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Simple Summary: High MET copy-number variation (CNV) and high MET protein expression
via MET exon 14 skipping mutation (METex14SM) are associated with tumorigenesis; however,
METex14SM is rare in GC, so target therapy is rarely applicable. In this study, we analyzed GC panels
using targeted next-generation sequencing in GC cell lines and found that tepotinib demonstrated
therapeutic effects in MET-amplified GC and those with high expressions of PD-L1, CD44, and
METex14SM. Our in vitro findings indicate that tepotinib prevents GC-associated MET amplification
and MET mutation.

Abstract: Both MET exon 14 skipping mutation (METex14SM) and high copy-number variation
(CNV) lead to enhanced carcinogenesis; additionally, programmed-death ligand 1 (PD-L1) is often
upregulated in cancers. In this study, we characterized the expression of MET (including METex14SM),
PD-L1, and CD44 in human gastric cancer (GC) cells as well as the differential susceptibility of these
cells to tepotinib. Tepotinib treatments inhibited the growth of five GC cells in a dose-dependent
manner with a concomitant induction of cell death. Tepotinib treatments also significantly reduced
the expression of phospho-MET, total MET, c-Myc, VEGFR2, and Snail protein in SNU620, MKN45,
and Hs746T cells. Notably, tepotinib significantly reduced the expression of CD44 and PD-L1 in
METex14SM Hs746T cells. By contrast, tepotinib was only slightly active against SNU638 and KATO
III cells. Migration was reduced to a greater extent in the tepotinib-treated group than in the control
group. Tepotinib may have therapeutic effects on c-MET-amplified GC, a high expression of both
PD-L1 and CD44, and METex14SM. Clinical studies are needed to confirm these therapeutic effects.

Keywords: c-MET; gastric cancer; tepotinib

1. Introduction

Three receptor tyrosine kinases (RTKs), MET, ErbB2, and FGFR2, have been widely
studied in gastric cancer (GC). Among these, MET is overexpressed in advanced GC,
regardless of tumor differentiation [1]. The aberrant activation of MET suppresses apoptosis
and promotes cell proliferation, survival, migration, and angiogenesis as a result of various
genetic alterations including gene amplification, overexpression, and mutation [2–5]. Only
7% of advanced GC patients show MET overexpression, although MET amplification occurs
in 2–20% of GC patients [6,7]. MET exon 14 (METex14) alteration occurs with low frequency
in stomach (4.8–7.1%), colorectal (~0–9.3%), and lung cancers (adenocarcinoma, 2.6–3.2%;
pulmonary sarcomatoid tumor, 2.6–31.8%; adenosquamous carcinoma, 4–8.2%) [8–10].
METex14-altered lung cancer has been identified in patients expressing PD-L1 (n = 147;
PD-L1 expression, 0%, 1–49%, and 50% accounting for 37%, 22%, and 41%, respectively,
across 111 evaluable tumor samples); however, neither interaction nor complex formation
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was detected between c-MET and PD-L1 [11]. The tumorigenicity of CD44 is driven partly
by the promotion of PD-L1 expression [12], which may mediate the chemoresistance of
breast, lung, and prostate cancers [12,13].

Precision medicine is important in the management of GC. Currently, MET inhibitors
have been approved for patients with GC and MET amplification (defined as a copy number
increase) [14,15], overexpression (defined as increased mRNA expression), fusion, mutation,
or rearrangement. With the improved efficacy of targeted therapies, comprehensive tumor
profiling is needed. Somatic and inheritance-acquired copy-number variations (CNVs) in
the genome have been found to be associated with cancer [16–18]. In particular, high CNVs
(i.e., gene amplification) affect tumorigenesis in many types of cancer such as GC and
colon, liver, and lung cancers [19,20]. The clinical use of next-generation sequencing (NGS)
panels allows for the simultaneous assessment of targeted genes and entire genomes using
a limited quantity of GC samples [21]. Cell-line models of target gene amplification (similar
to gene mutation) or GC overexpression have consistently matched clinical responses
showing susceptibility to targeted gene inhibitors.

