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Bjoern Peters,

Morten Nielsen

morni@dtu.dk

Highlights
NetMHCpanExp, an

extension of NetMHCpan,

integrates antigen

abundance data

NetMHCpanExp is built

upon a modified version

of NNAlign_MA

Minor performance loss

when using reference

instead of sample-specific

RNA-Seq assays

Suboptimal MHC-I

binders are ‘‘rescued’’ if

arising from highly

expressed proteins

Garcia Alvarez et al., iScience
25, 104975
September 16, 2022 ª 2022
The Author(s).

https://doi.org/10.1016/

j.isci.2022.104975

mailto:morni@dtu.dk
https://doi.org/10.1016/j.isci.2022.104975
https://doi.org/10.1016/j.isci.2022.104975
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104975&domain=pdf


iScience

Article

The role of antigen expression in shaping
the repertoire of HLA presented ligands

Heli M. Garcia Alvarez,1 Zeynep Kosxalo�glu-Yalçın,2 Bjoern Peters,2,3 and Morten Nielsen1,4,5,*

SUMMARY

Human leukocyte antigen (HLA) presentation of peptides is a prerequisite of
T cell immune activation. The understanding of the rules defining this event has
large implications for our knowledge of basic immunology and for the rational
design of immuno-therapeutics and vaccines. Historically, most of the available
prediction methods have been solely focused on the information related to anti-
gen processing and presentation. Recent work has, however, demonstrated that
method performance can be boosted by integrating information related to anti-
gen abundance. Herewe expand on these later findings and develop an extended
version of NetMHCpan, called NetMHCpanExp, integrating information on anti-
gen abundance from RNA-Seq experiments. In line with earlier works, the model
demonstrates improved performance for both HLA ligand and cancer neoantigen
epitope prediction. Optimal results are obtained by use of sample-specific abun-
dance information but also reference datasets can be applied with a limited per-
formance drop. The developed tool is available at https://services.healthtech.
dtu.dk/service.php?NetMHCpanExp-1.0.

INTRODUCTION

HLA presentation of peptides is a key prerequisite for the activation of T cells, which monitor the health and

disease status of individual cells. HLA antigen presentation is defined by a complex pathway consisting of

multiple steps including antigen expression, antigen processing into short peptide fragments, and HLA

binding and presentation on the cell surface (Yewdell and Bennink, 1999). Given its essential role in defining

cellular immunity, substantial work has been dedicated to characterize the rules of HLA peptide presenta-

tion (Peters et al., 2020). Likewise, large efforts have been vested into the development of models capable

of predicting HLA antigen presentation, and the application of such models for rational vaccine develop-

ment and design of targeted immuno-therapeutics (Nielsen et al., 2020).

In particular, the field of cancer immunotherapy and the discovery of cancer neoepitopes have been

tightly linked to the development of accurate models for the prediction of HLA presentation of tumor-

specific neopeptides (Jou et al., 2021). Here, tools (Abelin et al., 2017; Chen et al., 2019; Jurtz et al.,

2017; Reynisson et al., 2021; Sarkizova et al., 2020; Solleder et al., 2020) have predominantly been trained

using ligand elution data, obtained through mass spectrometry (MS) based immunopeptidomics. MS

HLA eluted peptides hold information related to the natural steps of the HLA antigen processing and

presentation pathway. Multiple studies have demonstrated that training prediction models on such

data results in a boosted performance, compared to when peptide-MHC binding is only considered

(Jurtz et al., 2017).

Even though a correlation between source protein abundance and the likelihood of HLA antigen presen-

tation is expected and has earlier been proven in the literature (Abelin et al., 2017; Bassani-Sternberg et al.,

2015; Juncker et al., 2009), it is only recently that studies have shown that the direct integration of abun-

dance of peptide source proteins (most often estimated from RNA-Seq expression values) derives in

improved performance for the prediction of HLA presented ligands (Abelin et al., 2017; Chen et al.,

2019; Kosxalo�glu-Yalçın et al., 2022; Sarkizova et al., 2020). Although these studies often report highly sub-

stantial performance gains by the integration of such antigen abundance information (Abelin et al., 2017;

Sarkizova et al., 2020), they provide limited information as to what are the detailed features of the individual

peptides driving the improved performance. That is, what are the properties of peptides that undergo

large changes in the likelihood of HLA antigen presentation when considering source protein abundance.
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When incorporating antigen abundance, another critical question is what source of information should be

applied to estimate this feature. As mentioned above, most current studies have been based on RNA-Seq

expression data owing to its ease of availability, but more recent studies suggest that the use of proteomic

data might be more appropriate (Kosxalo�glu-Yalçın et al., 2022). Also, an important question relates to how

to best tackle situations where sample-specific protein abundance data are not available. Here, previous

studies suggest that reference datasets can be applied albeit with some degree of performance loss (Abe-

lin et al., 2017; Kosxalo�glu-Yalçın et al., 2022; Sarkizova et al., 2020).

Here, we seek to address these unresolved questions. We do this by developing an extended version of

NetMHCpan-4.1 (Reynisson et al., 2021). It is important to emphasize that we are not aiming to perform

a benchmark comparison of methods available for HLA antigen presentation prediction, but rather are

interested in investigating properties of the immunopeptidome that define its modification as a function

of antigen gene expression.

The model is trained using a new version of NNAlign_MA (Alvarez et al., 2019) allowing the integration of pro-

tein abundance information as estimated from RNA-Seq data. We train the proposedmodel on different data-

sets including either sample-specific or reference RNA-Seqdata.Next, we investigate and describe in detail the

properties of peptides that are ‘‘rescued’’ or ‘‘discarded’’ when considering source protein abundance. Finally,

a series of evaluations is conducted on independent benchmark datasets including cancer neopeptides and

epitopes to confirm the improved predictive power by the integration of source protein abundance, and to

assess the impact of replacing sample-specific information with reference datasets.

RESULTS

To investigate how the integration of protein abundance impacts the likelihood of peptide HLA antigen

presentation, and characterize properties of HLA ligands that undergo improved potential for HLA antigen

presentation when originating from highly abundant proteins, we here explored a large set of HLA MS

eluted ligands from a series of earlier publications (Datasets A: (Alvarez et al., 2019; Reynisson et al.,

2021), B: (Bulik-Sullivan et al., 2018), C: (Sarkizova et al., 2020) and D: (Trolle et al., 2016); refer to Table 1

and Method details).

Properties of ‘‘rescued’’ HLA ligands

As a starting point, an exploratory and ‘‘sanity check’’ analysis on the complete compiled MS dataset was

performed, similarly to what has been conducted earlier (Abelin et al., 2017; Kosxalo�glu-Yalçın et al., 2022), in
order to evaluate the relationship between a peptide’s gene expression value and its likelihood of being

presented by HLA. HLA likelihood presentation scores were assigned for positiveMS ligands and artificially

generated random negatives from the percentile EL-rank values predicted by NetMHCpan-4.1 (Reynisson

et al., 2021) and expression values in TPM (transcripts per million) were assigned from their corresponding

RNA-Seq reference database (refer to Method details).

