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Abstract
The last several years have witnessed a paradigm shift in the management of
patients with chronic lymphocytic leukemia (CLL). The course of this very
heterogeneous disease, traditionally treated with chemotherapeutic agents
usually in combination with rituximab, typically has been characterized by
remissions and relapses, and survival times vary greatly, depending on intrinsic
biological attributes of the leukemia. The developments of the last few years
have been transformative, ushering in an era of novel, molecularly targeted
therapies, made possible by extensive efforts to elucidate the biology of the
disease that predated the new targeted drugs. Thus, successful therapeutic
targeting of the B-cell receptor signaling pathway and of the Bcl-2
anti-apoptotic protein with small molecules has now made chemotherapy-free
approaches possible, hopefully mitigating the risk of development of
therapy-related myeloid neoplasms and making eventual cure of CLL with the
use of optimal drug combinations a realistic goal. Most importantly, these
therapies have demonstrated unprecedented efficacy in patients with deletion
17p/TP53 mutation, a subset that historically has been very difficult to treat.
However, as we gain more experience with the newer agents, unique safety
concerns and resistance mechanisms have emerged, as has the issue of cost,
as these expensive drugs are currently administered indefinitely. Accordingly,
novel laboratory-based strategies and clinical trial designs are being explored
to address these issues. The availability of whole exome/genome sequencing
has given us profound insights into the mutational landscape of CLL. In this
article, we highlight some of the most impactful advances since this topic was
last reviewed in this journal.
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Introduction
The pace of discovery, with respect to both biology and therapeutic 
targets, as well as that of drug approval, in chronic lymphocytic 
leukemia (CLL) has been particularly rapid in recent years,  
so much so that therapeutic advances made in the treatment of  
CLL were named the “advance of the year” in 2015 by the  
American Society of Clinical Oncology. This topic was last 
reviewed in this journal in 2014 by Stilgenbauer and colleagues1. 
In this article, we review more recent developments, focusing on  
new genomic information, novel targeted therapies, and emerg-
ing targets and drugs/drug combinations as well as new informa-
tion that has accumulated on agents that had just been approved  
or whose approval was imminent when the last review was written, 
namely ibrutinib and idelalisib.

Recent insights into the chronic lymphocytic 
leukemia genome and integration of mutational 
information into risk stratification systems
A lot has been learned on the topic of somatic mutations in  
CLL since the initial reports in 2011 (reviewed in 2). Two recent 
studies employing next-generation sequencing (either whole  
exome or whole genome) molecularly annotated nearly 1,000 
CLL samples, identifying previously unrecognized putative driver  
mutations (for example, in ZNF292, ZMYM3, ARID1A, PTPN11, 
RPS15, and IKZF3), including some in non-coding DNA (for 
example, the 3′ region of NOTCH1 that leads to aberrant splic-
ing and increased NOTCH1 activity, and an enhancer located on 
chromosome 9p13 that results in reduced expression of PAX5), and 
many subclonal mutations and documenting frequent clonal evolu-
tion, even in the absence of therapy3,4. SF3B1 and NOTCH1 (previ-
ously described) represented the most frequently mutated genes in 
these studies3,4. The functional consequences of SF3B1 mutations, 
which have been associated with faster disease progression and 
poor overall survival (OS) in CLL5, and their near mutual exclu-
sivity with NOTCH1 mutations6 are also now better understood. 
The former, often associated with del(11q)7, lead to alternative  
splicing8,9, impairment of the DNA damage response network10, and 
dysregulation of NOTCH signaling and telomere biology11. In the 
German CLL8 trial that compared fludarabine, cyclophosphamide, 
and rituximab (FCR) with fludarabine and cyclophosphamide (FC) 
and showed a survival advantage for the chemoimmunotherapy 
(CIT) combination12, NOTCH1 mutations were associated with a 
lower rate of response to rituximab and the lack of a survival ben-
efit from the addition of rituximab6. NOTCH1 mutations, which 
are most frequently present in CLL patients with trisomy 1213,14, 
have subsequently been shown to lead to epigenetic dysregula-
tion, resulting in lower CD20 expression15. Del(13q), del(11q),  
trisomy 12, and mutations in the gene encoding MYD88, an adap-
tor protein in the Toll-like receptor pathway, appear to represent  
early genomic lesions with potential roles in CLL initiation, whereas 
mutations in SF3B1, the second allele of ATM and TP53 are  
likely to be later genetic events4,16.