Here, we characterized the expression of MET (including METex14SM and CNV),
PD-L1, and CD44 in five GC cells using targeted NGS gene panel data and immunoblotting
and further evaluated the differential susceptibility of the MET inhibitor tepotinib based on
dose-dependent viability, cell death, and migration.

2. Materials and Methods
2.1. Cell Culture and Drug Treatment

Hs746T, SNU620, MKN45, KATO III, and SNU638 cell lines were purchased from
KCLB (Korean Cell Line Bank, Seoul, Korea). Hs746T cells were maintained in either
Dulbecco’s Modified Eagle Medium (DMEM; Thermo Fisher Scientific, Waltham, MA,
USA), and all other cell lines were maintained in RPMI1640 and supplemented with 10%
fetal bovine serum and 1% penicillin/streptomycin. The cells were cultured using standard
procedures. MET-inhibitor tepotinib (EMD 1214063) was obtained from Selleck Chemicals
(Houston, TX, USA).

2.2. GC Panel

The GC panel is designed to assess clinically relevant mutations in 286 genes associated
with carcinogenesis risk through the detection of CNV, insertion/deletions (indels), and
single nucleotide variants (SNVs) located in the DNA coding sequences of the targeted
genes (Table 1). We added a tiling probe in clinically actionable amplification candidate
genes including CCND1, CCND2, CCND3, CD274, CDKN2A, EGFR, ERBB2, ERBB3,
FGFR2, HGF, and MET. In addition, we added microsatellite (MSI) markers including
BAT-25, BAT-26, and NR-24. The GC panel detected fusion genes including ALK, ROS,
RET, EWSR1, and TMPRSS2.

Table 1. Summary of pathogenic variants of individual cells.

Cell
Line Gene DNA

Change
Protein
Change Clinical Effect Exonic Effect

SNU620 CYP2D6 c.886T>C p.Cys296Arg Pathogenic Missense variant

c.733T>C p.Cys 245Arg Pathogenic Missense variant

MKN45 CYP2C19 c.681G>A p.Pro227Pro drug response synonymous_variant

CYP2D6 c.886T>C p.Cys296Arg pathogenic missense_variant

c.733T>C p.Cys 245Arg pathogenic missense_variant

Hs746T CYP2D6 c.886T>C p.Cys296Arg pathogenic missense_variant

c.733T>C p.Cys 245Arg pathogenic missense_variant
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Table 1. Cont.

Cell
Line Gene DNA

Change
Protein
Change Clinical Effect Exonic Effect

KATO
III CYP2D6 c.1457C>G p.Thr486Ser pathogenic missense_variant

c.1304C>G p.Thr 435Ser pathogenic missense_variant

c.886T>C p.Cys296Arg pathogenic missense_variant

c.733T>C p.Cys 245Arg pathogenic missense_variant

SNU638 CYP2C19 c.636G>A p.Trp212 * drug response stop_gained

c.681G>A p.Pro227Pro drug response synonymous_variant

CYP2D6 c.1457C>G p.Thr486Ser pathogenic missense_variant

c.1304C>G p.Thr 435Ser pathogenic missense_variant

c.886T>C p.Cys296Arg pathogenic missense_variant

c.733T>C p.Cys 245Arg pathogenic missense_variant

2.3. Target Sequencing and Analysis

Target capturing sequencing was conducted using a customized target kit (Agilent
Technologies, Santa Clara, CA, USA) according to the protocol provided by the manufac-
turer. DNA libraries were constructed according to the manufacturer’s instructions, and the
customized target kit was performed using the Illumina NovaSeq6000 platform (Illumina,
San Diego, CA, USA) to generate paired-end reads (150 bp). We used the cutadapt and sickle
tools (v1.8.1, available for download at https://github.com/najoshi/sickle) to remove
adapter sequences and low-quality sequence reads. The Burrows–Wheeler aligner [22] was
used to align the sequencing reads onto the human reference genome (hg19). We used the
MuTect algorithm in the Genome Analysis Tool Kit (GATK) [23] for score recalibration,
local realignment, and filtering of sequence data. The Picard (v1.92, available for download
at http://broadinstitute.github.io/picard) and Samtools programs [24] were used for basic
processing and management of the sequencing data, and to generate mpileup files. To call
variants, we used the VarScan v2.3.9 program with the mpileup2indel and mpileup2snp
subcommands. SnpEff v4.2 software [25] was used to select variants located in coding
sequences and predict their functional consequences (e.g., silent vs. non-silent variants).
We used the CNVKit v0.8.5 program [26] to detect CNV. The PureCN program [27] was
used to estimate tumor purity, ploidy, copy number, and the loss of heterozygosity.