The results of this analysis are displayed in Figure 1A, and demonstrate in line with earlier results that MS

ligands are preferentially distributed in low EL %rank scores and high TPM regions of the array (red cells)

and are depleted for high EL %rank scores and low TPM values (blue cells). Between these two extremes, a

gradient of MS ligand enrichment ratios is observed. The cells with a neutral color trace an equivalence

frontier defined by the ratio of MS ligands to random negatives being equal to that expected by chance

Table 1. Summary of the training data

Dataset Source Positives Negatives #HLAs #cell lines Data type

A NetMHCpan 42,020 128,550 112 – SA (BA)

329,239 7,672,715 130 50 SA and MA (EL)

B EDGE 105,672 1,344,404 – 69 MA (EL)

C HLAthena 182,703 3,844,654 95 – SA (EL)

D Trolle 11,858 150,009 5 – SA (EL)

SA refers to single allele, MA to multi-allele, BA to binding affinity, and EL to eluted ligand datasets. For BA data, the clas-

sification of positives and negatives was conducted using a threshold of 500 nM (Karosiene et al., 2013).
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(�5%). This frontier shifts towards higher EL %rank values as the TPM value is increased. By way of example,

the equivalence is frontier located at an EL %rank value of �1% for TPM values of 1, and this location is

shifted to 5% when the TPM value is increased to 50. This implies that peptides that are considered to

be non-binders by the NetMHCpan-4.1 prediction method can potentially become likely binders if their

gene expression value is sufficiently high.

In Figure 1B, this analysis was extended to display the distribution of peptide lengths for the MS ligands in

the array defined by the EL %rank and TPM values grid of Figure 1A. Here, 9-mer ligands were found to

accumulate mostly in low EL %rank scores while peptides of 12 to 14 residues were preferentially found

with high EL %rank scores. Additionally, for EL %rank scores >= 1%, we observe that, for the same EL %

rank score range, the proportion of longer peptides (12 to 14-mers) is increased for higher TPM values.

Overall, this points out that the peptide length preference is changing towards a lower proportion of

9-mer peptides as one moves along the equivalence frontier towards higher TPM values (Figure S2).

Next, we inspected the binding preferences of MS ligands in Figure 1A, constructing sequence logos for

the ligands falling in each of the cells of the array (Figure S3). Note, that these ligands originate from mul-

tiple experiments each with a different HLA background, and the individual logo plots hence do not reflect

single HLA specificities. From low to high %rank scores, this figure demonstrates a clear reduction in the

information content of the main anchor positions 2, 5, and 9. In contrast, the variation of gene expression

values does not seem to affect the information content of the binding motifs to the same degree. For EL %

rank scores >10% and gene expression values >50 TPM, the logos are highly enriched with K and Rs in po-

sition 9. This bias most probably derives from enrichment of tryptic peptides, common bystander contam-

inants of HLA MS elution studies originating from residual peptides present in the LC column derived from

earlier conventional proteomics trypsin digestions (Alvarez et al., 2018). The majority of these peptides

belong to datasets A and C.

Antigen expression improves prediction model accuracy

To assess the impact of including gene expression values in peptide-HLA class I binding prediction

methods, several NetMHCpan-like methods were trained with, or without, this new feature. To achieve

this, the architecture of the previously published algorithmNNAlign_MA (Alvarez et al., 2019) was modified

to accept gene expression values in the peptide encoding (refer to Method details).

The models were trained with HLA class I ligands derived from samples that were also assayed in RNA-Seq

experiments (datasets B-D). Furthermore, the training set was enlarged to include MS ligands that origi-

nally lacked gene expression values (dataset A) by use of RNA-Seq transcript values derived from samples

deposited in the Human Protein Atlas database (Uhlén et al., 2015). For all data, the gene expression value

of a given ligand was determined by summing the TPM values of all matching protein-coding transcripts.

All models were trained and evaluated using a 5-fold cross-validation scheme that avoids similar peptides

to be placed in different partitions, as described in the STAR Methods. Predictions were evaluated in a

percentile rank fashion, meaning that raw prediction scores were normalized against a distribution of pre-

diction scores from random natural peptides (for details on the annotation of gene expression values,

model training, and percentile rank score recalibration refer to Method details).

Figure 1. Relationship between predicted HLA binding scores of MS eluted ligands and artificially generated

random negatives and the gene expression values of their corresponding source proteins

NetMHCpan-4.1 EL percentile rank scores and RNA-Seq expression values were binned to generate a 2-dimensional

array where EL percentile rank scores are shown on the x-axis and TPM values on the y-axis. All compiled MS datasets

(datasets A-D) were used to construct this array. The numbers on both the x and y-axis represent the rightmost edge of

each bin, for instance, the cell on the upper right corner contains peptides in the range (70,100] of EL %rank scores and

(500, 10000] of TPM values. As an exception, the cell in the lower left corner contains peptides in the interval [0,0.1] of EL %

rank scores and [0,1] of TPM values.

(A) Each cell displays the number of MS ligands (top) and the number of random natural negative peptides (bottom) that

fall into it, and it is colored according to the ratio between these two quantities, referred to as the ‘‘MS ligand enrichment

ratio’’. The midpoint of the color scale was set to coincide with the ratio of total MS ligands to total background peptides

(white cells). Note, that some degree of overprediction is expected in this plot as dataset A was present in the training of

NetMHCpan-4.1. The effect of this overprediction is, however, very minor (refer to Figure S1).

(B) Pie charts in each cell of this grid show the distribution of peptide lengths for positive peptides. Pie charts in bright

colors correspond to the cells in the equivalence frontier (MS ligand enrichment ratio = 0.05G 0.03, i.e. cells in the neutral

region in panel A).
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Models were named according to the subset of the data they were trained on (see Table 2). ‘‘MS(woexp)’’

refers to MS ligands originally without associated gene expression values (dataset A) and ‘‘MS(wexp)’’ re-

fers to MS ligands including this new feature (datasets B-D). The acronym following the ‘‘:’’ designates

which RNA-Seq reference was employed to annotate the gene expression values. ‘‘INT’’ stands for internal,

while ‘‘HPA’’ stands for the Human Protein Atlas database. If the acronym is missing, the gene expression

values are absent.

To measure the model performance, the AUC, AUC01 (AUC integrated up to a False Positive Rate of 10%),

and PPV were computed on the predictions for the concatenated validation set, as illustrated in Figure 2.

For more information on these performance metrics refer to Method details. In these plots, each data point

corresponds to one EL dataset. The letter above each model refers to the relative model ranking based on

the statistical difference in predictive performance.

In general, the results in Figure 2 demonstrate a significantly improved performance of all models trained

including RNA-Seq expression values (the performance values of the red and blue models are consistently

and significantly below that of the other 4 models). Considering the results for dataset A (Figure 2A), the

models trained on the combined A-D datasets (models MS(woexp):HPA + MS(wexp):INT (orange) and

MS(woexp + wexp):HPA (brown)) performed significantly better across the three performance metrics

than the two models trained only on dataset B-D (MS(wexp):INT (yellow) and MS(wexp):HPA (green)). In

this respect, it is important to note that for models only trained only on datasets B-D, dataset A plays

the role of an external dataset, and therefore the performance of the models on this data is not compara-

ble, on a fair basis, with the one obtained for models trained on the complete datasets A-D.

In relation to datasets B-D (Figure 2B), the models MS(wexp):INT (yellow) andMS(wexp):HPA (green) signif-

icantly outperformed all other models in all performance evaluations with the exception of PPV where this

was only the case for MS(wexp):INT (yellow). Furthermore, MS(wexp):INT (yellow) significantly outper-

formed MS(wexp):HPA (green) for all performance metrics except for the AUC, where the two models per-

formed at par. A similar result was observed when comparing the performance of MS(woexp):HPA +

MS(wexp):INT (orange) and MS(woexp + wexp):HPA (brown) in Figure 2A.