TP53 mutations correlate strongly with del(17p)6, just as ATM 
mutations do with del(11q)17. Though relatively infrequent in  
treatment-naïve CLL, TP53 mutations and deletions are signifi-
cantly enriched for after CIT18. TP53 mutations are independently 
associated with worse progression-free survival (PFS) and OS in 

the setting of first-line CIT6 and have been incorporated into the 
recently published CLL-International Prognostic Index (CLL-IPI)19. 
This five-factor prognostic scoring system takes into account TP53 
status (no abnormalities versus del(17p) or TP53 mutation or both), 
the mutational status of the immunoglobulin heavy chain variable 
region (IGHV), age, clinical stage, and serum beta-2-microglobu-
lin and discriminates between four risk groups with 5-year survival 
rates ranging from 23.3% to 93.2%19. A simple and user-friendly 
“biomarkers-only” prognostic model using only IGHV mutational 
status and cytogenetics by interphase fluorescence in situ hybridi-
zation was recently reported to perform as well as the CLL-IPI: in 
524 unselected subjects with CLL, 10-year OS rates were 82% in 
the low-risk group, 52% in the intermediate-risk group, and 27% 
in the high-risk group; the model was validated in two independent 
cohorts, one of which was composed only of patients with Binet 
stage A CLL20. Efforts have also been made to integrate mutational 
and cytogenetic information into a genetic prognostic model for 
patients with CLL. This model, which remained valid at any time 
from diagnosis, delineated four risk groups with very different  
10-year survival probabilities (29%–69.3%): high risk, comprising 
patients with TP53 or BIRC3 abnormalities or both; intermediate 
risk, characterized by NOTCH1 or SF3B1 mutations or del(11q22-23)  
or a combination of these; low risk, consisting of patients with tri-
somy 12 or normal cytogenetics; and very low risk, patients with 
isolated del(13q14)21. Among patients with early-stage disease, 
high CLL-cell birth rates are associated with shorter treatment-free  
survival22.

Recent advances in targeting cell surface proteins
The remarkable clinical benefits of the addition of rituximab (anti-
CD20 monoclonal antibody) to chemotherapy12,23 generated tre-
mendous interest in this class of agents. Originally approved for 
the treatment of CLL refractory to both fludarabine and alemtu-
zumab, ofatumumab (Arzerra®), a fully human anti-CD20 mono-
clonal antibody that binds to a different epitope than rituximab, has 
recently been approved, along with chlorambucil, for the first-line 
treatment of CLL in patients deemed unfit for fludarabine-based 
therapy, as monotherapy for the extended treatment (“maintenance”) 
of patients with recurrent or progressive CLL who have received 
at least two lines of therapy and achieved a complete response 
(CR) or partial response (PR) to their most recent therapy, and in 
combination with FC for the treatment of patients with relapsed 
CLL, on the basis of the COMPLEMENT-124, PROLONG25, and  
COMPLEMENT-226 trials, respectively. However, because this agent 
has never been shown to be superior to rituximab in a head-to-head 
comparison, although such data exist for the type II glycoengineered 
anti-CD20 monoclonal antibody obinutuzumab (Gazyva™)27, and 
because of the advent of the new small-molecule targeted thera-
pies, enthusiasm for the use of ofatumumab in CLL has waned con-
siderably. Like obinutuzumab, ublituximab (formerly TG-1101) 
is an anti-CD20 monoclonal antibody with enhanced antibody- 
dependent cellular cytotoxicity (ADCC); the lower fucose content 
of its Fc domain improves its binding to FcγRIIIA28,29. In a phase 1/2 
trial in patients with rituximab-relapsed or -refractory B-cell non- 
Hodgkin’s lymphoma (NHL) (n = 27) or CLL (n = 8), the most com-
mon adverse events (AEs) were infusion-related reactions (40%), 
fatigue (37%), pyrexia (29%), diarrhea (26%), neutropenia (14%), 
and anemia (11%)30. In a phase 2 study in relapsed or refractory (R/R) 
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CLL (n = 45) in which patients received six cycles of ublituximab in  
conjunction with ibrutinib, the overall response rate (ORR) was 
88% at 6 months31. Among 20 patients with del(17p), del(11q), 
or TP53 mutation, the ORR was 95%, and three of these patients 
attained minimal residual disease (MRD) negativity. This combina-
tion is now being compared with ibrutinib alone in the GENUINE 
phase 3 study (NCT02301156) in patients with R/R CLL bearing 
the above genetically high-risk features. At a median follow-up of 
12 months, the best ORR by independent central review was 80% 
for ublituximab plus ibrutinib compared with 47% for ibrutinib 
alone32.