2.4. Growth Inhibition Assays

Half maximal inhibitory concentration (IC50) values for tepotinib in Hs746T, SNU620,
MKN45, KATO III, and SNU638 cell lines were measured using an MTS assay for tepotinib
concentrations of 20, 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001, and 0.000001 µM for 48 h. The
MTS assay was conducted according to our previously described method [28].

2.5. Cell Death Analysis

Hs746T, SNU620, MKN45, KATO III, and SNU638 cell lines were seeded into 6-well
plates at a density of 5× 104 cells/mL, and then treated with 10 nM or 1 µM of tepotinib. Cell
apoptosis and necrosis were examined according to our previously described method [29].

2.6. Cell Migration Analysis

The analysis method for cell migration has been reported previously in detail [29].
After incubating for 48–72 h, cell migration was photographed and compared with the
initial migration at 0 h.

https://github.com/najoshi/sickle
http://broadinstitute.github.io/picard
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2.7. Quantitative Real-Time (qRT) PCR Analysis

qRT PCR analysis was completed according to our previously described method [30].
Transcript levels of GAPDH were used for sample normalization. The primer sequences
were as follows: COX-2 (F: TGA GCA TCT ACG GTT TGC TG-3′; R: AAC TGC TCA TCA
CCC CAT TC-3′), GSK3β (F: GAA CTC CAA CAA GGG AGC AA-3′; R: GGG TCG GAA
GAC CTT AGT CC-3′), MET (F: AAG AGG GCA TTT TGG TTG TG-3′; R: GAT GAT TCC
CTC GGT CAG AA-3′), CCND1 (F: GAT CAA GTG TGA CCC GGA CT-3′; R: TCC TCC
TCT TCC TCC TCC TC-3′), and GAPDH (F: TTC ACC ACC ATG GAG AAG GC-3′; R:
GGC ATG GAC TGT GGT CAT GA-3′).

2.8. Western Blot Analysis

Western blot analysis was performed using standard procedures. Commercially
available primary antibodies were directed against anti-MET (#4560; 1:1000; Cell Signaling
Technology (CST), Danvers, MA, USA), anti-phospho-MET (#3077; 1:1000; CST), anti-
SNAIL (#3879; 1:1000; CST), anti-β-catenin (#610153; 1:1000; BD Biosciences, Franklin Lake,
NJ, USA), anti-VEGFR2 (#9698; 1:1000; CST), anti-PD-L1 (#13684; 1:1000; CST), anti-CD44
(#3570; 1:1000; CST), anti-c-MYC (sc40; 1:1000; Santa Cruz Biotechnology, Dallas, TX, USA),
and anti-GAPDH (sc32233; 1:4000; Santa Cruz Biotechnology).

2.9. Statistical Analyses

IC50 values were calculated using nonlinear regression analysis. The percentages
of intact and dead cells (apoptotic and necrotic) were calculated using the CytExpert
software (Beckman Coulter). All data were analyzed using the Prism 5 software (GraphPad
Software Inc., San Diego, CA, USA). Data are means ± standard deviation (SD). Statistical
significance was examined by one-way analysis of variance (ANOVA). A p-value of < 0.05
was considered indicative of statistical significance.

3. Results
3.1. GC Cell Characteristics

GC panels of five GC cells (Hs746T, SNU638, KATO III, MKN45, and SNU620) were
analyzed using targeted sequencing at Theragen Bio Institute, Seongnam, Korea. The
286 GC panel genes and their individual genetic aberrations are shown in Figure 1 and
Table S1. Further information on GC cell, including concomitant pathogenic variants and
genetic aberrations, is listed in Tables 1 and 2. A pathogenic mutation (CYP2D6) was
detected in all GC cell lines (Table 1 and Table S1). Among the 286 GC panel genes, we
identified 21 amplified genes (≥5.0 copies) (Table 2); among these, nearly all GC cells were
MET-amplified, except for the SNU638 cell line.