As mentioned earlier, RNA-Seq data have inherent biases imposed by experimental setup, raw read map-

ping, and processing pipeline used (Arora et al., 2020). To investigate how this influences the model per-

formance, an expression mapping strategy was implemented where all TPM values were annotated based

on a recalibration with the HPA data (refer to Method details). The results of these comparisons are shown

in Figure S4 and demonstrate that this experimental design choice has no interference with the predictions

of the trained models.

Two main conclusions can be drawn from these results. Firstly, models trained on datasets including gene

expression significantly (all p-values<0.05, two-tailed Binomial test) outperformed models without this

feature. Secondly, models trained on MS ligands with internal RNA-Seq reference assays had an improved

performance compared to models trained using gene expression values obtained from an external refer-

ence. However, the difference was consistently very small and, in many cases, insignificant (refer to the

lowercase letters on top of the models in Figure 2). This last result suggests that sample-specific

Table 2. Models trained on 5-fold cross-validation

Model

Gene expression values

Color in Figure 2Dataset A Datasets B-D

MS(woexp):HPA + MS(wexp):INT HPA Internal orange

MS(woexp + wexp):HPA HPA HPA brown

MS(woexp + wexp) None None red

MS(wexp):INT – Internal yellow

MS(wexp):HPA – HPA green

MS(wexp) – None blue

Model nomenclature is related to the subset of the data used for training and its associated gene expression values.
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RNA-Seq data are not essential to achieve improved power for the prediction of HLA antigen presentation.

We propose that this is mainly driven by two factors: 1. the high correlation between matched and average

reference RNA-Seq data (refer to Figure S5) and, 2. the overall high variability in RNA-Seq data for biolog-

ical replicates, product of the stochastic nature of gene expression (Hansen et al., 2011), resulting in more

robust annotations when taking median transcript expression values across multiple samples as in the case

of the HPA dataset.

The results in Figure 2B show that themodels trained with the entire enlarged dataset (A-D) did not surpass

in performance the models trained with a subset of the dataset (B-D) only. We hypothesize this is because

adding dataset B-D to dataset A only expanded the net HLA allele and peptide coverage of themodels to a

limited degree. Indeed, datasets B-D cover 109 HLA alleles of which 102 (94%) are covered by 100 or more

positive data points (after motif deconvolution of the MA data). Datasets A-D comprise 163 HLA alleles (af-

ter motif deconvolution of the MA data). However, this data only ‘‘rescues’’ 3 of the poorly covered HLA in

the B-D dataset. This demonstrates that in the context of the B-D datasets, dataset A adds limited novel

Figure 2. Performance of the models on 5-fold cross-validation

MS eluted ligands with (A) external and (B) internal RNA-Seq reference assays. Data points for each model are colored according to the schema defined in

Table 2. Predictions for dataset A are shown in (A) while predictions for datasets B, C, and D are shown in (B). The center line inside the box indicates the

median value of the plotted metric and the triangle shows the mean. The box covers the interquartile range. The whiskers represent 1.5-fold of the

interquartile range. The data points are represented using a jitter plot. The letters on top of the boxplots represent the outcome of performing all-against-all

pairwise comparisons of the models’ metrics using a two-tailed Binomial test, with a significance level of 5%. Apart from denoting statistical significance, the

letters on top of the boxplots are assigned in alphabetical order, from the best to the worst model. That is, models with a label ‘‘a’’ perform at par and

significantly better than models with a label ‘‘b,’’ and so on. p-values are shown in Table S1.
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information. Nevertheless, we also have to take into account that the models trained on datasets B-D only

may experience some degree of bias towards these data compared to models trained on the entire data-

set, given that dataset A adds approximately the same amount of positive instances as datasets B-D. Taken

together, these factors explain the behavior of the trained models with model MS(woexp):HPA +

MS(wexp):INT performing overall best, and model MS(wexp):INT performing best when evaluated on

the B-D datasets.

Properties of selected and deselected binders

To further describe and characterize the effect of gene expression on the likelihood of HLA antigen presen-

tation, we next investigated the properties of the MS ligands that were favored by including the gene

expression values in the training of our models. With this purpose, MS HLA presentation was predicted

for ligands from datasets A-D (using cross-validation) by the model trained including gene expression

(MS(woexp):HPA + MS(wexp):INT) and its associated baseline model trained without gene expression

(MS(woexp + wexp)). From these predictions, individual peptides were grouped into different categories

based on alterations in classification between the two models (see Table 3).

The result of this analysis is shown in Figure 3. In relation to peptide length, 9-mers are predominantly

composed of conserved binders, while other peptide lengths and, in particular, 12 to 14-mers share a

large proportion of improved binders (IB) and very improved binders (VIB) (Figure 3A). With regard to

gene expression values, improved and very improved binders are, as expected, mostly found for high

TPM values while low TPM values are composed mostly of conserved binders and unimproved binders

(Figure 3B). Inspecting the sequence logos for conserved and very improved binders, a reduction in the

information content of primary and/or secondary anchor positions was observed in the motifs corre-

sponding to VIB in comparison to CB (Figure 3C). This suggests that some of the VIB are peptides

with suboptimal HLA anchor amino acids whose relative poor binding potential is compensated for by

the high gene expression values (Figure 3B). In the same line, we observe that IB and VIB are enriched

in peptides of longer length (Figure 3A) with a reduced HLA binding potential that is ‘‘rescued’’ by the

high gene expression values.

Exploiting the properties of MS ligands that were disfavored when incorporating gene expression

values into our models, we found, first and foremost, that deselecting was a very rare event (only

0.02% of peptides lost binding (LB), and only 2.57% were changed from strong to weak binders

(UB)). In terms of the UB peptides, they share properties complementary to the improved binders (IB

and VIB). That is, they are found prevalently for peptide length different from 9 and low TPM values

(Figures 3A and 3B). To further investigate the properties of deselected peptides, we turned to the

use of predictions. Here, HLA-A*02:01 antigen presentation was predicted for peptides in a set of

5,000 proteins randomly sampled from the human proteome with TPM values assigned from the HPA

reference RNA-Seq database using models with and without the integration of protein expression.

The results of this analysis are displayed as the proportion of observed ligands/predicted binders as

compared to background peptides, as a function of antigen expression in different TPM ranges

Table 3. Classification ofMS ligands from datasets A-D according to the cross-validation predictions of the model trained including gene expression

(MS(woexp):HPA + MS(wexp):INT) and its associated baseline model trained without this feature (MS(woexp + wexp))

With gene expression (MS(woexp):HPA + MS(wexp):INT)

Strong binder Weak binder Non-binder

Without gene expression

(MS(woexp + wexp))

Strong binder Conserved Binder (CB)

(76.16%)

Unimproved Binder (UB)

(2.57%)

Lost Binder (LB)

(0.02%)

Weak binder Improved Binder (IB)

(7.77%)

Conserved Binder (CB) UnClassified peptide (UC)

(12.99%)

Non-binder Very Improved Binder (VIB)

(0.49%)

UnClassified peptide (UC) UnClassified peptide (UC)

The percentile rank score predictions of these twomodels were employed to classify the ligands. A peptide is considered to be a strong binder if its %rank score is

% 0.5, a weak binder if 0.5 <%rank score% 2 and a non-binder if %rank score >2%. The number between parenthesis indicates the% of ligands in each category,

e.g. Conserved Binder = 76.16%, UnClassified peptide = 12.99%.
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Figure 3. Comparison of the 5-fold cross-validation predictions of a model trained with and without gene expression values

MS ligands from datasets A-D were classified according to the predictions obtained by model MS(woexp):HPA+MS(wexp):INT and its counterpart trained

without gene expression MS(woexp+wexp).

(A) shows the peptide length distribution of the defined MS ligand subsets and (B) depicts the gene expression values distribution for the same groups.

