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Binocular Goggle Augmented 
Imaging and Navigation System 
provides real-time fluorescence 
image guidance for tumor 
resection and sentinel lymph node 
mapping
Suman B. Mondal1,2,*, Shengkui Gao3,*, Nan Zhu4,*, Gail P. Sudlow1, Kexian Liang1, 
Avik Som1,2, Walter J. Akers1, Ryan C. Fields5, Julie Margenthaler5, Rongguang Liang4, 
Viktor Gruev3 & Samuel Achilefu1,2,6

The inability to identify microscopic tumors and assess surgical margins in real-time during oncologic 
surgery leads to incomplete tumor removal, increases the chances of tumor recurrence, and 
necessitates costly repeat surgery. To overcome these challenges, we have developed a wearable 
goggle augmented imaging and navigation system (GAINS) that can provide accurate intraoperative 
visualization of tumors and sentinel lymph nodes in real-time without disrupting normal surgical 
workflow. GAINS projects both near-infrared fluorescence from tumors and the natural color images 
of tissue onto a head-mounted display without latency. Aided by tumor-targeted contrast agents, 
the system detected tumors in subcutaneous and metastatic mouse models with high accuracy 
(sensitivity = 100%, specificity = 98% ± 5% standard deviation). Human pilot studies in breast cancer 
and melanoma patients using a near-infrared dye show that the GAINS detected sentinel lymph 
nodes with 100% sensitivity. Clinical use of the GAINS to guide tumor resection and sentinel lymph 
node mapping promises to improve surgical outcomes, reduce rates of repeat surgery, and improve 
the accuracy of cancer staging.

Surgical resection is the standard of care for many solid tumors such as breast cancer and melanoma, and 
sentinel lymph node (SLN) mapping is used for cancer staging1. Incomplete tumor removal increases the 
chances of cancer recurrence and necessitates repeat surgery, whereas inaccurate SLN identification may 
misdiagnose the cancer stage. Despite recent advances in pre-operative imaging methods, surgeons rely 
on visual inspection, palpation, and tactile evaluation to distinguish cancerous from uninvolved tissue 
intraoperatively, leading to subjective decision-making and variable outcomes. For example, 14–50%2–4 
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and 20–70%5–7 of patients undergoing melanoma in situ and breast conserving surgery, respectively, 
require repeat surgery. Similarly, inaccurate SLN removal often requires additional surgical inter-
ventions8. Surgery is most effective when performed before the cancer becomes a metastatic disease. 
Assessment of the SLN for the presence of cancer cells is a standard of care for staging breast cancer and 
melanoma1. Conventionally, patients are injected peritumorally with 99 mTc sulfur-colloid and a visible 
blue lymphotropic dye. A handheld gamma-counter is used to localize the region of highest radioactivity, 
and the blue dye can be used to visualize the SLN. However, radioactive SLN tracking exposes patients 
and health professionals to ionizing radiation, without SLN visualization capability. Although blue dyes 
can be visualized, SLN tracking by this method is limited to inspection of only superficial lymph nodes 
and requires a high dose of the dye, which may lead to harmful side-effects9,10.

The above challenges have spurred interest in developing methods for accurate intraoperative imaging 
of tumors and SLNs. Conventional modalities such as magnetic resonance imaging, computed tomogra-
phy, and positron emission tomography can provide exquisite anatomic and functional information11,12. 
However, they are not amenable for use in the operating room (OR) due to their large hardware foot-
print, specialized operator requirement, prohibitive cost, and the use of ionizing radiation. Slow image 
reconstruction, lack of microscopic imaging capability, and disruptive information display on a remote 
monitor affects their wide adoption in the OR for real-time image guidance13. Intraoperative ultrasonog-
raphy can be used for tumor detection based primarily on tissue morphology, leading to significant false 
positive and negative rates14–17. As a contact based method with relatively poor resolution, intraoperative 
ultrasonography is less useful for identifying tumor boundaries or microscopic tumors during open 
surgeries. Advanced instruments that mimic global positioning systems have been developed, where 
pre-operative computed tomography or magnetic resonance images can be projected onto the appropri-
ate anatomical structures. These systems suffer from limitations of the pre-operative imaging method, 
unsatisfactory registration due to tissue deformation and motion during surgery, and the inability to 
directly interrogate boundaries of tumors.