Table 2. Description and concomitant genomic alteration of individual cells.

Cell
Line

MET
CNV Other Genes (CNV) SNP INS DEL Silent

Mutation
Missense
Mutation

Nonsense
Mutation

SNU620 60 CCND3 (32), CYP2C19 (5), CYP2C9 (5) 15,340 148 167 471 304 1

MKN45 41 CYP2C19 (6), CYP2C9 (6), SLIT2 (5),
MDM2 (5), FRS2 (5), POLA1 (5) 13,359 124 165 403 246 2

Hs746T 30

CYP3A4 (8), CYP3A5 (8), CCND1 (8),
PIK3CG (7), SYK (6), FANCC (6), PTCH1
(6), TGFBR2 (5), NRG3 (5), PTEN (5), FAS

(5), CYP2C19 (5), CYP2C9 (5)

13,366 134 155 377 254 16

Kato III 7 FGFR2 (87), CTNNB1 (22) 14,995 134 184 431 323 4
SNU638 ND ND 15,231 150 603 551 335 4

ND, not detected; CNV, copy number variance; SNP, single-nucleotide polymorphism; INS, insertion mutation;
DEL, deletion mutation.
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Figure 1. Gene mutations in human gastric cancer cells measured using a targeted next-generation
sequencing (NGS) panel. Excel was used to generate Figure 1.

3.2. Effects of Tepotinib on Cell Viability in GC Cell Lines with or without MET and
PD-L1 Expression

We tested the dose dependency of tepotinib inhibitory effects in SNU620, MKN45,
Hs746T, Kato III, and SNU638 cells (Figure 2). The MET gene structure and copy number
results are shown in Figure 2A; MET is encoded by 21 exons. SNU620, MKN45, and Hs746T
cells had ≥30 copies and displayed high p-MET and MET protein expression, whereas
≤7 copies were found in Kato III and SNU638 cells and p-MET protein expression was
not detected (ND) or low (Figure 2A,C,D and Figure S1). Notably, Hs746T cells displayed
exon 14 skipping mutation low MET mRNA expression, and high p-MET, MET, CD44,
and PD-L1 protein expression (Figure 2A–D). The discordance between low MET mRNA
expression and high MET protein expression was caused by MET exon 14 deletion, which
inhibited cbi binding and led to prolonged MET protein stability extended cell signaling on
ligand stimulation, and ultimately increased MET activation and tumorigenicity [31–33].
Treatment with tepotinib decreased cell viability in all GC cells in a dose-dependent manner
(Figure 2E). Non-linear regression analysis displayed tepotinib IC50 values of 6.2 nM for
SNU620, 36.7 nM for MKN45, 4.4 µM for Hs746T, 6.9 µM for SNU638, and 7.9 µM for Kato
III cells (Figure 2E).

3.3. Effects of Tepotinib on Cell Death

To investigate the effects of tepotinib on cell death in SNU620, MKN45, Hs746T, Kato
III, and SNU638 cell lines, we examined apoptosis and necrosis using flow cytometry
(Figure 3). Tepotinib demonstrated high apoptosis and necrosis rates in SNU620, Hs746T,
and MKN45 cell lines, whereas cell death rates were very low in Kato III and SNU638 cells,
occurring in a dose-dependent manner following tepotinib exposure for 48 h (Figure 3).
SNU620, MKN45, and Hs746t cells presented high-MET CNV, whereas others such as
Kato III and SNU638 presented low-MET CNV. Notably, Hs746T cells formed a high-CD44,
PD-L1 expressor subtype (Figure 2C).
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Figure 2. Effects of tepotinib on cell viability in GC cell lines with or without MET gene overexpression
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and copy numbers (CNs) are measured by targeted NGS. (B) MET mRNA expression levels were
determined by qRT-PCR. (C) Protein expression levels of p-MET, MET, CD44, and PD-L1 were
determined using Western blot analysis. (D) Using the image J for densitometry analysis. (E) Five
GC cell lines were treated with various concentrations of tepotinib for 48 h.

