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Abstract

Objective

Cotrimoxazole prevents opportunistic infections including falciparum malaria in HIV-infected

individuals but there are concerns of cross-resistance to other antifolate drugs such as sul-

phadoxine-pyrimethamine (SP). In this study, we investigated the prevalence of antifolate-

resistance mutations in Plasmodium falciparum that are associated with SP resistance in

HIV-infected individuals on antiretroviral treatment randomized to discontinue (STOP-CTX),

or continue (CTX) cotrimoxazole in Western Kenya.

Design

Samples were obtained from an unblinded, non-inferiority randomized controlled trial where

participants were recruited on a rolling basis for the first six months of the study, then fol-

lowed-up for 12 months with samples collected at enrollment, quarterly, and during sick

visits.

Method

Plasmodium DNA was extracted from blood specimens. Initial screening to determine the

presence of Plasmodium spp. was performed by quantitative reverse transcriptase real-

time PCR, followed by genotyping for the presence of SP-resistance associated mutations

by Sanger sequencing.
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Results

The prevalence of mutant haplotypes associated with SP-resistant parasites in pfdhfr (51I/

59R/108N) and pfdhps (437G/540E) genes were significantly higher (P = 0.0006 and P =

0.027, respectively) in STOP-CTX compared to CTX arm. The prevalence of quintuple hap-

lotype (51I/59R/108N/437G/540E) was 51.8% in STOP-CTX vs. 6.3% (P = 0.0007) in CTX

arm. There was a steady increase in mutant haplotypes in both genes in STOP-CTX arm

overtime through the study period, reaching statistical significance (P < 0.0001).

Conclusion

The frequencies of mutations in pfdhfr and pfdhps genes were higher in STOP-CTX arm

compared to CTX arm, suggesting cotrimoxazole effectively controls and selects against

SP-resistant parasites.

Trial registration

ClinicalTrials.gov NCT01425073

Author summary

Cotrimoxazole, an antifolate, is a fixed-dose trimethoprim-sulfamethoxazole used to pre-

vent opportunistic infections including malaria in HIV-infected individuals. There are

concerns that widespread use of cotrimoxazole for prophylaxis may result in selection of

P. falciparum parasites with cross-resistance to other antifolate drugs such as sulphadox-

ine-pyrimethamine (SP), which is used as intermittent preventive treatment of malaria in

pregnancy (IPTp) and in infants (IPTi) in Africa. This sub-study used samples from a

clinical trial in which HIV-infected individuals on antiretroviral treatment were random-

ized to discontinue (STOP-CTX) or continue (CTX) cotrimoxazole prophylaxis for 12

months. The sub-study was designed to assess whether taking cotrimoxazole increased the

risk of selecting for parasites with SP-resistant mutations in HIV-infected individuals.

Samples were genotyped by sequencing to assess the prevalence of mutations associated

with SP-resistance. We found there was no risk of selecting for parasites with SP-resis-

tance mutations while on cotrimoxazole. In fact, the opposite was true; cotrimoxazole

controlled parasites carrying SP-resistance mutations as evident by the gradual increase in

the prevalence of parasites with mutant alleles in the STOP-CTX arm and not in the CTX-

arm. We concluded that cotrimoxazole remains effective in controlling malaria infection

despite of the high prevalence of SP-resistant parasites, and its use does not select for SP

mutations.

Introduction

Despite the changes in the epidemiology and improvement in the control of HIV-infection

and malaria, both remain important infectious diseases and global health priorities. Through

immunosuppression, HIV infection affects the acquisition and persistence of immune

response to malaria, causing substantial increase in the malaria prevalence and malaria-related

morbidity and mortality [1]. Antiretroviral therapy (ART) and cotrimoxazole, a fixed-dose tri-

methoprim-sulfamethoxazole (an antifolate) widely used to prevent opportunistic infections
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in HIV-infected individuals, including falciparum malaria significantly reduces mortality and

morbidity in HIV-infected individual. In countries with adequate health infrastructure, the

World Health Organization (WHO) recommends daily cotrimoxazole prophylaxis for HIV-

infected individuals with low CD4 cell count levels (< 350 cells/mm3), whereas in countries

with high prevalence of HIV and limited health infrastructure, cotrimoxazole prophylaxis is

recommended for all HIV-infected individuals regardless of the CD4 cell count levels [2].