Alternatively, optical imaging uses nonionizing radiation and simple imaging setup for real-time read-
out and detection of microscopic lesions18,19. In particular, near-infrared (NIR) fluorescence imaging in 
the 700–900 nm range is attractive because the low absorption by intrinsic photoactive biomolecules 
minimizes tissue autofluorescence and facilitates thick tissue assessment. The use of nonionizing radia-
tion decreases safety hazards in the OR18–20. Additionally, several tumor-targeted optical contrast agents 
have been developed21 including peptide22 and nanoparticle-based agents with promising features23. 
These advantages have generated interest in NIR fluorescence image-guided surgery (NIR-FIGS). To 
date, several NIR-FIGS systems have been developed, and successfully used for intraoperative tumor 
imaging and SLN mapping (SLNM), including FLARE24, Fluobeam25, SPY26, and Hamamatsu PDE27. 
However, each of these systems have some limitations, including the use of bulky hardware, potentially 
disruptive information display on a remote monitor, mismatch between the system’s and surgeon’s field 
of view (FOV), and require support from other workers to control the device.

Adaptation of head-mounted displays (HMDs) for surgery28–33 could overcome the issue of disrup-
tive information display. We have previously demonstrated the feasibility of using wearable cameras and 
HMDs for FIGS34–36. Our initial prototypes used a monocular projection eyepiece, which posed percep-
tion problems during surgery, or a binocular system, which only captured white light reflectance and 
fluorescence images sequentially using the same sensor, thereby preventing display of real-time compos-
ite color-fluorescence images. Additionally, the issues of camera and user FOV mismatch, bulky design, 
non-optimized optics, and fast processing to generate real-time color-fluorescence composite images 
with minimum latency remain unaddressed. The primary goal of this study is to test the hypothesis 
that simultaneous, sensitive detection of color and NIR fluorescence information, fast image processing 
and image output via an HMD would allow non-disruptive access to accurately co-registered color-NIR 
images for real-time image guidance in oncologic surgery. Toward this goal, we have developed a new 
wearable goggle aided imaging and navigation system (GAINS) and evaluated the accuracy of using 
the well-characterized system for real-time intraoperative tumor visualization and image-guided tumor 
resection in small animals, as well as SLNM in human breast cancer and melanoma patients.

Results
Development of GAINS.  The accuracy of image guidance depends on the sensitivity and resolu-
tion of the system, as well as the accuracy of fluorescence to color image overlay. The system detection 
sensitivity is determined by the fluorescence detection sensitivity because the visible light channel has 
abundant signal compared to the photon-starved fluorescence channel. The system performance is deter-
mined by the sensor and optics of the system, with a smaller sensor pixel pitch and smaller lens aperture 
leading to higher resolution and larger depth of focus respectively, but with low fluorescence detection. 
Thus there is a trade-off when using a lower-resolution sensor with larger pixel pitch and large aperture 
lens with lower depth of focus that allows high fluorescence signal capture for more sensitive detec-
tion. Furthermore, the requirement of wearability imposed additional restrictions of having a compact, 
lightweight, and ergonomic design. These factors precluded the use of different cameras with dedicated 
lenses for both color and fluorescence channels, and large aperture heavy glass lenses that could capture 
very large amount of fluorescence signal. The amount of fluorescence signal collected may be increased 
by using large exposure times. However, the requirement of real-time image guidance constrained the 
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imaging exposure to acquire both fluorescence and color information. Therefore, the challenges in devel-
oping the GAINS were achieving sensitive simultaneous imaging in the photon-saturated color channel 
and photon-starved fluorescence channel, real-time image processing, and non-disruptive display while 
maintaining a wearable form factor. We overcame these challenges by developing a single lens, color-NIR 
(Supplementary Fig. S3), and compact lightweight camera (Supplementary Table S1), with independent 
exposure times for both sensors and a spatial resolution of 320 μ m (Supplementary Table S1). GAINS 
conceptual design is summarized in Fig.  1a. The processing unit generates co-registered composite 
color-fluorescence images, which are displayed in real-time via a lightweight and high-resolution HMD 
unit. The NIR source (Fig. 1b) consists of 760 nm light-emitting diodes (LEDs) with 769 ±  41 nm band-
pass filter. The display module consists of a 1080p high-resolution HMD. Adjustable mechanical mount-
ing and a counter balance for the imaging module were added to match the camera’s weight and user 
FOV for improved user experience (Fig. 1c). Additional information on the system development can be 
found in the Materials and Methods section below.