Cancers 2022, 14, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 3. Effects of tepotinib on cell apoptosis and necrosis in GC cell lines. SNU638, Kato III, 
Hs746T, MKN45, and SNU620 cell lines were treated with 10 nM or 1 µM of tepotinib for 48 h. 

3.4. Effects of Tepotinib on Expression of Gene and Protein in GC Cell Lines 
We measured the levels of carcinogenesis- and inflammation-related genes such as 

MET, GSK3β, CCND1, and COX2 to determine the effects of tepotinib in GC cells with 
MET amplification or a high expression of both PD-L1 and METex14SM. Following treat-
ments with tepotinib, CCND1 and COX2 mRNA levels decreased in Hs746T and MKN45 
cell lines, whereas GSK3β expression increased. By contrast, tepotinib demonstrated little 
effects in Kato III cells (Figure 4). 

 

Figure 3. Effects of tepotinib on cell apoptosis and necrosis in GC cell lines. SNU638, Kato III, Hs746T,
MKN45, and SNU620 cell lines were treated with 10 nM or 1 µM of tepotinib for 48 h.
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3.4. Effects of Tepotinib on Expression of Gene and Protein in GC Cell Lines

We measured the levels of carcinogenesis- and inflammation-related genes such as
MET, GSK3β, CCND1, and COX2 to determine the effects of tepotinib in GC cells with MET
amplification or a high expression of both PD-L1 and METex14SM. Following treatments
with tepotinib, CCND1 and COX2 mRNA levels decreased in Hs746T and MKN45 cell lines,
whereas GSK3β expression increased. By contrast, tepotinib demonstrated little effects in
Kato III cells (Figure 4).
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Figure 4. Effects of tepotinib on gene expressions of (A) MET, (B) GSK3β, (C) CCND1, and (D) COX2
in GC cells. Gene expressions were determined by qRT-PCR. MKN45, Hs746T, Kato III, and SNU638
cell lines were treated with 1 µM tepotinib, and SNU620 cells were treated with 10 nM tepotinib for
48 h. *, p < 0.05; **, p < 0.01; and ***, p < 0.001 compared with the control group.

Immunoblot analysis revealed a downregulation of phosphor-MET, MET, VEGFR2,
c-MYC, and Snail in tepotinib-treated GC cell lines, with the exception of MET-negative
Kato III cells (Figure 5 and Figure S2). Notably, CD44 and PDL1 proteins decreased in
tepotinib-treated Hs746T cells.
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Figure 5. Effects of tepotinib on protein expression in GC cells. Protein expression of SNU620, MKN45,
Hs746T, Kato III, and SNU638 cell lines. (A) Protein expression levels of MET, p-MET, VEGFR2,
CD44, PDL1, Snail, c-MYC, and β-catenin were determined using immunoblot analysis. Hs746T,
MKN45, Kato III, and SNU638 cell lines were treated with 1 µM tepotinib, and the SNU620 cell line
was treated with 10 nM tepotinib for 48 h. (B) Graphic overview of tepotinib-treated interventions in
GCs with MET amplification or METex14SM and high expression of both PD-L1 and CD44. (C) Using
the image J for densitometry analysis. * p < 0.05 and *** p < 0.001 compared with the control group.

3.5. Effects of Tepotinib on Cell Migration in GC Cell Lines

To evaluate the inhibitory effect of tepotinib on the migration ability of MKN45 (high
MET CNV), Hs746T (high MET CNV, METex14SM, high CD44, and high PD-L1 protein
expression), and SNU638 (ND MET CNV and high PD-L1 protein expression) cell lines, we
investigated a migration assay of these cell lines (Figure 6A). After 72 h, the MKN45 control
cell line filled 55.17% of the wounded area, and the tepotinib-treated MKN45 cell line
filled 4.15% of the wounded area (Figure 6B). After 48 h, the Hs746T and SNU638 control
cell lines filled 100% and 90.36% of the wounded area, respectively, whereas tepotinib-
treated Hs746T and SNU638 cell lines filled 35.53% and 55.67% of the wounded area,
respectively (Figure 6B).
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4. Discussion