However, there are concerns that widespread use of cotrimoxazole prophylaxis may result in

selection of Plasmodium falciparum parasites with cross-resistance to closely related antifolate

antimalarials such as sulphadoxine-pyrimethamine (SP) [1]. Although artemisinin based com-

bination therapy is the mainstay for treatment of uncomplicated malaria in most malaria

endemic countries, SP is widely used as intermittent preventive treatment of malaria in preg-

nancy (IPTp) and in infants (IPTi) in sub-Saharan Africa (SSA) [3–5].

Some of the important mutant alleles that confer P. falciparum parasite resistance to SP are

in P. falciparum dihydrofolate reductase (pfdhfr) gene at codons 51, 59 and 108, and P. falcipa-
rum dihydropteroate synthase (pfdhps) gene at codons 437 and 540. Recent studies have shown

high prevalence of these mutant alleles and haplotypes in Western Kenya, including mutant

allele at codon 164 in the pfdhfr gene which is associated with high-grade resistance to SP

[6–9]. Despite the high prevalence of SP-resistant mutations in parasite population in

Western Kenya, there is limited clinical evidence associating these mutations with compro-

mised efficacy of cotrimoxazole prophylaxis and IPTp/i [10]. Recent studies have indicated

there is fixation of some of the key SP-resistant mutations in the parasite population despite

discontinuation of SP as the first-line treatment for more than a decade [6,7,9].

Based on the malaria risk map and the eco-epidemiology of malaria, Kenya is stratified into

four malaria ecological regions [11], with the lake region in Western Kenya having the highest,

stable transmission of malaria with an estimated prevalence of 27% based on microscopy

[12,13] and 37% based on PCR [14]. The HIV-1 prevalence in Kenya is estimated at 5.9%, with

Homa Bay County, one of the eight counties in the lake region of Western Kenya having the

highest prevalence estimated at 26% [15]. With such high HIV and malaria prevalence, the

selective pressure due to cotrimoxazole prophylaxis and the risk of developing antifolate resis-

tance in P. falciparum warrants further investigation. From February 2012 to August 2013, we

conducted a randomized controlled trial (RCT) among adults on ART with evidence of

immune recovery to determine whether discontinuation of cotrimoxazole was non-inferior to

continuation of cotrimoxazole prophylaxis in decreasing morbidity in Homa Bay County [16].

Study participants were recruited in the first six months of the study on a rolling basis and ran-

domized to discontinue or continue cotrimoxazole, then followed-up for 12 months with the

primary endpoint a composite of malaria, pneumonia, diarrhea and non-trauma mortality

events. Samples were collected at enrollment, quarterly, and at sick visits which the partici-

pants were encouraged to visit the clinic to see study providers for any illness. Malaria was

defined as a fever, measured or self-reported, and either a positive rapid diagnostic test or

thick smear showing the presence of parasites. Patients who were diagnosed with malaria were

treated following the Kenyan Ministry of Health national guidelines. In the RCT study, we

found increased incidence of malaria (13.0 in discontinuation of cotrimoxazole arm

[STOP-CTX] vs. 0.4 in continuation of cotrimoxazole arm [CTX] per 100 person-years) [16].

In a follow-up study which we characterized the risk associated with stopping CTX therapy by

determining parasite density, multiplicity of infecting parasites, and rates of new cases of para-

sitemia by PCR, malaria incidence was 42.0 in STOP-CTX vs. 9.9 in CTX per 100 person-years

[17]. In this study, we determined and compared the prevalence of P. falciparum parasites with

mutations associated with SP-resistance in HIV-infected individuals in the two study popula-

tion arms, STOP-CTX and CTX.

Prevalence of SP-Resistance parasites in patients on/off cotrimoxazole
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Materials and methods

Ethical considerations

The study protocol was approved by the ethical review committee of the Kenya Medical

Research Institute and the institutional review boards of the University of Washington and the

Walter Reed Army Institute of Research. All participants gave informed consent. Consent was

written if literate and fingerprint if illiterate, with the signature of an independent witness. For

the clinical study, Vestergaard Frandsen donated insecticide-treated bednets and water filters.

Alere donated cartridges for the Pima machines used for CD4 count measurements.

Study site and sample collection

Samples used in this study were collected between February 2012 and September 2013 in an

unblinded, two-arm randomized non-inferiority clinical trial (clinical trials registration

NCT01425073). The details of the study and sample collection have been described elsewhere

[16]. Briefly, a total of 500 participants�18 years old, HIV seropositive, and taking first-line

ART and cotrimoxazole with evidence of immune recovery (ART for�18 months and CD4

count> 350 cells/mm3) were enrolled in the study, and randomized to discontinue with cotri-

moxazole prophylaxis (STOP-CTX; 250 individuals) or continue (CTX; 250 individuals). The

study took place in Homa Bay County, Western Kenya, a malaria holoendemic lake endemic

region where transmission is intense through-out the year with high annual entomological

inoculation rates [12]. Generally, a bimodal pattern of rainfall is observed with the long rainy

season from March to June and the short rainy season from November to December, but the

periods vary each year with malaria prevalence peaking 1–2 months after the rainy season.