Finally, 3 exemplary alleles were chosen to illustrate the binding preferences of conserved binders (CB) and very improved binders (VIB).

(C) Characteristics of two groups of ligands: 1. their corresponding sequence logos (left), 2. the difference in information content for each position between

the two logos (DIC = ICCB – ICVIB) normalized bymaximumDIC across all positions (centre), and 3. their peptide length distributions (right). Exemplary alleles:

1. HLA-A*02:01 (n = 379), 2. HLA-A*03:01 (n = 267) and 3. HLA-B*07:02 (n = 120). The logos for both CB and VIB binders are constructed with the same

number of MS ligands, as specified before. CB, conserved binder; IB, improved binder; VIB, very improved binder; UB, unimproved binder; LB, lost binder.
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(Figure S6). This plot clearly demonstrates the important effect of including expression levels in the

search for HLA presented peptides, i.e. the reduced proportion of predicted binders from transcripts

with low expression levels and a likewise increased sampling from highly expressed transcripts. This ef-

fect combined with the increased likelihood of identifying true HLA ligands in highly expressed tran-

scripts (refer to Figure 1) directly translates into an improved predictive specificity. If the proportion

of predicted binders is compared to the proportion of ligands in the range of lowly expressed antigens

(TPM<1), these analyses demonstrate a 5 times decreased false positive prediction rate of the model

trained including antigen expression compared to the model trained without. That is, the proportion

of ligands in this TPM range is �0.004, which is in agreement with what is predicted by the model

trained including antigen expression (using a predicting threshold of 0.5% rank). In contrast, the corre-

sponding value for the model trained excluding antigen expression is 0.02.

In summary, these results suggest that improved binders consist of non-canonical binders with limited

binding potential ‘‘rescued’’ by high gene expression values, whereas deselected binders consist of imper-

fect binders, being ‘‘discarded’’ owing to their low gene expression values.

Furthermore, we explored the distribution of the different groups of peptides in the same array constructed

for Figure 1 (see Figure S7). Not surprisingly, most of the improved and very improved binders fall in cells

that are left wise of the previously defined frontier of equivalence (shown in bright colors in Figure 1B). This

also implies that the potential contaminant peptides illustrated in Figure S3 are not interfering with our re-

sults. Finally, it is important to mention that the majority of ligands belong to the category of conserved

binders (�80%) and only a small fraction (�8%) are IB and VIB. This means that peptides that are ‘‘posi-

tively’’ affected by gene expression experience, in their majority, only undergo a very small absolute vari-

ation in their %rank scores (Figure S8). Nevertheless, conserved binders still suffer an important fractional

change in their %rank scores (Figure S9).

Independent benchmark on mass spectrometry ligands and cancer neoepitopes

To further assess the predictive power of the developed methods, an evaluation of the different models

was performed on a series of independent benchmark datasets including MS eluted ligands from (Bulik-

Sullivan et al., 2018) and (Sarkizova et al., 2020), here labeled I-B and I-C (CLL refers to Chronic Lymphocytic

Leukemia and OV to OVarian cancer), respectively, and neoepitopes from the NCI (Gartner et al., 2021),

here labeled I-NCI (for more information on these datasets refer to Method details). In this benchmark,

the performance of the developed models was further compared to the state-of-the-art method to predict

MHC class I peptide presentation, NetMHCpan-4.1.

The result of these benchmark calculations is shown in Figure 4 ( and Figure S10). Focusing first on the per-

formance of the I-B and I-C datasets, the results of the evaluation align with the findings from the cross-vali-

dation (Figure 4A). All models with antigen-expressing information outperformed their equivalents,

includingNetMHCpan-4.1, without this added information (all p-values<0.05). Moreover, when considering

AUC01 and PPV, the model MS(wexp):INT significantly outperformed MS(woexp):HPA + MS(wexp):INT on

the datasets I-B and I-C_OV datasets, while the opposite occurred for the dataset I-C_CLL dataset (all p-

values<0.05). In terms of the AUC, the two models including gene expression performed on par on the

two I-C datasets (both OV and CLL), whereas MS(wexp):INT significantly outperformed MS(woexp):HPA +

MS(wexp):INT on the I-B dataset.

Similar results were obtained for the I-NCI dataset (Figure 4B). Also here did all models with antigen-

expression information achieve comparable performances and outperformed their counterparts, including

NetMHCpan-4.1, without this added information (though only significantly when considering AUC and, in

the case of model MS(woexp):HPA + MS(wexp):INT, when considering both AUC and PPV). The effect of

adding expression might not have been optimal in this case as the I-NCI dataset was provided with tran-

script abundances in deciles, which constitute a coarse grain estimate of this feature.

Finally, we studied the effect of including antigen abundance information from different sources when pre-

dicting MS eluted ligands. Here, we applied the model MS(woexp):HPA + MS(wexp):INT, and investigated

how the performance on the external I-B and I-C datasets was altered if the gene expression values (‘‘INT’’)

were replaced by gene expression values assigned from the HPA database, or by protein abundance values

taken, from the PAXdb database (refer to Method details). The results of this analysis are shown in
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Figure 4C. Themodel MS(woexp):HPA +MS(wexp):INT achieved a significantly superior performance when

predictingMS ligands with ‘‘INT’’ gene expression values in comparison to predicting these same peptides

with the other gene expression values, if the metrics AUC01 and PPV are considered (all p-values<0.05,

except for the comparison between ‘‘INT’’ and ‘‘HPA’’ which, in terms of the AUC01, resulted non-signifi-

cant). In terms of AUC, the studied model performed on par for the ‘‘INT’’ and ‘‘PAXdb’’ references if the I-B

and I-C_CLL datasets are considered (in the case of the I-C_OV dataset, ‘‘PAXdb’’ significantly outperforms

‘‘INT’’ and ‘‘HPA’’).

To translate these observed performance gains into more concrete and applicable values, we can extract

the sensitivity of the trained methods on the different external evaluation datasets at a specificity of 0.99

(False Positive Rate of 0.01). These results are shown in Table S6. Comparing the sensitivity values of the

Figure 4. Performance of the trained models and NetMHCpan-4.1 on external datasets

(A) illustrates the performance of the trained models on the independent datasets of MS eluted ligands (I-B and I-C) using their internal reference RNA-Seq

assays (‘‘INT’’) and (B) shows the performance of the models on the I-NCI neoepitope dataset.

(C) summarizes the performance of model MS(woexp):HPA + MS(wexp):INT on the independent datasets I-B and I-C (CLL and OV) which were, in this case,

annotated with internal and external gene expression references: ‘‘INT,’’ ‘‘HPA,’’ and ‘‘PAXdb.’’ Finally, the performance of NetMHCpan-4.1 on these

datasets is also shown. One-tailed binomial tests were employed to compare the predictions of the MS(woexp):HPA + MS(wexp):INT model (and

NetMHCpan-4.1) over the 3 independent datasets annotated with different gene expression references (refer to Method details). Performance metrics

displayed as barplots are detailed in Table S4 and p-values are shown in Table S5. AUC-ROC curves for the methods evaluated on the different external

datasets are shown in Figure S10.
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different methods trained with and without antigen expression demonstrates an average performance gain

on the different datasets of 0.035-0.075. In an experiment with many thousand positive examples (as is the

case for most whole organism immunopeptidome screenings), this increased sensitivity thus converts into

70-150 additional recovered positives.