Precision cancer medicine has developed rapidly with the advent of high-throughput
NGS, and become an important component in personalized cancer therapy management.
A significant proportion of NGS technologies are driven by CNV and structural variation
(fusion, mutation, or rearrangement) across the genome. NGS-based multigene panel
analysis provides information on the targeted genes that are susceptible to cancer [34,35].
Cancer cell lines are useful for the development or selection of targeted agents based on cell
characteristics identified by NGS-based multigene panels. MET has received considerable
attention as a potential target for GC therapy. In GC, the gain-of-function of MET is
associated with promoting cancer cell survival, migration, and angiogenesis through
MET amplification [4,36]. Therefore, in this study, we investigated the characteristics of
five GC cell lines using 286 NGS cancer panels for therapeutic target selection and drug
efficacy testing.

Among 286 GC panel genes, five GC cells had no mutation on AMER1, ARFRP1,
B2M, BAP1, BCL2L1, BRD4, CBFB, CDK4, CDKN2B, CTNNB1, FGF19, FGF4, GATA1,
IGF2, INHBA, KAT6A, KMT2A, KMT2C, KMT2D, MYCN, PTK2, and VHL. The five GC
cells had pathogenic variants (CYP2D6 missense mutation). Among these, MKN45 and
SNU638 cells had drug response-related variants (CYP2C19 synonymous mutation or stop
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gain). CYP2C19 is a principal enzyme involved in the metabolism of clinically impor-
tant drugs such as β-adrenoceptor blockers, antiulcer medications, anticonvulsant drugs,
and antidepressants [37,38]. Importantly, CYP2C19 loss-of-function alleles are associated
with adverse cardiovascular events, including stent thrombosis, stroke, and myocardial
infarction caused by reduced responsiveness to the antiplatelet drug clopidogrel [39,40]. In
this study, all five GC cells displayed MET expression, whereas Kato III cells indicated no
p-MET expression. We tested the expression of CD44 and PD-L1 in the five GC cells and
found that both Hs746T and SNU638 displayed PD-L1 expression, whereas only Hs746T
displayed CD44 expression. This finding suggests that Hs746T and SNU638 may possess
chemoresistance through PD-L1 or CD44 expression; therefore, Hs746T and SNU638 had
higher tepotinib IC50 values than other cell lines. However, SNU620, MKN45, and Hs746t
cells had CNV ≥ 30 for MET and higher cell death rates than Kato III and SNU638 cells.
Interestingly, despite Kato III having CNV = 7 for MET, this cell line had a higher tepotinib
IC50 value and lower cell death rate than other cell lines (FGFR2, CNV = 87; CTNNB1,
CNV = 22). This GC cell information may be used as a preclinical model system for drug
screening, which could prove useful in the development of new drugs.

The Wnt/β-catenin and MET signaling pathways are associated with GC progres-
sion events. The snail enhances Wnt/β-catenin pathway activation by interacting with
β-catenin [41]. The Wnt/β-catenin signaling pathway regulates the expression of the canon-
ical cancer stem cell marker CD44 directly or through the intermediate c-Myc [42,43]. CD44
also strongly enhances MET and KDR (VEGFR2) signaling [44,45], and collaboration be-
tween Wnt/β-catenin, CD44, and MET can be an important factor in tumorigenesis. CD44
may also counteract programmed cell death, which leads to tumorigenesis [46] and partly
promotes PD-L1 expression to mediate cancer cell proliferation and immune evasion [12].
CD44 and PD-L1 expression may partly contribute to the tumorigenic, immunosuppressive,
and chemoresistant traits of cancers [13]. Our results indicate that tepotinib may sup-
press β-catenin, CD44, PD-L1, c-MYC, KDR, MET, and p-MET through increased GSK3β
expression. Tepotinib also inhibited GC cell migration.

5. Conclusions

In this study, we could show that the combined blockading of MET, CD44, and PD-L1
improved the GC therapeutic efficacy of tepotinib. Our results strongly support the clinical
evaluation of tepotinib, which prevents GC association with CD44, PD-L1, and c-MET.
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