Otlertuzumab is a humanized, anti-CD37 monospecific protein 
therapeutic that has been studied in a phase 1 trial in 83 (mostly 
previously treated) patients with CLL33. Twelve (20%) of sixty-
one evaluable patients responded; all responses were partial and 
were more common in less heavily pretreated patients. This agent, 
in combination with bendamustine, has been compared with ben-
damustine alone in a small (n = 65) randomized phase 2 study in 
relapsed CLL34. ORRs were 69% in the combination arm and 39% 
for bendamustine alone (P = 0.025), which also translated into a 
PFS benefit (median of 15.9 versus 10.2 months, P = 0.0192) for 
the combination. An ongoing phase 1b trial (NCT01644253) with 
many cohorts is studying this agent in combination with rituximab, 
obinutuzumab, ibrutinib, and idelalisib plus rituximab.

Targeting Bruton’s tyrosine kinase: ibrutinib and 
beyond
The prototypical irreversible Bruton’s tyrosine kinase (BTK) 
inhibitor ibrutinib is currently approved for all patients with CLL 
on the basis of the results of the RESONATE35, RESONATE-236, 
and RESONATE-1737 trials. RESONATE compared ibrutinib with 
ofatumumab in 391 patients with R/R CLL or small lymphocytic 
lymphoma (SLL) and showed large improvements in ORRs and 
both PFS and OS35, as did RESONATE-2, which compared ibru-
tinib with chlorambucil in 269 treatment-naïve, older (at least 65 
years of age) patients with CLL or SLL36. RESONATE-17 was a 
single-arm study of ibrutinib in 144 patients with R/R CLL or SLL 
and del(17p)37. The ORR by independent review at the prespeci-
fied primary analysis after a median follow-up of 11.5 months was 
64% (83% by investigator assessment)37. After a median follow-
up of 27.6 months (n = 120), the investigator-assessed ORR was 
83%, 24-month PFS was 63%, and 24-month OS was 75%37. Of 
note, complex karyotype may be a stronger predictor of inferior 
outcomes than del(17p) among patients with R/R CLL in the set-
ting of ibrutinib therapy38; however, not all studies have arrived at 
similar conclusions39. Overall, responses to ibrutinib are durable 
and improve over time, while toxicities such as treatment-emergent 
grade 3/4 cytopenias, fatigue, and infections diminish40. Disease 
progression is uncommon up to three years (median) of follow-
up and mainly occurs in patients with relapsed disease harboring 
del(17p) or del(11q)40.