Annual rainfall ranges from 700 mm to 1,200 mm with mean temperature of 25˚C, with rela-

tively high humidity [14]. This study lasted 18 months, enrollment taking place during the first

six months (01 February 2012 to 27 August 2012) with participants randomized to STOP-CTX

or CTX. This strategy ensured that participants were enrolled and followed over different

malaria seasons.

Blood samples were collected from the participants during the scheduled visits at months 0,

3, 6, 9 and 12 (M0, M3, M6, M9 and M12 respectively), and sick visits. Participants were

encouraged to come to the clinic to see study providers for any illness as a sick visit. At each

sick visit, a standardized questionnaire was provided to assess participants’ symptoms and a

clinician performed a physical exam. Additionally, available and clinically relevant basic diag-

nostic tests were performed (e.g. malaria smear, chest radiograph, stool ova and parasite exam)

to assist with diagnosis as per routine clinic practice. Additionally, pertinent microbiological

samples were taken in order to better evaluate cause of illness. If further evaluation was neces-

sary, patients were referred for hospitalization at the nearest facility. Clinical and laboratory

records from any hospitalization during participation were reviewed. Participants with malaria

were treated following Kenyan national guidelines.

Genotypic analysis

In the RCT, dried blood spots samples were collected from the participants at enrollment,

every 3 months and during sick visits (whether or not they were diagnosed with malaria) for

the duration of the study which was 12 months. DNA was extracted from the FTA filter papers

using the QIAamp DNA mini kit (Qiagen, Valencia, CA). The detection of P. falciparum posi-

tive samples was performed by quantitative reverse transcriptase real-time PCR (qRT-PCR) as

previously described [17,18]. The presence of mutations in dihydrofolate reductase (pfdhfr:
codons 16, 50, 51, 59, 108, and 164) and dihydropteroate synthase (pfdhps: codons 436, 437,

Prevalence of SP-Resistance parasites in patients on/off cotrimoxazole
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540, 581, and 613) genes which are associated with antifolate resistance in P. falciparum sam-

ples were assessed by Sanger sequencing as previously described [6]. Briefly, after successfully

amplifying the target regions, the PCR amplicons were purified using Exosap-it (Affymetrix,

Santa Clara, CA) per the manufacturer’s protocol. Sequencing of the target regions was done

on the ABI 3500 xL genetic analyzer using version 3.1 of the big dye terminator method

(Applied Biosystems, Foster City, CA). Bioinformatics analysis of the sequence data was done

on the CLC Main Work Bench v6 software (Qiagen, Redwood City, California, USA). All

sequences were compared against the pfdhfr (Accession Number; XM_001351443) or pfdhps
(Accession Number; XM_001349382) 3D7 reference sequence published at the NCBI

database.

Statistical analysis

The different Plasmodium species and genotype polymorphisms within pfdhfr and pfdhps
genes of P. falciparum were analyzed as proportions showing frequency rates. The differences

in frequencies were determined by the Chi-square test. All statistical analyses were performed

at the 5% significance level. Graph pad Prism 4.0 software (Graph pad Software, San Diego,

California, USA) was used for the analyses.

Results

Prevalence of falciparum and non-falciparum malaria

A total of 2,625 samples were initially screened for presence of malaria parasites by qRT-PCR

[17,18]. Of these, 183 samples were positive for Plasmodium genus, 131 (71.6%) were P. falcipa-
rum, and 101 (55.2%) were successfully genotyped in pfdhfr (at codons 16, 50, 51, 59, 108, and

164) and pfdhps (at codons 436, 437, 540, 581, and 613) genes; 30 samples had non-falciparum

parasites. The difference in the number of samples that were successfully genotyped by sequenc-

ing (n = 101) and those that were Plasmodium spp. positive as detected by qRT-PCR (n = 183)

is due to the difference in sensitivities of the amplification assays used. For the detection of Plas-
modium genus used for the initial screening for the presence of the parasite, Ottichilo et al.
(2016) used previously described qRT-PCR assay (probe based assay) which amplifies total

nucleic acids (RNA and DNA) of the 18S rRNA genes, increasing sensitivity several fold