In vitro studies.  We used GAINS to determine the fluorescence intensity profile with increasing con-
centrations of NIR contrast agents indocyanine green (ICG) and LS30135 (Fig. 2a). In the 1 nM to 10 nM 
range, significant fluorescence was detected, but the signal is close to the sensor noise floor, indicating 
noise contribution to the net intensity signal. The intensity did not follow a linear trend. A similar pro-
file was observed when signal-to-background ratios (SBRs) were plotted against concentration (Fig. 2b). 
Therefore, there was no appreciable increase in fluorescence intensity (Fig.  2a) or the SBR (Fig.  2b) 

Figure 1.  GAINS. (a) Schematic demonstrates the information flow through different modules of the 
system. (b) Photograph of the NIR source. (c) Photograph of the integrated display and imaging module, 
along with the processing module, which are worn by the user.
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from 1 nM to 10 nM. At concentrations higher than 10 nM, we observed a rapid increase in the flu-
orescence intensity and SBR with increasing molecular probe concentrations. The result suggests that 
the GAINS was able to detect 1 nM solutions of both ICG and LS301, while maintaining an SBR of 
≥ 1.2 (Fig. 2b). This threshold represents the system’s detection limit in homogenous dimethyl sulfoxide 
(DMSO) solution.

Analysis of depth and spatial resolution shows that the system is capable of detecting 1 μ M ICG inside 
a tissue mimicking phantom up to a depth of 5 mm and can resolve two 3 mm diameter objects kept 
7 mm apart up to a depth of 5 mm with an SBR of ≥ 1.2 (Fig. 2c,d). At the surface, the SBR for 1 μ M ICG 
was 4.9 (Fig. 2c). This is much lower than the SBR observed for 1 μ M solution of ICG in DMSO, which 
was used to calculate the GAINS’ detection limit (Fig. 2b). Whereas DMSO solvent has minimal scat-
tering and absorption of light at NIR wavelengths, the tissue mimicking liquid phantom (intralipid and 
India ink37) used for depth sensitivity measurement has significantly higher scattering and absorption 
than DMSO. As a result, the background signals were higher for depth than sensitivity detection experi-
ments, leading to a decrease in the SBR for studies with tissue phantoms at equivalent ICG concentration.

Time needed for complete surgical resection of tumors can vary from minutes to several hours. 
Surgeons are trained to have very steady head movements during tumor removal, but they may experi-
ence involuntary head movement. Such motions could cause inaccurate fluorescence overlay if the image 
becomes out of focus. Our tests indicate that if an object is within ± 2.54 cm of the focal plane of the 
camera at the typical working distance of 50 cm, the accuracy of the fluorescence overlay on the color 
image will be within 670 μ m. Because involuntary head movement and breathing are within the tested 
range, the error in fluorescence overlay will be minimal. As a result, there is no need to keep GAINS 
perfectly stationary during surgery.

In vivo mouse studies.  We used a subcutaneous breast cancer mouse model to test in vivo GAINS 
function. Using LS301 fluorescence, the GAINS clearly identified all tumors (n =  10 mice), with a mean 
SBR of 1.21 ±  0.1 and guided resection in real-time (Fig. 3). The fluorescence signal in the tumors was 
significantly higher than surrounding tissue (P <  0.05). Histologic analysis confirmed resected tissue as 
cancerous. In the metastatic mouse model of ovarian cancer, the GAINS identified 27 tumor nodules 