In summary, these results agree with themain findings from the cross-validation evaluation and confirm that

the integration of antigen abundance in the form of RNA-Seq gene expression results in improved predic-

tive performance, both for the identification of HLA ligands and CD8+ neoepitopes. Moreover, the results

demonstrate that an optimal performance gain is obtained if sample-specific RNA-Seq expression values

are used, but also suggest that reference RNA-Seq expression data, sampled over various cell and tissue

types, can be applied with only a limited performance drop (Figure S11). Furthermore, these results sug-

gest that limited performance gain (if any) is obtained in method evaluation by replacing antigen abun-

dance estimates from RNA-Seq expression with protein abundance data.

The NetMHCpanExp method

In summary, the cross-validated and independent benchmark evaluation suggests a comparable perfor-

mance of the two methods MS(woexp):HPA + MS(wexp):INT and MS(wexp):INT. Given the larger allelic

coverage of the data used to train MS(woexp):HPA + MS(wexp):INT, this method was selected for a

web-server implementation termed NetMHCpanExp. This method is available at https://services.

healthtech.dtu.dk/service.php?NetMHCpanExp-1.0. The method comes in two flavors, one that integrates

information on protein expression and one that does not. The latter method is identical to the MS(woexp +

wexp) developed in this work. The tool takes two input formats: PEPTIDE and FASTA. For PEPTIDE input,

antigen expression can be provided directly as TPM values or as protein ID(s) (referring either to the HPA

reference database or to a user-defined database file). If no TPM value is provided, TPM values are ob-

tained by summing over TPM values for all transcripts in the HPA reference database containing the

queried peptide. For FASTA input, the TPM value can be specified in the header of the file. Alternatively,

the protein ID in the FASTA header can be employed to either perform a search against the HPA database

or a user-customized reference database. As a last option, the user can choose to digest the protein

sequence in the FASTA file into overlapping peptides of a given length(s) and search for each one of those

peptides individually in the HPA reference database. In this case, gene expression value annotation is con-

ducted in the samemanner as for PEPTIDE input, without specified TPM values. For more details on the tool

refer to the instructions on the website.

As a first application of the method, we revisited the heatmap of Figure 1, now making the binding predic-

tions with NetMHCpanExp. The results displayed in Figure S12 confirmed that the equivalence frontier in

this analysis becomes almost vertical (white cells in the heatmap) and that a fixed % rank score cut-off can

now be applied to filter out non-binding peptides independent of the antigen-expression level.

Furthermore, we illustrate how the performance of our selected method MS(woexp):HPA + MS(wexp):INT,

or NetMHCpanExp-1.0, compared with NetMHCpan-4.1 on three other independent sets of epitopes. The

first benchmark consists of a set of neoepitopes gathered in a consortium manner (Wells et al., 2020), for

which tumor antigen abundance has previously been shown to correlate with peptide-MHC immunoge-

nicity. The results shown in Figure S13 once again demonstrate that NetMHCpanExp outperforms, both

its equivalent method trained without gene expression, as well as NetMHCpan-4.1 for all metrics on the

neoepitope dataset. The second benchmark consists of two CD8+ epitope datasets, one extracted from

the Immune Epitope DataBase (IEDB) (Vita et al., 2019) and the other one consisting of Yellow Fever Virus

(YFV) epitopes (Stryhn et al., 2020). Here, no antigen-expression data are available to us, and the prediction

mode excluding antigen expression was hence applied. For each epitope, a F-rank value was calculated

(see Method details). The result of this evaluation is shown in Figure S14. The comparison of the obtained

results demonstrated a comparable performance of the methods for the two epitope datasets.

DISCUSSION

In the present work, we have built a new prediction tool, NetMHCpanExp, which integrates gene expres-

sion values derived from RNA-Seq experiments to refine the ranking of peptides binding to a given HLA in

comparison to NetMHCpan-4.1, our previously developedmethod that does not include this novel feature.

Although the differences in the AUC values between the models that include or not gene expression re-

ported in this work might seem marginal, they have an important impact when prioritizing a large number
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of peptides to be further tested in a web lab setting. By way of example, we find a gain in sensitivity of the

different methods trained including gene expression compared to the ones trained without that translates

into a discovery of hundreds of additional positives in real-life antigen discovery experiments, such as

whole organism immunopeptidomics, where often thousands of positive targets are screened.

Earlierworks havedemonstrated that including sourceproteinabundancevalues improves thepredictivepower

of peptide-HLA binding methods (Abelin et al., 2017; Chen et al., 2019; Kosxalo�glu-Yalçın et al., 2022; Sarkizova

et al., 2020). In line with these studies, our current work shows that transcript abundance values measured via

high-throughput RNA-Seq assays serve as suitable estimates of antigen source protein abundance values.

This was proven both in cross-validation and on the independent benchmarks of MS ligands and cancer neoe-

pitopes, where the newly developedmethods trained with gene expression significantly surpassed their equiv-

alents trained without this feature. In addition, we investigated in detail the impact of employing internal or

external reference transcriptomics experiments to annotate peptide gene expression values. Our results

demonstrated that internal gene expression references constitute a more accurate estimate of antigen abun-

dances and consequently enhance theperformanceof the predictionmethods to a higher degree than external

ones.All the same, it was observed, both in cross-validation andon the independentbenchmarks, that replacing

the internal gene expression references with external ones can be conducted with a very small loss in perfor-

mance. This conclusion has powerful implications: it is possible to benefit from the integration of antigen abun-

dance information without the need for paired RNA-Seq assays.

As stated before, most studies apply transcript abundance values measured via high-throughput RNA-Seq

assays as an indirect estimate of protein abundances. Many factors, biological, technical, and computa-

tional, can affect gene expression value estimation (Arora et al., 2020; Li et al., 2014; Zhang et al., 2020).

In order to augment the benefit from such RNA-Seq data in the context of the prediction of HLA antigen

presentation this observation suggests that a clear improvement could be achieved if a common RNA-Seq

processing pipeline is adopted limiting, at least, the bioinformatic bias in the data. As a part of this work, a

recalibration strategy, that could potentially help to lessen the mentioned biases in the gene expression

data (refer to Method details) was investigated. However, we observed no improvement in the model per-

formances both in cross-validation and in the independent evaluation. We would like to point out that this

conclusion is likely to be very specific to the datasets used in this study, stemming from the relative homo-

geneity of the experimental conditions in which gene expression was measured, and would suggest that

such recalibration procedures could prove to be beneficial when gathering gene expression data from

more heterogeneous sources.

Furthermore, we and others have suggested the use of data other than RNA-Seq for the estimation of pro-

tein abundance, including proteomics (such as PAXdb (Wang et al., 2015)), and RiboSeq data (Ingolia, 2014;

Kosxalo�glu-Yalçın et al., 2022). Currently, the results related to the benefits of including such alternative pro-

tein abundance estimates for an improved prediction of HLA antigen presentation remain inconclusive,

and more extensive studies are needed to fully evaluate their potential.

As a side remark, there is an open discussion in the literature about how prevalent proteasome-spliced

peptides are in the HLA ligandome. Some works claim these peptides are predominant (Faridi et al.,

2018; Liepe et al., 2016), whereas others suggest that they constitute only a small fraction of the presented

HLA ligands (Mylonas et al., 2018; Sarkizova et al., 2020). This contradictory evidence reveals that more work

needs to be conducted in the field to clarify this issue, especially as it would have a direct impact on the

validity of the methods employed to annotate gene expression values.