While ibrutinib’s mobilizing effects on CLL cells resident in pro-
tective nodal microenvironmental niches and interference with their 
homing to the same are well known41, an elegant study using deu-
terated water labeling has shown that the drug also has profound 
and immediate anti-proliferative and apoptosis-inducing actions on 

CLL cells42. Ibrutinib is more efficient at clearing lymph node than 
blood or marrow disease, and recent work has demonstrated that the 
highest rate of CLL cell proliferation occurs in the lymph nodes43. 
However, the “redistribution lymphocytosis” caused by ibrutinib, 
which has led to the introduction of the CLL response category 
“partial response with lymphocytosis (PR

L
)”44, does not have any 

adverse long-term consequences even if prolonged, and these cells 
eventually die from the lack of microenvironmental pro-survival 
signals45.

Ibrutinib resistance and therapeutic options
Resistance to ibrutinib has been attributed to acquired mutations 
in BTK that only allow the kinase to be reversibly bound by ibruti-
nib, as well as downstream mutations in phospholipase C gamma 2  
(PLCγ2) that reactivate B-cell receptor (BCR) signaling despite 
inhibition of BTK function by ibrutinib46–48. More recent work 
has identified clonal evolution, particularly the emergence of 
del(8p) clones harboring additional driver mutations (in EP300, 
MLL2, and EIF2A), as an additional mechanism of development 
of resistance to ibrutinib49. Outcomes after ibrutinib discontinu-
ation have been reported to be poor50,51, particularly for patients  
discontinuing because of progression and especially Richter’s trans-
formation (RT) of their CLL, but appear to be improving with the 
availability of newer and effective salvage options52. RTs usually 
occur early, whereas CLL progressions generally tend to be later 
events51. Clinical data are available supporting the efficacy of com-
mercially available drugs such as idelalisib and venetoclax in the 
setting of ibrutinib resistance or intolerance (discussed below)53,54 
as well as investigational agents such as duvelisib (formerly IPI-
145, discussed below)55 and entospletinib (formerly GS-9973, a 
spleen tyrosine kinase inhibitor)56.

Additionally, protein kinase C beta inhibitors57, heat shock protein 
90 inhibitors58, and selective inhibitors of nuclear export59 hold 
promise in preclinical studies to overcome ibrutinib resistance 
in CLL. Finally, a number of reversible BTK inhibitors that bind  
outside of the C481 residue targeted by ibrutinib and therefore 
are able to effectively inhibit the resistant C481S mutant are in  
development60–62.

Other Bruton’s tyrosine kinase inhibitors
Ibrutinib inhibits a number of kinases besides BTK, its primary 
therapeutic target in CLL63, including some at subnanomolar  
concentrations64. Some of these off-target effects of ibrutinib may be 
responsible for some of its unique toxicities (for example, atrial 
fibrillation65 and bleeding66–68). Thus, there is considerable interest in 
developing more selective inhibitors of BTK. Among these, aca-
labrutinib (formerly ACP-196) is farthest along in clinical devel-
opment (phase 3). Consistent with the concept that acalabrutinib 
is a more selective BTK inhibitor, preclinical studies have dem-
onstrated that ibrutinib and acalabrutinib have similar biological 
activity in primary CLL cells but appear to have differences in their 
impact on normal T cells69. In a phase 1–2 study in 61 patients with 
relapsed CLL and a median of three prior therapies, acalabrutinib 
produced an ORR of 95% (85% PR and 10% PR

L
); all patients with 

del(17p) responded70. In a phase 1 trial of another selective BTK 
inhibitor, ONO/GS-4059, in 90 patients with R/R B-cell malignan-
cies, 24 (96%) of 25 evaluable patients with CLL responded, and 
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the median duration of response was 80 weeks71. Yet another such 
agent is BGB-311172. The ORR to this agent among 29 evaluable 
patients with R/R CLL/SLL was 90% (79% PR and 10% PR

L
)73. 

With the short follow-up reported thus far, all three agents have 
been very well tolerated; however, there have been cases of major 
bleeding and atrial fibrillation reported with ONO/GS-4059 and 
BGB-311171,73.

