to demonstrate the improved performance obtained

from simultaneously using data from multiple variables. All multivariate

classification techniques performed similarly well on the training data

set and they far outperformed the univariate classifier by a wide margin

for all four values of the expected false negative rate that were investi-

gated (b5 1%, 5%, 10%, 20%). When these classifiers were applied to

the validation set then the general trend was upheld, but some differ-

ences between the methods emerged: The first principal component of

the data was able to sufficiently separate the data (PCA-all produced a

false positive rate of 26/154 at an expected false negative rate of 5%),

indicating that most of the variation present in the data can be attrib-

uted to the differences in the ASD and TD cohorts. The FDA-sub

model had the best validation performance with a false positive rate of

19/154 at an expected false negative rate of 5%. As expected, these

misclassification rates are higher than the false negative rate of 3.6% at

a false positive rate of 2.6% found previously29 due in part to the

absence of “% DNA methylation” and “8-OHG” in the validation data,

two of the most important variables for separating ASD and TD

cohorts.29,44 CART and LR of a subset of metabolites produced results
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FIGURE 3 Predictions of the ASD validation data from the (a) PCA-all, (b) FDA-sub, and (c) LR-sub models. Note that the validation data,
“VAL,” only consists of data from a set of children with an ASD diagnosis and therefore significant overlap between VAL and ASD is
expected and desired

TABLE 3 Validation performance for the final biomarker models

Classifier Variables b TP FN

Univariate x22 0.05 68 86

0.10 112 42

PCA-all All 0.05 128 26

0.10 149 5

FDA-sub x4; x8; x12; x21; x22 0.05 135 19

0.10 150 4

LR-sub x4; x8; x10; x17; x21; x22 0.05 122 32

0.10 139 15

CART x4; x8; x10; x21; x22 – 116 38

TP refers to True Positive and FN to False Negative. False Positive and
True Negative are not needed for the validation set as it only consists of
data from a set of children with an ASD diagnosis.
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that were slightly worse than PCA with false positive rates of 38/154

and 32/154, respectively; both of these results are at an expected false

negative rate of 5%. These results also indicate that linear combina-

tions of variables are sufficient for separation of ASD and TD cohorts

using these FOCM/TS metabolites and nonlinear techniques are likely

not warranted for these data sets.

When the expected false negative rate was increased to a level of

10% then the true positive predictions of FDA-sub, PCA-all, and LR-

sub improved as expected. CART does not allow for a single parameter

to tune the classification in a way analogous to the projection-based

methods, so the number of true positive rates for CART remains the

same. Among these methods FDA-sub performs slightly better than

the other techniques on the validation set, reaching true positive pre-

dictions as high as 150/154. That being said, a false negative rate of

10% is quite large for a diagnostic test and as such the results for b5

0:05 as discussed in the previous paragraph are more relevant than the

results for b50:1.

The large number of classification algorithms found in the litera-

ture prohibits an exhaustive comparison of all the available techniques.

In particular, classification trees are not the only method for nonlinear

classification, but they are generally easier to convey to the general sci-

entific audience than the popular kernel methods that can extend PCA,

FDA, and LR to nonlinear classification or various neural network strat-

egies. Nonlinear classification techniques are usually applied in domains

where data are easier to collect, and data sets are generally larger;

therefore, these methods are likely not ideal for early-stage clinical

data. Additionally, at least for the data sets under study in this work,

we did not find advantages of using nonlinear classification techniques.

Aside from the comparison of the algorithms it is equally important

to discuss the finding of which metabolites where identified as contrib-

uting the most to the predictive performance. Univariate analysis iden-

tified x22, “% oxidized glutathione,” as the most important variable. This

variable also appears in the FDA-sub, LR-sub, and CART models further

highlighting the importance of the contribution of “% oxidized glutathi-

one” even when multivariate analysis is used. In addition to this vari-

able the subsets chosen for FDA-sub, LR-sub, and CART also have

three other variables in common: x4: “SAM/SAH,” x8: “Glu-Cys,” and

x21: “fCystine/fCysteine.” Furthermore, “% oxidized glutathione” high-

lights the importance of oxidative stress for classification while the

“SAM/SAH” ratio is directly linked to DNA methylation and epigenetic

components. As suggested previously,29,44 it is important to include

variables that account for both FOCM (DNA methylation) and TS (oxi-

dative stress) pathways in separating ASD from TD cohorts and this is

what the performed analysis returned regardless of which technique

was used.

Although the results of this study are promising, there are several

limitations that should be considered in future studies.

1. Including the same variables in the training and validation data.

Previous analyses found that “% DNA methylation” and “8-OHG”

were two of the most important variables for separation,29,44 but

these data were not present in the validation set. Future studies

should include these variables to allow for the highest possible

classification accuracy as these classifiers are considered for clini-

cal translation into a diagnostic test.

2. Including both ASD and TD populations. The validation set

included in this study provides a first attempt to validate previous

findings with a new data set of similar size, but it only includes

ASD participants. While it would be preferable to have a validation

set that includes measurements from ASD and TD cohorts, as

compared to only from an ASD cohort, these data do not currently

exist aside from the one which was used for training here. Future

studies should collect additional data and evaluate both ASD and

TD populations to confirm separation of these two groups. Finally,

the slight improvements in classification obtained by the FDA-sub

classifier in comparison with the other methods tested herein

should be reaffirmed after evaluating these classifiers on additional

TD data.

3. Analyzing younger participants. The training and validation set

comprise cohorts of 3–10 years and 2–17 years, respectively.

However, a young cohort comprised mainly of participants

younger than about 3 years would provide more compelling evi-

dence toward using classifiers such as these to aid in the diagnosis

of ASD.

Successfully addressing these limitations would help to solidify the abil-

ity of multivariate statistical tools based on FOCM/TS measurements

to accurately separate ASD and TD participants and ultimately allow

these classifiers to be translated into the clinic.

5 | CONCLUSIONS

This study compared several different classification techniques applied

to FOCM/TS metabolites with the purpose of evaluating these metab-

olites and the analysis techniques as potential biomarkers for ASD.

PCA, FDA, LR, and CART models were evaluated in a cross-validation

approach on a training data set and then used to predict validation

data comprised of 154 new ASD participants and all of these classifiers

achieved satisfactory results. An FDA model using five variables was

shown to slightly outperform the other models on this new validation

data set. While these results look very promising and serve as a partial

validation of our previous investigation, future studies should investi-

gate larger cohorts of ASD and TD populations across multiple clinical

sites to further support the indication for impaired DNA methylation

and increased oxidative stress associated with ASD.
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