It is essential to underline that we here have not conducted any benchmark comparisons of our developed

tool and that we hence do not make any claims related to method superiority. We believe such method

comparisons are best left for future studies conducted on novel independent data. Rather, we have thor-

oughly investigated the properties of MS binders that are ‘‘favored’’ and ‘‘unfavored’’ by the incorporation

of gene expression values, as we believe identifying such properties will enable better understanding and

use of the results produced by the developed models. In these analyses, we find that improved MS binders

represent only �8.3% of the data and are mostly composed of highly expressed, non-canonical binding

peptides, with length different from 9 and a degree of ‘‘alternative’’ amino acids in their primary and/or sec-

ondary anchor positions. Unimproved and lost MS binders constitute an even smaller percentage of the

training set (�2.6%) and predominantly derive from low abundant proteins. In summary, these observations

imply that peptides with suboptimal binding properties may still act as binders if they are sufficiently
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abundant and, on the other hand, they may be disfavoured in their likelihood to bind to MHC if their gene

expression value is too low.

As our developed method tends to ‘‘rescue’’ more MS-ligands than ‘‘discard’’ them by the inclusion of the

new feature, it would be reasonable to think that the exploration of new extrinsic peptide features may

allow the recovery of a higher proportion of the ligandome measured by mass spectrometry (i.e. UnClas-

sified peptides (UC) and Lost Binders (LB) in our training set). Nevertheless, as studied earlier (Abelin et al.,

2017; Sarkizova et al., 2020), the gene expression value measured at the RNA level is the most informative

peptide extrinsic feature when predicting peptide-HLA binding (outperforming immunoproteasome

cleavability scores and HLA gene presentation bias, among the most prominent ones). Therefore, it is high-

ly unlikely that including more peptide extrinsic features will massively increase our explanatory power of

the ‘‘trash’’ ligandome.

Considering the main differences in our method to others in the same line (Abelin et al., 2017; Chen et al.,

2019; Kosxalo�glu-Yalçın et al., 2022; Sarkizova et al., 2020), we would like to highlight the following: 1)

NetMHCpanExp is pan-allele and pan-length specific, 2) it can handle multi-allelic data as it is built on

NNAlign_MA, 3) it accepts peptides of a wide length range of 8 to 14 amino acids. Although 1) and 2) stress

the versatility of our method, 3) relate to a very important aspect of this work. Not only 8 to 11-mers should

be included in the training of prediction tools that incorporate gene expression values, but also 12 to

14-mers as these peptides are highly enriched in improved binders.

In conclusion, we have developed NetMHCpanExp allowing for HLA antigen presentation prediction by

integrating information on antigen abundance. The tool is publicly available, and we expect that it with

its ease of use will guide the characterization of the HLA immunopeptidome and development of future

T cell-based immuno-therapeutics.

Limitations of the study

The current method can only be used to predict humanMHC class I alleles owing to the fact that its training

dataset relies on large-scale paired MS-RNA-Seq assays that were performed over human cell lines or tis-

sues. It would be interesting to expand our model to non-humanMHC class I alleles when the required bio-

logical data become available.

Furthermore, a direct application of the model for the identification of pathogen epitopes is not trivial.

Given the transient nature of pathogenic infection, the relative abundance of pathogenic proteins is highly

variable over time. This is a major obstacle when considering incorporating pathogen gene expression

levels to improve the prediction of HLA antigen presentation. Nevertheless, it has been already demon-

strated that, for the case of SARS-CoV-2 virus, incorporating transcript relative abundances from Ribo-

Seq assays or protein abundances measured via proteomic experiments can improve CD8+ epitope pre-

dictions (Kosxalo�glu-Yalçın et al., 2022).

The current work has been limited to HLA class I, but the proposed modeling framework is readily extend-

able also to HLA class II, and in line with other earlier work including (Chen et al., 2019), it is expected that

also here would integrating of antigen abundance result in improved predictive power for the prediction of

HLA antigen presentation.

Moreover, and particularly in relation to the prediction of cancer neoepitopes, our work does not address

the impact of replacing patient-specific expression data with cancer-type-matched expression data from

public databases, which is especially relevant if the former information is not available. Investigating this

would allow us to confirm that the predictive power of our tool is only marginally affected by employing

external gene expression references, also in this scenario.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead contact, Dr. Morten Nielsen

(morni@dtu.dk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. All of these datasets are exhaustively referenced in

the Key Resources Table.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

EDGE MS ligand dataset MassIVE Archive (http://massive.ucsd.edu) MSV000082648

EDGE RNA-Seq Bullik-Sullivan et al. (Bulik-Sullivan et al., 2018) Data S9 (in original source)

Sarkizova MS ligand dataset MassIVE Archive (http://massive.ucsd.edu) MSV000084172 and MSV000080527

Sarkizova RNA-Seq GEO GSE93315

Sarkizova MS ligand cancer patient

datasets (independent benchmark)

MassIVE Archive (http://massive.ucsd.edu) MSV000084442

Trolle MS ligand dataset IEDB (Vita et al., 2019) http://www.iedb.org/subID/1000685

Trolle RNA-Seq (HeLa cell line) GEO GSM3899456

NCI neoantigen dataset Gartner et al. (Gartner et al., 2021) Table S2 (in original source)

IEDB epitopes (independent benchmark) Reynisson et al. (Reynisson et al., 2021) Mendeley data: https://doi.org/

10.17632/mf3c8n3w53.1

Yellow Fever Virus epitopes (independent

benchmark)

Stryhn et al. (Stryhn et al., 2020) Mendeley data: https://doi.org/

10.17632/4zg276pgh2.1

TESLA neoepitopes (independent benchmark) Wells et al. (Wells et al., 2020) Mendeley data: https://doi.org/

10.17632/6x87nx8jtc.1

Human Protein Atlas reference RNA-Seq

dataset

Human Protein Atlas (Uhlén et al., 2015) Mendeley data: https://doi.org/

10.17632/bn3htx2459.1

PAXdb reference Proteomics dataset PAXdb (Wang et al., 2015) Mendeley data: https://doi.org/

10.17632/fc434cn5rk.1

Software and algorithms

NetMHCpan-4.1 Reynisson et al. (Reynisson et al., 2021) https://services.healthtech.dtu.dk/

service.php?NetMHCpan-4.1

Python Python https://www.python.org

Other

Main executable file used to train NetMHCpanExp https://services.healthtech.dtu.dk/services/

NetMHCpanExp-1.0/code/nnalign_exp_train

–

Training datasets (and other additional files required

for training)

https://services.healthtech.dtu.dk/suppl/

immunology/NetMHCpanExp-1.0/training_files/

–

Main executable file used to evaluate NetMHCpanExp https://services.healthtech.dtu.dk/services/

NetMHCpanExp-1.0/code/nnalign_exp_eval

–

Evaluation datasets https://services.healthtech.dtu.dk/service.php?

NetMHCpanExp-1.0, by clicking on the

‘‘Evaluation data sets’’ tab.

–
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d This paper reports original code. The training data and binary executables for our selected method

(‘‘MS(woexp):HPA + MS(wexp):INT’’) can be found at:

1. main executable file to train the neural networks: https://services.healthtech.dtu.dk/services/

NetMHCpanExp-1.0/code/nnalign_exp_train and

2. training data (and additional files required for training): https://services.healthtech.dtu.dk/suppl/

immunology/NetMHCpanExp-1.0/training_files/.

d The datasets employed to evaluate our method are available at: https://services.healthtech.dtu.dk/

service.php?NetMHCpanExp-1.0, by clicking on the ‘‘Evaluation datasets’’ tab. We also provide the

code used to perform the method evaluations as an executable file: https://services.healthtech.dtu.

dk/services/NetMHCpanExp-1.0/code/nnalign_exp_eval

As already mentioned, the developed tool is publicly available at https://services.healthtech.dtu.dk/

service.php?NetMHCpanExp-1.0, enabling the scientific community to make predictions for any dataset,

with or without gene expression values, and any human MHC class I molecule.

d Any additional information required to rerun the training/evaluation code or reanalyze the data reported

in this paper is available from the lead contact upon request.