Ibrutinib dose and biological activity
Another approach to minimize the off-target toxicities of ibru-
tinib while preserving efficacy may be the exploration of lower  
doses74. This is based on the observations that ibrutinib doses of 
at least 2.5 mg/kg per day were sufficient to achieve at least 95% 
BTK occupancy in the phase 1 trial in patients with R/R B-cell 
malignancies75 and that BTK levels decline over time in CLL cells 
from ibrutinib-treated patients76,77. Since ibrutinib is an irreversible 
inhibitor of BTK and binds to BTK in a 1:1 stoichiometric ratio, 
this would imply the need for lower doses of ibrutinib over time 
as BTK levels decline. Therefore, continued dosing at 420 mg/day 
could lead to greater off-target binding and toxicity74. Our group 
is currently studying the pharmacodynamic correlates, includ-
ing BTK occupancy, of progressively lower dosing of ibrutinib in 
patients with CLL in the context of a pilot study (NCT02801578). 
Importantly, a retrospective multi-institutional “real world”  
study published recently showed that reduced dose ibrutinib—
defined as sustained (for at least 2 months) dosing at less than 
420 mg/day, either at treatment initiation or within 3 months 
from starting ibrutinib—did not compromise outcomes (that is, 
ORR or PFS)78. Toxicity or physician preference drove the deci-
sion to reduce the dose of ibrutinib in the vast majority of cases. In  
contrast, missing at least 8 consecutive days of ibrutinib has been 
correlated with shorter median PFS79.

Combination strategies involving ibrutinib
Ibrutinib has been combined with anti-CD20 monoclonal antibod-
ies in non-comparative clinical trials80,81, and although early fears 
of antagonism of rituximab-mediated ADCC by ibrutinib based on 
preclinical studies82 have been laid to rest, the incremental benefit 
of this approach (versus ibrutinib alone) is not clear. Similarly, 
the HELIOS study in 578 patients with R/R non-del(17p) CLL or 
SLL showed improved PFS with the addition of ibrutinib to ben-
damustine and rituximab (BR), but this regimen does not appear 
to offer meaningful advantages over ibrutinib monotherapy, except 
when a rapid response is clinically desirable83. One US coopera-
tive group study is investigating BR, ibrutinib alone, or ibrutinib 
plus rituximab in previously untreated patients at least 65 years of 
age (NCT01886872), while another is comparing frontline FCR 
with ibrutinib plus rituximab in patients 18 to 70 years of age 
(NCT02048813). Accrual to both of these studies is complete and 
results are awaited.

Targeting phosphatidylinositol-3-kinase: idelalisib 
and newer inhibitors
Idelalisib
The first-in-class phosphatidylinositol-3-kinase (PI3K) delta  
isoform-specific inhibitor idelalisib (Zydelig®) was approved in  
conjunction with rituximab by the US Food and Drug Adminis-
tration (FDA) in 2014 for patients with relapsed CLL for whom 

rituximab alone would be considered appropriate therapy (because 
of co-morbidities) on the basis of the results of a pivotal phase 3 
study in which the combination significantly improved both PFS 
and OS over rituximab plus placebo, so much so that the trial 
was stopped early84. Like ibrutinib, idelalisib blocks signaling 
through the BCR pathway and is efficacious in patients harbor-
ing del(17p) or TP53 aberrations. We have recently shown that in 
mantle cell lymphoma cell lines and patient-derived samples, idela-
lisib inhibits protein synthesis, which correlates with reductions in  
AKT (the immediate downstream effector of PI3K) and mitogen-
activated protein kinase kinase (MEK) phosphorylation85.  
Idelalisib synergizes with bendamustine in primary CLL cells, 
increasing DNA damage and suppressing transcription of the anti-
apoptotic protein myeloid cell leukemia 1 (MCL-1)86. Indeed, in a 
recently reported phase 3 trial (n = 416), the combination of idela-
lisib with BR markedly enhanced PFS in patients with R/R CLL 
(median of 20.8 versus 11.1 months for BR plus placebo after a 
median follow-up of 14 months)87. Idelalisib plus ofatumumab 
has also been compared with ofatumumab alone in 261 patients 
with R/R CLL (median number of prior therapies = 3) in a rand-
omized phase 3 trial88. The primary analysis of this trial showed a  
doubling of median PFS (16.3 versus 8 months) in the combination 
arm.