Figure 2.  Graphs from phantom experiments for system characterization showing SBR and depth 
resolution information. (a) Fluorescence intensity response with varying concentrations of ICG and LS301. 
(b) The SBR for different concentrations of ICG and LS301. (c) SBR for different depths for 1 μ M ICG. (d) 
SBR for different depths with 3 mm straws, containing 1μ M ICG, positioned 7 mm apart.
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in 3 mice, with a mean SBR of 1.19 ±  0.03 (Fig. 4), compared to only 10 tumor nodules identified vis-
ually alone. Several tumors that were under the visceral organs (3–5 mm deep) were not visible without 
GAINS guidance. However, real-time visualization of sub-surface fluorescence-guided exploratory sur-
gery revealed tumors that would have been otherwise left behind. The fluorescence signal from suspected 
tumors were significantly higher than surrounding tissue (P <  0.05), facilitating detection of the smallest 
tumors (3 mm in diameter). All resected tissues were confirmed to be tumors through infrared fluores-
cent protein (iRFP)38 imaging and histologic analysis, which showed close overlap of iRFP signal with 
LS301 fluorescence (Fig.  5). Imaging threshold provides guidance in delineating the tumor region for 
resection (Supplementary Fig. S4) and affects the accuracy of tumor detection. We used receiver operator 
characteristic (ROC) analysis to determine the best imaging threshold for the metastatic mouse model. 
The sensitivity and specificity of tumor detection for all images were calculated at several thresholds 
within the range of 7.8% to 6.3% of maximum pixel intensity. Using the best case threshold for each 
image, the sensitivity and specificity of tumor detection was calculated to be 100% and 98.33% ±  5%, 
respectively. Using the average detection sensitivity and specificity for each threshold tested, ROC anal-
ysis shows that a threshold of 7.5% of maximum pixel intensity is a reasonable imaging threshold to 
obtain optimal sensitivity and specificity with GAINS, due to high LS301 uptake in tumor and low 
tissue autofluorescence (Fig. 5). This threshold was used to identify the tumor region prior to resection. 
The threshold was manually adjusted during tumor resection to accommodate changes in the residual 
fluorescence intensities. Our graphical user interface (GUI) has the option of adjusting the threshold 
of the superimposed images so that only fluorescence intensity above the threshold will be displayed 
in pseudocolor representation in the color-NIR channel. This approach optimizes the tumor detection 
sensitivity and specificity for each case.

Human pilot studies.  Clinical feasibility was demonstrated in 15 patients during SLNM after 
lumpectomy/mastectomy or wide excision surgeries. Surgeons used the system comfortably, with min-
imal disruption to the surgical workflow. The GAINS allowed clear visualization of 30 SLNs from 10 
breast cancer (Supplementary Vid. S1) and 5 melanoma (Supplementary Vid. S2) patients. Using his-
tologic analysis as the gold standard, the GAINS had a detection sensitivity of 100% in comparison to 
92.86% ±  17.5% for the blue dye and 96.43% ±  12.9% for radioactive tracking. There was no statistically 
significant difference in SLN detection sensitivity by GAINS compared to radioactive tracking (P =  0.34) 
or blue dye tracking (P =  0.36) methods. In one melanoma patient (Fig. 6), the blue dye did not identify 

Figure 3.  Image-guided tumor visualization in a subcutaneous mouse model. (a) Color image of a mouse 
with skin deflected showing tumor nodes. (b) NIR image showing high fluorescence areas. (c) Superimposed 
color-NIR image showing high fluorescence areas accurately correspond to the tumor nodes.
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two deep-seated SLNs. Similarly, in one breast cancer patient, initial visual inspection did not reveal the 
SLN (Fig. 7) and in another patient, radioactive tracking was unable to identify two SLNs. In all these 
cases, the LNs were clearly identified by GAINS. Although the imaging depth with reasonable resolution 
is about 5 mm, high fluorescence signal from deep-seated SLNs is readily projected to the surface, allow-
ing visualization of SLNs at >5 mm deep after deflection of the overlying tissue layer (Fig. 8). This finding 
demonstrates the potential clinical utility of the system for rapid identification of SLNs during surgery.

Discussion
We have developed a wearable FIGS system that can provide accurate intraoperative visualization of tum-
ors and SLNs in real-time. The ability to detect low NIR fluorescence signal favors the use of GAINS for 
molecular imaging of low- and high-expression cancer biomarkers. We used lightweight components that 
are robust, durable and ergonomic. Our compact design allowed dramatic reduction of hardware foot-
print in the space-starved OR, compared to large standalone systems such as early version FLARE24 and 
SPY26 systems. Compact camera design and ergonomic HMD allow wearability and hands-free function-
ality with minimal training requirements, compared to handheld guidance systems such as Fluobeam25 
and PDE27 that disrupt the normal surgical workflow. The position adjustable camera mounted on the 
HMD ensures matching of camera and surgeon’s FOV. Our robust image processing algorithm gener-
ates composite color-fluorescence images in real-time that are simultaneously displayed on an HMD 
and an adjacent personal computer (PC) allowing non-disruptive information display to the operating 
surgeon and simultaneous information availability to the surgical team in the OR. These features are 
not available in other FIGS systems24–27. The software and GUI are easy to use and compatible with any 
Windows-based PC. Importantly, superimposed fluorescence information on the normal visual land-
scape, allows rapid intraoperative visualization of tumors.