METHOD DETAILS

Training data: Positive instances

The datasets employed to train our models were extracted from 4 different sources: NetMHCpan (Alvarez

et al., 2019; Reynisson et al., 2021), EDGE (Bulik-Sullivan et al., 2018), HLAthena (Sarkizova et al., 2020) and

Trolle (Trolle et al., 2016). The NetMHCpan data (dataset A) corresponds to the training data of the

NetMHCpan-4.1 model (Reynisson et al., 2021), and comprises both binding affinity (BA) and MS eluted

ligand (EL) data. In this case, we only preserved peptides with binding to HLAmolecules and removed data-

sets from non-humanMHC. This dataset contains both SA (single allele) andMA (multi allele) data. MA data

derives from an experimental setup in which a pan-specific antibody is used to immunoprecipitate all pep-

tide-MHCs present on the cell surface of a studied sample, previous step to LC/MS assays. SA data is ob-

tained from BA assays, or from MS experiments performed on engineered cell lines that artificially express

one single MHC allele. The EDGE data (dataset B) corresponds to the training data of the EDGE model.

This dataset consists of MS eluted ligands data from 69 different human tissue samples (MA data). The HLA-

thena data (dataset C) corresponds to the training data of the HLAthena models. This dataset includes MS

eluted ligands from 95 mono-allelic cell lines (SA data). Finally, the Trolle data (dataset D) comprises MS

eluted ligands for five common HLA class I alleles (SA data). Repeated peptide-MHC pairs were excluded

from the training dataset prioritizing peptide-MHC pairs from EDGE and HLAthena (datasets B and C) since

these are the only sources with paired gene expression assays.

Training data: Negative instances

For each of the MA or SA MS EL datasets, a set of random negatives was generated that covered the same

peptide length range as the positives, but with equal numbers of negatives for each peptide length to allow

the algorithm to learn the difference in length preference, as described earlier (Barra et al., 2018; Nielsen

et al., 2018). The number of negative peptides was set so that for each peptide length there were at least

five times as many negatives as positives. Negative peptides were sampled at random from the proteome

associated with the genome assembly also used as a reference in the mapping of the raw reads derived

from RNA-Seq experiments (for details refer to ‘‘Annotation of gene expression values’’). The datasets

are summarized in Table 1.

Annotation of gene expression values

For the EDGE data (dataset B), the gene expression values were extracted from the already processed

RNA-Seq assays provided in the Data S9 from (Bulik-Sullivan et al., 2018). In this study, peptides were map-

ped onto protein-coding transcript translated sequences corresponding to genome assembly GRCh38.p7

(GENCODE v. 25).

For the HLAthena (dataset C), gene expression values were extracted from the RNA-Seq assays performed

on B721.221 cells expressing HLA-A*29:02, B*51:01, B*54:01, and B*57:01 alleles (Abelin et al., 2017)

(GEO: GSE93315). In this study, transcript expression was averaged across the four cell lines, selected
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protein-coding transcripts and rescaled TPM (Transcript Per Million) values to sum to one million. Next

peptides were mapped onto the protein-coding transcript translated sequences corresponding to

genome assembly GRCh37 (hg19).

As regards the Trolle data (dataset D), there was no available gene expression data available for the specific

engineered HeLa cell lines used in the study. Instead, the gene expression data of HeLa cells was employed

fromanother previously published study (Cantarella et al., 2019) and processed in (Kosxalo�glu-Yalçın et al., 2022).

In relation to the NetMHCpan EL data (dataset A), no gene expression data was available. Consequently, a

reference RNA-seq dataset from the Human Protein Atlas (HPA) (v. 20.0) (Uhlén et al., 2015) was used. RNA-

Seq experiments performed on 281 human tissue and blood cell samples fromHPAwere employed and the

median transcript expression values (TPM) across all samples was calculated. Here, peptides were mapped

onto protein-coding transcript translated sequences corresponding to genome assembly GRCh38.p12

(GENCODE v. 28). Those peptides that could not be mapped to any protein were assigned the median

TPM value of the mapped peptides.

For all cases, the gene expression value of each peptide was defined by summing the TPM values of all pro-

tein-coding transcripts containing the peptide.

HPA dataset: A proxy for gene expression

As mentioned before, EL data from NetMHCpan used an HPA reference dataset to annotate gene expres-

sion values. RNA-Seq data has inherent biases imposed by experimental setup and raw read mapping and

processing pipeline used (Arora et al., 2020). To investigate how this influences the model performance, an

alternative recalibrated expression mapping strategy was implemented. This recalibration procedure con-

sists in computing the percentile corresponding to a ligand’s TPM value in the internal reference distribu-

tion (i.e. the RNA-seq data generated in the given study) and assigning a new TPM value from the corre-

sponding percentile in HPA distribution. The models trained with this TPM recalibration are labeled

‘‘INT2HPA’’.

PAXdb dataset: A proxy for protein abundance

The PAXdb (Protein Abundance Database) (Wang et al., 2015) was employed to assign abundances to the

MS ligands from the independent benchmark. In this case, the ‘‘H.sapiens - Whole organism (Integrated)’’

dataset was downloaded (Mendeley data: https://doi.org/10.17632/fc434cn5rk.1 accessed on May 27th,

2021), which comprises 19,949 proteins and covers 87% of the human proteome. Peptides were mapped

onto protein-coding transcript translated sequences corresponding to genome assembly GRCh38.p10

(GENCODE v. 27). Protein abundance values of each peptide were determined by summing the abun-

dances in PPM (Proteins Per Million) of all proteins containing the given peptide. As explained before,

the same recalibration procedure was also applied to the PAXdb data, generating a ‘‘PAXdb2HPA’’

gene expression reference when required.

For the independent evaluation data, peptides that could not be mapped to any proteins in the HPA or

PAXdb references were left-out of the analysis. This more strict criteria was employed to prevent adding

noise to the gene expression values, specially in this stage where the number of positives in the datasets

is more reduced.

Transformation of gene expression values

Raw gene expression values ‘‘xi’’ were transformed to fall in the range 0–1 according to the following for-

mula, y = log(xi+1)/log(z+1) if xi < z, or y = 1 if xi R z, where z is a capping value set equal to 15,000 TPM for

the internal reference datasets, and to 10,000 TPM for the HPA dataset (albeit somewhat arbitrary, these

values correspond approximately to the 0.2 percentile TPM values of both datasets). In the case of models

trained on mixed gene expression references, the 15,000 TPM threshold was used. When considering the

protein abundance values from PAXdb, the same transformation was performed on this data, setting the

cap value ‘‘z’’ to 10,000 PPM.
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Model training

The input layer of the neural network behind theNNAlign_MAmethod (Alvarez et al., 2019) wasmodified to

include 2 more input neurons: one accepts the transformed gene expression value ‘x’ and the other 1 -‘x’. If

the training dataset does not contain gene expression values, these two input neurons were excluded.

To avoid performance overestimation and model overfitting, training data were split into 5 partitions for

cross-validation purposes using the common motif algorithm (Nielsen et al., 2007), to ensure that no parti-

tion shared 8-mer subsequences.

Themodel architecture and training parameters were equal to those defined earlier (Reynisson et al., 2021).