[17,18]. For genotypic analysis, nested PCRs that target DNA only [6] were used in the sequenc-

ing reactions. Table 1 shows the prevalence of the mutant alleles in pfdhfr and pfdhps genes. The

prevalence was based on the total number of samples that were P. falciparum positive in each of

the arms (total n = 101; STOP-CTX = 85 and CTX = 16). Single nucleotide polymorphisms

(SNPs) were designated as wild, mutant or mixed alleles [6,7]. None of the parasite samples con-

tained mutations in pfdhfr codons 16 and 50 or in pfdhps codons 436 and 613. Three samples,

two in STOP-CTX arm and one in the CTX arm had the pfdhfr 164L mutation which confers

high grade resistance to antifolate [19,20]. The two samples in the STOP-CTX arm were col-

lected in M3 and M12 whereas the one sample in the CTX arm was collected at enrollment.

Mutations in the STOP-CTX arm were present at a higher frequency compared to CTX arm in

pfdhfr codons 51 (65.9% [n = 56/85] vs. 25.0% [n = 4/16]; P = 0.0043), 59 (60% [n = 51/85] vs.

12.5% [n = 2/16]; P = 0.0007) and 108 (65.9% [n = 56/85] vs. 31.3% [n = 5/16]; P = 0.0126). In

the pfdhps gene, mutations were only present in codons 437 and 540 with frequencies higher in

the STOP-CTX arm compared to the CTX arm (68.2% [n = 58/85] vs. 37.5% [n = 6/16] and

70.6% [n = 60/85] vs. 37.5% [n = 6/16] respectively). Fig 1 shows the prevalence of the different

mutation haplotypes in pfdhfr and/or pfdhps genes. The prevalence of the triple mutant haplo-

type (pfdhfr 51I/59R/108N) was 52.9% (n = 45/85) in the STOP-CTX arm versus 6.3% (n = 1/

16; P = 0.0006) in the CTX arm, and the pfdhps double mutant (437G/540E) was 57.6% (n = 49/

Prevalence of SP-Resistance parasites in patients on/off cotrimoxazole
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85) in the STOP-CTX arm versus 25.0% (n = 4/16; P = 0.027) in the CTX arm. The prevalence

of quintuple haplotype (51I/59R/108N/437G/540E) was 51.8% (n = 44/85) in the STOP-CTX

arm versus 6.3% (n = 1/16; P = 0.0007) in the CTX arm.

Temporal trends of haplotype mutations in the pfdhfr and pfdhps genes

To determine change in the prevalence of the mutations over the study period for each study

arm, we analyzed samples carrying mutations at each time-point, starting M0 –M12, and the

sick visits. However, the sample sizes were small in the CTX arm. In the STOP-CTX arm, the

percent prevalence of point mutations in both genes increased over time with marked increase

occurring in M9 followed by a slight drop in M12 (Table 2). The difference in prevalence of

mutations was less pronounced in the sick visits between the two arms. Fig 2 shows the preva-

lence of mutations at the different time-points of the triple mutant haplotype (51I/59R/108N)

in the pfdhfr gene, the double mutant haplotype (437G/540E) in pfdhps gene and the quintuple

haplotype (51I/59R/108N/437G/540E) in the STOP-CTX arm. All the changes (increases) over

time reached statistical significance (P = 0.0069, 95% CI = 19.99–67.45; P = 0.008, 95%

CI = 32.90–61.02; and P = 0.0044, 95% CI 18.35–52.09, respectively).

Discussion

The clinical benefits of using cotrimoxazole prophylaxis in controlling opportunistic infections

including falciparum malaria in HIV-infected individuals are clear [21]. The widespread use of

cotrimoxazole prophylaxis for individuals with HIV infection in malaria endemic countries

has been a concern because of the risk of developing cross resistance to other antifolate drugs

[22–24]. However, concern for cross resistance was based on in vitro data [3,25,26], and has

not been substantiated by field clinical data (reviewed by [27]). Despite the high prevalence of

SP-resistant mutations, cotrimoxazole continues to provide important benefits in reducing

morbidity and mortality particularly in the setting of HIV infection [28–30], and does not lead

to increased resistance [22,31–33]. Current field data clearly supports the continued use of

cotrimoxazole as a prophylactic drug in HIV-infected populations [21,27]. Additional studies

to investigate the use of cotrimoxazole as an alternative to SP in IPTp/i, malaria treatment and

prophylaxis, and as a combined anti-malarial therapy with artemisinin are warranted.