In conjunction with LS301, our method clearly identified local and metastatic tumors in murine can-
cer models, demonstrating the potential for using GAINS to improve the accuracy of tumor resection 
and decrease the rates of repeat surgeries. Our method allows SLNM with relatively low concentrations 
of the NIR contrast agent, eliminating exposure to ionizing radiation and minimizing the risk of adverse 
reactions in patients9. The GAINS SLN detection sensitivity was slightly higher than radioactivity and 
blue dye tracking, although we did not find any statistically significant differences between the methods. 

Figure 4.  Image-guided exploratory tumor resection in a metastatic mouse model. (a) Color 
image showing a large abdominal tumor (marked 1). (b) NIR image showing a high fluorescence area 
corresponding to the visible tumor (marked 1) and two other areas (marked 2 and 3). (c) Superimposed 
image showing color-NIR overlay image.
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Figure 5.  Accuracy of tumor detection in metastatic model. (a) iRFP image of harvested organs and 
tumors from one of the mice showing confirmatory high signal from tumors. (b) Fluorescence microscopy 
revealed good co-localization (yellow) of iRFP signal (green) and LS301 fluorescence (red). (c) Histological 
confirmation of the same slide showing cancerous growth corresponding to the areas marked by iRFP 
and LS301 fluorescence. (d) ROC curve for GAINS tumor detection sensitivity and specificity at different 
imaging thresholds.

Figure 6.  Melanoma patient SLNM showing excised SLN not identified by blue dye. (a) Color image 
showing no blue dye signal although radioactively hot region was detected. (b) NIR image showing high 
fluorescence area. (c) Superimposed image showing high fluorescence corresponding to the hot area.
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Our findings agree with previous studies that have showed ICG fluorescence has comparable or better 
SLN detection sensitivity compared to radioactivity and blue dye methods10,39–42. Although other emerg-
ing clinical systems have reported capability of fluorescence detection in the OR, this is the first demon-
stration of “direct” visualization of NIR fluorescence-color images by surgeons.

A current limitation is the lack of automated focusing, which may lead to image blurring due to large 
changes in viewing distance. We also currently require a wired connection to a PC for final image pro-
cessing that restricts the user’s radius of movement. We envision future versions that will automate detec-
tion of working distance and adjust the focus according to the working distance of users. We currently 
use a single camera to capture the user’s FOV, which is displayed in 2D. Future versions will transition 
to a two-camera stereoscopic system to allow 3D information capture and display for enhanced surgical 
guidance. We are also developing a robust wireless transmission of image data to enable constraint-free 
movement. This feature will enable telemedicine applications, remote guidance from experts, and remote 
training of surgical fellows. Low-cost prototype development and a minimal learning curve for the user 
favors the use of GAINS in low-resource areas.

In summary, we have developed an ergonomic wearable real-time fluorescence image guidance 
system that has high detection sensitivity and resolution. The GAINS was able to address successfully 
the existing limitations of current image guidance systems, including large hardware footprint, field of 
view mismatch, disruptive information display and real-time image guidance. In conjunction with a 
tumor-selective NIR probe, the GAINS successfully detected tumors and occult metastatic nodes with 
high accuracy for guided tumor resection in rodents. Importantly, the GAINS was successfully imple-
mented in the OR for identifying SLNs in human breast cancer and melanoma patients with equivalent 

Figure 7.  Breast cancer patient SLNM showing non-apparent SLN by visual inspection. (a) Color 
image showing the absence of blue dye. (b) NIR image showing high fluorescence area and (c) NIR-color 
superimposed image.

Figure 8.  The SLN was apparent after superficial tissue layer was retracted. (a) Color image showing 
retracted tissue layer and visible blue spot from blue dye. (b) NIR image showing a larger clear high 
fluorescence area. (c) Color-NIR image showing fluorescence corresponding to the blue dye spot.
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or better accuracy than standard methods, although larger sample size is needed to validate this finding. 
Features such as the non-disruptive real-time image guidance and the need for minimal training will 
potentially facilitate wide adoption of this technology by clinicians. Further improvements will enable 
the detection of microscopic lesions in the surgical field, which might otherwise be missed, and possibly 
prevent damage to nearby uninvolved vital structures such as nerves.