The complete model consisted of an ensemble of 50 networks with 56 and 66 hidden neurons with 5

random weight initializations for each of the 5 cross-validation folds (2 architectures, 5 seeds and

5-folds). All models were trained using backpropagation with stochastic gradient descent, for 200 epochs,

with early stopping, and a fixed learning rate of 0.05. Only SA data was included in the training for a burn-in

period of 20 epochs, followed by training cycles including both SA and MA data (300,000 samples of each

data type per training cycle).

Model evaluation: datasets

The independent evaluation data in our study was compiled from three different sources. The data from

EDGE (I-B) consists of MS eluted ligands from 5 tumor samples (2 colon, 2 lung and one ovarian) also

used in the evaluation of the EDGE model (test samples 0–4 from (Bulik-Sullivan et al., 2018)). The data

from HLAthena (I-C) comprises the followingMS eluted ligand datasets: 3 tumor samples from chronic lym-

phocytic leukemia patients (CLL A, B and C, termed I-C_CLL), and one sample from an ovarian cancer pa-

tient (termed I-C_OV). Table S8 contains the clinical IDs of these samples (Sarkizova et al., 2020).

Paired gene expression assays were obtained from their original sources for these two datasets. Annota-

tion, transformation of gene expression values and generation of random negatives were done as

described earlier. If indicated, gene expression values or protein abundances were recalibrated with the

HPA dataset as described above.

In addition, an independent neoepitope dataset (I-NCI) was obtained from (Gartner et al., 2021). This data

was acquired from 70 individuals with metastatic cancer with at least one HLA class I-restricted epitope and

paired tumor sample RNA-sequencing. Whole-exome analysis of the tumor samples allowed the identifi-

cation of mutations (indels and snvs) generating a large set of nmers consisting of the mutated residue and

12-flanking upstream and downstream residues. Of the 9,541 nmers tested for immunoreactivity, 139 were

recognized by CD8+ T-cells and were defined as positives. Our dataset contains the positive and negative

nmers and their corresponding minimal mutated peptides (MMPs), which are 8- to 12-mers containing the

mutation. Each of the nmers had an associated gene expression decile, which was subsequently replaced

by a gene expression value in TPM using the HPA dataset as a reference and transformed as described

above.

Finally, and in order to further evaluate the performance of our selected baseline model against

NetMHCpan-4.1, three sets of external CD8+ epitopes were employed.

The first set consisted in the TESLA consortium neoepitope dataset (Wells et al., 2020), which is composed

of 608 peptide-MHCs tested for immunogenicity with multimer-based assays. This data was pooled with

another 310 assayed peptide-MHCs used for validation on an independent cohort, also in the mentioned

paper. Finally, peptide-MHCs without available gene expression were filtered out, resulting in 714 peptide-

MHCs in total (33 positives).

Moreover, two other sets of CD8+ epitopes were constructed, one was extracted from the Immune Epitope

DataBase (Vita et al., 2019) (refer to NetMHCpan-4.1 external evaluation dataset from IEDB) and the other

one was derived from a large and comprehensive mapping of T cell epitopes Yellow Fever Virus (YFV) vac-

cinees (Stryhn et al., 2020). To prevent an overestimation of the performance of the models on these

epitope benchmarks, peptides overlapping with the training datasets of any of the two methods were

left-out. In the case of the IEDB set, the common motif algorithm was employed to discard peptides,

both positives and negatives, with a shared 8-mer (sub)sequence to the training peptides. In the case of
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the YFV set, the peptides from the digested viral proteome (8 to 14-mers) with an exact match to peptides

in the training sets of any of the two models were discarded. Finally, the IEDB set consisted of 429 epitopes

(covering 33 different HLAs) while the YFV set consisted of 64 epitopes (spanning 29 different HLAs). To

compare the method developed in this work with NetMHCpan-4.1 on a fair basis, we used a reduced

version of NetMHCpan-4.1 to perform this benchmark, consisting of an ensemble of 50 networks (corre-

sponding to 5 random seed initializations instead of the original 10 random seeds).

Model evaluation: score normalization

HLA annotation for MA datasets is based on which HLAmolecule expressed in a given cell line has the high-

est prediction score for a given ligand. To balance the differences in the prediction score distributions be-

tween HLAs, percentile normalized prediction scores for each were generated by ranking against a distri-

bution of prediction scores of random natural peptides as described earlier (Nielsen and Andreatta, 2016).

The use of such percentile normalized prediction scores makes the model output more interpretable and

makes relative comparison across HLA molecules fairer. To allow using the same dataset for the percentile

calculation for all models, these random peptides were taken from the proteome of genome assembly

GRCh38.p12 and were given gene expression values from the HPA reference dataset.

In relation to this last point, we investigated if the choice of this gene expression reference for the random

peptides could have an impact on the predictive power of the trained models. Gene expression values of

the training datasets B-D were recalibrated using the HPA dataset as a reference. Models trained with the

recalibrated gene expression values (‘‘INT2HPA’’) were compared against their equivalents that were

trained with the original gene expression values (‘‘INT’’).

Performance measures

To evaluate the performance of our models, the AUC (Area Under the ROC Curve) and AUC01 (Area Under

the ROC Curve integrated up to a False Positive Rate of 10%) were calculated. Both in 5-fold cross-valida-

tion and in the independent benchmark, the metrics were computed on the concatenated test set ‘‘raw’’

score predictions for each HLA or cell line. Moreover, the PPV (Positive Predictive Value) was calculated

as the fraction of peptides in the top N*0.95 predictions that were true positives, where N is the number

of ligands assigned to a given HLA/cell line. The values of 95% were selected to tolerate a certain propor-

tion of noise in the EL data (Alvarez et al., 2018).

In relation to the cross-validation results obtained for dataset A data, only alleles or cell lines with 10 or

more positive instances were reported considering the three mentioned metrics (AUC, AUC01 and PPV).

In the case of the NCI neoepitope dataset, the prediction score of the MMP with the lowest rank score

within an nmer was employed to calculate the described metrics.

For the CD8+ epitopes benchmarks, the F-rank performance metric was applied. To calculate the F-rank,

the source protein of a given epitope is digested in all possible 8 to 14-mer peptides. Next, all peptides are

predicted for the given HLA, and the F-rank value is calculated as the ratio of the number of peptides with a

prediction score higher than the epitope divided by the number of peptides contained within the source

protein. The lower the F-rank value, the better the prediction for the epitope. An F-rank of 0 implies that the

epitope is the peptide with highest prediction score within the source protein. The F-rank value can also be

interpreted as the percentage of false positives or peptides with a prediction score higher than the actual

positive - the epitope.

Sequence logos

Sequence binding motifs were visualized as logo plots using the software Seg2Logo (Thomsen and Niel-

sen, 2012). For each of the amino acid positions (1–9) in the x axis, the Kullback-Leibler divergence (in Bits) is

shown in the y axis. Amino acids are colored according to their physicochemical properties: negatively

charged (red), positively charged (blue), polar (green) or hydrophobic (black). Binding motifs were gener-

ated taking the predicted peptide binding cores (9 amino acids long) in cross-validation for the corre-

sponding HLA alleles and studied methods.
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QUANTIFICATION AND STATISTICAL ANALYSIS

The corresponding statistical tests employed to compare model performances or other results are

described in detail in the legend of each of the figures. In all cases, p-values less than 0.05 were taken to

be significant. In Figure 4, pairwise comparisons of model performances were made using one-tailed bino-

mial tests. For each comparison, one thousand re-samples of the entire predicted benchmark dataset were

generated, allowing for replacement (each subsample should contain at least 1% of the total original pos-

itive instances). The p-values were calculated as the number of times one method outperformed the other

divided by 1000.
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