The use of idelalisib in patients with CLL has been constrained 
by toxicity concerns, particularly given the superior safety profile 
of ibrutinib. The US prescribing information for idelalisib contains 
a black-box warning for fatal or serious hepatotoxicity or both 
(11%–18%), diarrhea/colitis (14%–19%), pneumonitis (4%), infec-
tions (21%–36%), and intestinal perforation, and a high degree of 
vigilance for these AEs is essential in patients receiving idelalisib. 
The incidence of hepatotoxicity, believed to be immune-mediated, 
has been reported to be particularly high in the setting of front-
line idelalisib monotherapy; 19 (79%) of 24 subjects experienced 
some degree of transaminitis and 13 (54%) had at least grade 3 
transaminitis in a recent study89. The median time to development 
of transaminitis was 28 days, and younger age and mutated IGHV 
status predicted for this complication. Very recently, it was reported 
that PI3K delta blockade by either idelalisib or duvelisib (dis-
cussed below), through upregulation of the B cell–specific enzyme  
activation-induced cytidine deaminase, induces genomic insta-
bility in normal and neoplastic B cells, which could lead to lym-
phomagenesis given the potential for patients to be on these drugs  
for prolonged periods90.

Other PI3K inhibitors
TGR-1202 is a novel PI3K delta inhibitor with an improved safety 
profile, particularly with regard to hepatotoxicity and colitis. In 
a phase 1 study in patients with R/R CLL or NHL, 10 (63%) of 
16 evaluable patients with CLL achieved a PR. This agent has 
been combined with ublituximab: of 10 R/R CLL patients who  
received the combination, all were progression-free at a median  
of 8 months when these data were last presented. A pivotal phase 3  
trial (UNITY-CLL) comparing ublituximab and TGR-1202  
with chlorambucil and obinutuzumab is under way (NCT02612311), 
as are a number of other studies combining TGR-1202 or  
TGR-1202 plus ublituximab with ibrutinib, bendamustine, or  
pembrolizumab.
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Duvelisib (reviewed in 91) is a small-molecule inhibitor of both 
the delta and gamma isoforms of PI3K that potently and selectively 
inhibits the proliferation of primary CLL cells, induces apoptosis, 
and interferes with the homing capabilities of CLL cells through 
blockade of BCR signaling92. Preclinically, duvelisib impairs the 
viability of T cells and natural killer cells and decreases the pro-
duction by activated T cells of inflammatory and anti-apoptotic 
cytokines93. ORRs to single-agent duvelisib have ranged from 
55% in heavily pretreated patients with R/R CLL to 82% in previ-
ously untreated patients; as with ibrutinib and idelalisib, the vast 
majority of responses have been partial94,95. Duvelisib has been 
studied in combination with bendamustine, rituximab, and BR in 
patients with R/R CLL or indolent NHL with good tolerability96. In  
treatment-naïve patients, the addition of duvelisib to FCR appears 
to substantially increase the rate of MRD negativity97, a strong sur-
rogate for long-term outcome in CLL98. Results of the completed 
phase 3 DUO study (NCT02004522) comparing duvelisib with  
ofatumumab in 319 patients with R/R CLL or SLL are expected 
soon; the trial has met its primary endpoint of significantly improved 
PFS in the duvelisib arm (13.3 versus 9.9 months), according  
to topline results released recently by the company.