Materials and Methods
All the animal experiments were conducted in compliance with the requirements for the care and use 
of laboratory animals in research, and the protocol was approved by the Washington University Animal 
Studies Committee. The human procedures were carried out in accordance with the approved guidelines 
by the Institutional Review Board of Washington University. Informed consent was obtained from all 
patients for this United States Health Insurance Portability and Accountability Act compliant study.

Contrast Agents.  ICG (Cardio green, Sigma-Aldrich, St. Louis, MO) and LS30135 were used as 
NIR contrast agents. Clinical grade ICG for human SLNM was provided by the Siteman Cancer Center 
(Washington University in St. Louis, MO). ICG and LS301 have similar spectral profiles, allowing the 
translation of findings with the tumor-targeted LS301 in small animals to humans using FDA- approved 
ICG, under similar conditions, without major changes in the detection scheme.

GAINS development.  GAINS conceptual design is summarized in Fig. 1a. To maximize spectral sep-
aration and minimize light leakage, we recorded an excitation scan of ICG using a fluorimeter (Horiba 
Jobin) to identify the best excitation wavelengths (Supplementary Fig. S1). We then measured the spec-
tral profiles of LEDs using a spectrometer (Ocean Optics) to identify suitable LEDs and the appropriate 
excitation and emission filters.

The NIR source (Fig.  1b) consists of 760 nm LEDs (Roithner, Vienna, Austria) with 769 ±  41 nm 
bandpass filters (Semrock, Rochester, NY). The LED numbers and positions (Supplementary Fig. S2) 
were optimized using simulations (LightTools). A prototype with a light output of 5 mW/cm2 at a dis-
tance of 50 cm was used. White flashlights or surgical light (Steris, Mentor, OH) covered with shortpass 
filters (Cool mirror 330, 3M, St Paul, MN) served as the white light source (Supplementary Fig. S2).

The imaging module collects combined color-NIR signal via a custom F/1.75 glass lens (Supplementary 
Fig. S3). The incoming signal was divided into visible and NIR components by a custom dichroic beam-
splitter cube and directed to a color and NIR complementary metal-oxide semiconductor (CMOS) sen-
sor (Aptina, San Jose, CA). The NIR and color sensors were co-registered (disparity < 0.1 mm at 50 cm 
distance). An 805 nm longpass and a 694 nm shortpass filter (Semrock, Rochester, NY) were placed 
in front of the NIR and color sensors, respectively, which work in stereoscopic mode (25 MHz clock 
frequency, 24p frames per second (fps)). A single pair low-voltage differential signaling communicated 
16-bits data (8-bits from each sensor) to the processing module at 480 MHz (25 MHz × 18) data trans-
mission rate (Supplementary Table S1).

The processing module consists of a customized printed circuit board connection board and a 
field-programmable gate array integration module (Opal Kelly, Portland, OR). The printed circuit 
board powers the imaging module and deserializes the imaging data, which were pre-processed on the 
field-programmable gate array via optimized Verilog code, and buffered in the on-board 64MB DDR 
SDRAM. The pre-processed data were transmitted through a high-speed USB 2.0 port to a PC (or lap-
top). The PC runs C+ +  program using OpenCV and QT C+ +  libraries that can execute on any reg-
ular Windows x64 PC, without extra software and configuration. The program generates superimposed 
color-NIR images, creates a GUI that gives access to functions such as display/store/process image data 
and duplicates images for display on the PC and an HMD module simultaneously. The GUI also allows 
the use of different exposure times for the photon-saturated visible channel and photon-starved NIR 
channel, as well as a color correction for best image quality.

The display module consists of a 1080p high-resolution HMD (Carl Zeiss, Oberkochen, Germany). 
Adjustable mechanical mounting and a counter balance for the imaging module were added to match 
the camera and user FOV for improved user experience (Fig. 1c).

In vitro phantom studies.  All characterization studies were performed at 50 cm imaging distance, 
5 mW/cm2 illumination, and 24p fps.

For detection sensitivity, spatial average intensity (30 ×  30 pixels) was extracted from GAINS images 
of freshly prepared triplicate samples with different concentrations of ICG (300 pM–50 μ M) and LS301 
(1 nM–10 μ M) dissolved in DMSO and imaged in clear glass vials. The spatially averaged intensity values 
were plotted against concentration to create the intensity detection profile for GAINS. The SBR was cal-
culated for each concentration by using images acquired in pure DMSO as the background and plotted 
against dye concentration.