Table 1. Prevalence of mutations in the pfdhfr and pfdhps genes.

N51I C59R S108N I164L

DHFR STOP-CTX (N = 85) CTX

(N = 16)

STOP-CTX (N = 85) CTX

(N = 16)

STOP-CTX (N = 85) CTX

(N = 16)

STOP-CTX (N = 85) CTX

(N = 16)

MUTANT 65.9%

(56)

25%

(4)

60%

(51)

12.5%

(2)

65.9%

(56)

31.3%

(5)

2.4%

(2)

6.25%

(1)

MIXED 0 6.25%

(1)

0 12.5%

(2)

0 0 1.2%

(1)

0

A437G K540E A581G A613S/T

DHPS STOP-CTX (N = 85) CTX (N = 16) STOP-CTX (N = 85) CTX (N = 16) STOP-CTX (N = 85) CTX

(N = 16)

STOP-CTX (N = 85) CTX

(N = 16)

MUTANT 68.2%

(58)

37.5%

(6)

70.6%

(60)

37.5%

(6)

0 0 0 0

MIXED 0 0 0 0 1.2%

(1)

0 0 0

Note: Mutation distribution per codon was calculated as a percentage of the total number of P. falciparum positive samples in each arm as indicated (N). Mutations were

tallied autonomously per codon as an overall prevalence.

https://doi.org/10.1371/journal.pntd.0007223.t001
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In this study, we demonstrated cotrimoxazole prophylaxis did not results in increased risk

of developing resistance, corroborating previous studies [22,28–32,34]. Interestingly, we found

the prevalence of SP-resistant alleles increased steadily over the study period in the STOP-CTX

arm for the first 9 months. Further, although the sample size was small, the prevalence of SP-

resistant alleles in the CTX arm did not change over the study period. Taken together, cotri-

moxazole prophylaxis lowered the overall incidence of SP-resistant parasites, consistent with

previous studies [22,33]. Key SP-resistant mutations have become fixed in parasite populations

despite discontinuation of SP as the first-line treatment for more than a decade [6,7,9], indicat-

ing these mutations might be providing benefit to the parasite population without fitness cost.

It is possible that cotrimoxazole selects against parasites carrying SP-resistant alleles in the

population, and removal of cotrimoxazole pressure allows the SP-resistant parasite population,

which seems to be more fit than SP-susceptible population to dominate. As studies are under-

way to investigate expanded role of cotrimoxazole in developing countries [21], the use of

cotrimoxazole in the prevention of malaria HIV-infected and HIV uninfected populations,

especially as a tool for malaria elimination and as travelers’ prophylactic drug, needs to be fur-

ther investigated.

Fig 1. Prevalence of haplotype mutations in pfdhfr and pfdhps genes in subjects continuing with cotrimoxazole

prophylaxis therapy (CTX) and those who stopped CTX therapy (STOP CTX). The prevalence was based on the

total number of P. falciparum positive samples in each arm. The statistical difference in parasite prevalence between

the two arms was determined. A) Haplotype mutations (51I, 59R, 108N and 164L) in pfdhfr gene; B) haplotype

mutations (437G, 540E and 581G) in pfdhps gene and; C) haplotype mutations present in both genes. There were

statistical significant differences between the STOP CTX and CTX arms in the pfdhfr gene haplotype 51I/59R/ 108N

(P = 0.0006), in pfdhps gene haplotype 437G/540E (P = 0.027) and in both genes haplotype 51I/59R/108N/437G/540E

(P = 0.0007).

https://doi.org/10.1371/journal.pntd.0007223.g001

Table 2. Temporal change of mutations in the pfdhfr and pfdhps genes.

M0 M3 M6 M9 M12 SICK

STOP

(N = 7)

CTX

(N = 4)

STOP

(N = 6)

CTX

(N = 1)

STOP

(N = 9)

CTX

(N = 1)

STOP

(N = 15)

CTX

(N = 3)

STOP

(N = 36)

CTX

(N = 3

STOP

(N = 12)

CTX

(N = 4)

DHFR

N51I 28.6%

(2)

25.0%

(1)

66.7%

(4)

0.0 66.7%

(6)

0.0 93.3%

(14)

33.3%

(1)

63.9%

(23)

0.0 58.3% (7) 50.0%

(2)

C59R 14.3%

(1)

0.0 66.7%

(4)

0.0 66.7%

(6)

0.0 80.0%

(12)

33.3%

(1)

58.3%

(21)