Targeting B-cell lymphoma 2 with venetoclax
CLL cells are exquisitely dependent on the B-cell lymphoma 2  
(BCL-2) anti-apoptotic protein for survival99, and the “BH3-
mimetic” navitoclax, an antagonist of both BCL-2 and BCL-xL, 
showed promising activity in patients with R/R CLL100, but the 
development of this agent was hampered by the occurrence of 
dose-limiting thrombocytopenia in all clinical trials, an on-target 
consequence of the drug’s action on platelets and megakaryocytes, 
which rely on BCL-xL for survival101. These observations led to 
the development of venetoclax (Venclexta™, formerly ABT-199), 
a highly BCL-2–selective antagonist that spares platelets102, by 
reverse engineering of navitoclax.

In a phase 1 trial with dose escalation and expansion phases, 116 
patients with R/R CLL or SLL (but none previously treated with 
BCR inhibitors) received venetoclax103. The ORR was 79%, includ-
ing CRs in 20% of patients, a quarter of which were MRD-negative. 
Clinical tumor lysis syndrome (TLS), fatal in one case, occurred in 
three of 56 patients in the dose escalation phase, but did not recur 
in the dose expansion phase (n = 60), after a careful dose ramp-
up to a maximum of 400 mg daily was instituted. Mild diarrhea 
(52%), upper respiratory infection (48%), nausea (47%), and grade 
3/4 neutropenia (41%) were frequent. Venetoclax was approved in 
2016 by the FDA for patients with CLL with del(17p) based on an 
ORR of 79.4% in a separate study (n = 107) carried out exclusively 
in patients with R/R del(17p) CLL104. The CR rate, with or without 
complete count recovery, in this study was only 8%, and only 5% 
of the patients had received prior BCR inhibitors. Grade 3/4 neutro-
penia was very common (40%), and grade 3/4 infections, anemia, 
and thrombocytopenia occurred in 20%, 18%, and 15% of patients, 
respectively. According to the current label, the dose of veneto-
clax should be ramped up over a 4- to 5-week period from 20 to  
400 mg daily to minimize the risk of TLS. Venetoclax was com-
bined with rituximab in a phase 1 trial in 49 patients with R/R  
CLL or SLL, and the recommended phase 2 dose (RP2D) was found 
to be 400 mg/day in this setting as well105. Clinical TLS occurred 

in two patients who started the dose ramp-up at 50 mg/day, and  
resulted in one death. The ORR was 86% and MRD negativity 
was attained in 57%. Twenty-five patients (51%) achieved CR and  
20 of them (80%) were MRD-negative. Grade 1/2 upper respira-
tory infection, diarrhea, and nausea were very frequent, affecting 
57%, 55%, and 51% of patients, respectively. Grade 3/4 neutro-
penia affected 53% of patients, and febrile neutropenia 12%;  
14% and 16% of patients, respectively, had grade 3/4 anemia and 
thrombocytopenia.

An important question not addressed by the above studies  
concerns the efficacy of venetoclax in patients failing BCR inhibi-
tors. This is the subject of an ongoing study, preliminary results 
of which have been presented53. The study enrolled only patients 
who had relapsed or were refractory to ibrutinib (n = 43) or idela-
lisib (n = 21). The ORRs to venetoclax monotherapy were 70% in  
the prior ibrutinib group and 48% in the prior idelalisib group.  
Only one CR (with incomplete count recovery) was documented  
by independent review—in the prior ibrutinib group.

Combination strategies and the road to a cure in 
chronic lymphocytic leukemia
Long-term (more than 10 years) relapse-free remissions are  
already achievable with FCR in the subset of patients with favora-
ble genomic prognostic factors (that is, mutated IGHV, del(13q), 
normal cytogenetics, or trisomy 12)106. Ongoing clinical trials are  
attempting to further improve outcomes by adding ibrutinib to 
frontline FCR, followed by ibrutinib maintenance in younger, 
fit patients107, or adding ibrutinib and replacing rituximab with 
the more potent obinutuzumab, while reducing the exposure to  
cytotoxic chemotherapy (to mitigate the real risk of therapy- 
related myeloid neoplasms)108, as well as limiting the dura-
tion of ibrutinib maintenance using an MRD-driven approach in  
previously untreated patients with mutated IGHV and without 
del(17p)109. Achievement of MRD negativity has become widely 
established as a necessary first step to an eventual cure of CLL 
(reviewed in 110).