For depth sensitivity, plastic straws of 3 mm diameter were filled with 1 μ M ICG and imaged at dif-
ferent depths in a tissue mimicking phantom (μ a =  0.1, μ

′
s =  5 cm−1), prepared using intralipid and 2% 

India ink37. Pixel intensities corresponding to multiple points on the straw and background were used to 
calculate SBRs and plotted against depth. For depth resolution, two 3 mm straws filled with 1 μ M of ICG 
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were kept 7 mm apart and imaged at various depths in the tissue mimicking phantom. The signal inten-
sities from a cross section of the image were used to create intensity maps and plotted against the depth. 
Error in color-NIR superimposition was measured by focusing the camera at 50 cm and imaging a target 
at 50 cm ±  5 cm.

In vivo mouse studies.  Six to eight-week-old nude mice (n =  10) were injected subcutaneously 
into both flanks with 5 ×  105 4T1luc murine breast cancer cells. At 5–7 mm tumor size (7–10 days 
post-implantation), these mice received lateral tail vein LS301 (100 μ L, 60 μ M in 20% aqueous DMSO) 
injection. At 1, 4 and 24 h post-injection, the mice were imaged noninvasively using the Pearl small 
animal imager (LI-COR, Lincoln, NE) and the GAINS. After 24 h, the GAINS was used for intraoper-
ative imaging and image-guided resection of tumors. The resected tissues were preserved for histologic 
analysis.

Additional 6–8-week-old nude mice (n =  3) were injected intraperitoneally with 1 ×  107 SKOV3 
human ovarian cancer cells, stably transfected with iRFP38. (These cells were kindly provided to us by 
Dr. Buck E. Rogers, Department of Radiation Oncology at Washington University in St. Louis, MO). 
When tumors were palpable (5–10 mm, 3 weeks post-implantation), mice received lateral tail vein LS301 
(100 μ L, 60 μ M in 20% aqueous DMSO) injection and were imaged noninvasively using the Pearl system 
and GAINS at 1, 4, and 24 h post injection. At 24 h post injection, GAINS guided the intraoperative 
tumor visualization and resection. Resected tissue were imaged for iRFP signal using the Pearl system 
and then frozen for histologic analysis for determination of GAINS tumor detection sensitivity and spec-
ificity. The imaging threshold was varied retrospectively from 6.3% to 7.8% of maximum pixel intensity, 
and the sensitivity and specificity were calculated for each threshold. ROC analysis was used to calculate 
the optimal imaging threshold for this model.

Histology.  Fresh-frozen, 10 μ m tissue sections were imaged for NIR fluorescence, stained with hema-
toxylin and eosin (H&E) and the same areas were imaged under brightfield for co-registration with NIR 
fluorescence using an epifluorescence microscope (BX51 Olympus, Center Valley, PA).

Pilot human studies.  Participants were breast cancer patients (n =  10) undergoing a lumpectomy, 
partial mastectomy, or radical mastectomy, as well as melanoma patients (n =  5) undergoing wide 
excision of skin lesions, along with SLNM. Breast cancer patients, were given post-anesthesia, peritu-
moral injection of a mixture of 99 mTc-sulfur colloid (834 μ Ci) and methylene blue (5 mL of 1% solution) 
immediately followed by ICG (5 mg/mL; 5 mL) and site massage for approximately 5 min. At 10–15 min 
post-injection, the surgeon removed the tumor mass. A handheld gamma probe guided site of axillary 
incision and invasive SLN identification, which were then examined for the presence of blue color and 
visualized using the GAINS via ICG fluorescence. The cavity was inspected with the GAINS to identify 
other fluorescent SLNs, which were then checked for blue color and radioactivity, before excision and 
preservation for histology. A similar procedure was followed in melanoma patients, except that only 
1 mL of ICG solution (5 mg/mL) was injected. In all cases, the GAINS was operated at 24p fps with a 
40-millisecond acquisition time. NIR-white light illumination during system usage was provided by our 
illumination module.

Statistical Analysis.  Statistical analysis was performed using OriginPro8 (OriginLab Corp., 
Northampton, MA). SBRs, sensitivity, and specificity were expressed as mean and standard deviation. 
Paired t-tests were used to compare fluorescence signal in tumors and background tissue in mouse 
models and sensitivity of SLN detection by GAINS, radioactivity, and blue dye methods. P <  0.05 were 
considered statistically significant.
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