0.0 58.3% (7) 25.0%

(1)

S108N 0.0 25% (1) 66.7%

(4)

0.0 66.7%

(6)

0.0 93.3%

(14)

0.0 63.9%

(23)

0.0 58.3% (7) 0.0

I164L 0.0 25% (1) 0.0 0.0 0.0 0.0 6.7% (1) 0.0 2.8% (1) 0.0 0.0 0.0

DHPS

A437G 28.6%

(2)

50.0%

(2)

50.0%

(3)

0.0 77.8%

(7)

0.0 80.0%

(12)

33.3%

(1)

66.7%

(24)

0.0 83.3%

(10)

75.0%

(3)

K540E 28.6%

(2)

50.0%

(2)

50.0%

(3)

0.0 88.9%

(8)

0.0 80.0%

(12)

33.3%

(1)

69.4%

(25)

0.0 83.3%

(10)

75.0%

(3)

A581G 0.0 0.0 0.0 0.0 77.8%

(7)

0.0 0.0 0.0 0.0 0.0 0.0 0.0

DHFR

HAPLOTYPES

51I/59R/

108N

14.3%

(1)

0.0 66.7%

(4)

0.0 66.7%

(6)

0.0 80.0%

(12)

33.3%

(1)

55.6%

(20)

0.0 58.3% (7) 25.0%

(1)

DHPS

HAPLOTYPES

437G/540E 28.6%

(2)

50.0%

(2)

50.0%

(3)

0.0 77.8%

(7)

0.0 80.0%

(12)

33.3%

(1)

69.4%

(25)

0.0 83.3%

(10)

75.0%

(3)

DHFR/DHPS

HAPLOTYPES

51I/59R/

108N/

437G/540E

14.3%

(1)

0.0 50.0%

(3)

0.0 44.4%

(4)

0.0 60.0% (9) 0.0 52.8%

(19)

0.0 58.3% (7) 25.0%

(1)

Data shows the prevalence of mutations at each time point, calculated as a percentage of the total number of P. falciparum positive samples at each time-point for each

arm as indicated (N).

https://doi.org/10.1371/journal.pntd.0007223.t002
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Mutation in pfdhfr 164L codon is associated with high grade resistance to SP [35–38].

While some studies have shown evidence that cotrimoxazole prophylaxis might be associated

with presence of pfdhfr 164L codon [31,39], other studies do not support this observation [40].

In Kenya, only low prevalence of pfdhfr 164L has been reported [6,7,36,41]. In our study, three

parasite isolates had pfdhfr 164L, one in CTX arm collected at M0 and two in STOP-CTX col-

lected in M9 and M12, indicating the presence of this mutation is unlikely due to cotrimoxa-

zole drug pressure. Although cotrimoxazole has been speculated to contribute to antifolate

selective pressure [40], additional studies are required to support this observation.

This study had several limitations. First, the study was unblinded clinical trial without a pla-

cebo or concurrent control group of HIV-uninfected individuals [16]. Second, the number of

infections in the CTX arm was small, limiting statistical analysis or might have resulted in bias.

This made it especially difficult in interpreting the data when evaluating prevalence at each

time-point. Also, the use of highly sensitive qRT-PCR assay for the initial screening followed

by multiple sequencing reactions, which uses multiple PCR steps that are not as sensitive was a

limitation.

In conclusion, this study demonstrated cotrimoxazole does not select for SP-resistance P.

falciparum parasites but instead, lowers the overall incidence of SP-resistant parasites. Since

cotrimoxazole is available in malaria-HIV co-endemic regions with infrastructure in place and

is effective against SP-resistant parasites, additional studies are required to validate these find-

ings and to further explore the possibility of expanding the use of this drug for IPTp/i, prophy-

laxis for non-HIV population and travelers.

Supporting information

S1 Fig. Trial profile. Consort figure from Polyak et al., (Ref: 16) showing study retention. A

total of 490 participants (98%) were retained to the end of scheduled follow-up. Participants

randomized to the CTX continuation arm self-reported that they took CTX every day in the

past week at 90.5% of follow-up visits.

(PDF)

Fig 2. Temporal trends of haplotype mutations in the pfdhfr and pfdhps genes in the STOP-CTX arm. The prevalence is based on the total

number of samples collected at each time point. Temporal trends shown for haplotype mutations in pfdhfr gene (51I/59R/108N), pfdhps gene

(437G/540E) and both genes combined (51I/59R/108N/437G/540E).

https://doi.org/10.1371/journal.pntd.0007223.g002
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