Preclinical studies from our group111 and others112 have demon-
strated synergism between ibrutinib and venetoclax in CLL. The 
clinical efficacy profiles of these two oral agents also comple-
ment each other well, as ibrutinib is particularly effective at clear-
ing nodal disease and less so at clearing marrow disease, whereas  
venetoclax has the opposite profile and also does not cause the 
redistribution lymphocytosis typical of BCR inhibitors. Further-
more, CR rates with ibrutinib monotherapy, at least in the R/R set-
ting, are very low35,113 and clearly better with venetoclax, which 
is additionally capable of inducing MRD negativity on its own103. 
These observations make this a particularly attractive combination, 
which is being studied in several ongoing clinical trials in both 
the frontline and R/R settings (NCT02756897, NCT03045328, 
and NCT02910583). Other trials are studying the triple combina-
tion of ibrutinib, venetoclax, and obinutuzumab (NCT02758665 
and NCT02427451). Early results demonstrate tolerability of the  
triple combination, and the RP2D of venetoclax is the same as 
the approved monotherapy dose (that is, 400 mg/day)114. Aside  
from toxicity concerns, the enormous economic burden of indef-
inite therapy of CLL with the new oral targeted agents115 makes  
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achievement of a deep response with the use of an optimal  
combination regimen for a finite duration with, hopefully, a durable 
treatment-free remission an important goal.

Duvelisib has also been shown to synergize with venetoclax in 
induction of apoptosis of CLL cells116. However, there are no ongo-
ing clinical studies of PI3K delta inhibitors in combination with 
venetoclax; one involving duvelisib was withdrawn. This could 
reflect the substantial toxicity concerns with idelalisib discussed 
above, as well as the recent findings of induction of genomic insta-
bility in B cells by both idelalisib and duvelisib90. If indeed TGR-
1202 turns out to have a much improved safety profile in the clinic, 
it is possible that the combination of this agent with venetoclax will 
be pursued in trials.

Emerging drug targets
Single-agent immune checkpoint blockade with pembrolizumab 
(Keytruda®), a monoclonal antibody directed against programmed 
death 1 (PD-1), was recently shown to have substantial clinical  
activity in patients with RT, a difficult-to-treat, poor-prognosis  
entity, but not in CLL117. As noted above, this agent is also being 
studied in combination with ublituximab plus TGR-1202 in patients 
with R/R CLL or RT (NCT02535286). Additionally, it is being 
evaluated in combination with ibrutinib or idelalisib in patients 
with R/R CLL (NCT02332980). The anti–PD-1 monoclonal anti-
body nivolumab (Opdivo®) is also being evaluated in combina-
tion with ibrutinib in both patients with RT and R/R or high-risk 
CLL (NCT02420912). Studies in mouse models of lymphoma 
support the combination of ibrutinib with immune checkpoint  
blockade118. This is based, in part, on the inhibition by ibrutinib 
of interleukin-2-inducible kinase (ITK) in T cells, which skews  
T-cell immune responses away from Th2 and toward a Th1  
phenotype119.

Resistance to venetoclax is largely driven by MCL-1 (reviewed in 
120); for years, this anti-apoptotic protein has eluded therapeutic 
targeting. However, a number of clinical candidate compounds 
capable of directly antagonizing the function of MCL-1 are now 
on the horizon121–123 and hopefully will be available in the future 
for combination with venetoclax. Furthermore, therapy with BCR 
axis inhibitors such as ibrutinib111, acalabrutinib69, idelalisib124, and 
duvelisib116 results in a decline in MCL-1 protein levels in CLL 
cells, providing a mechanism-based rationale to combine them with 
venetoclax. Another strategy involves downregulating this short-
lived anti-apoptotic protein through transcriptional repression, 
achievable by inhibition of cyclin-dependent kinase 9 (CDK9)125. 

While “pan”-CDK inhibitors have displayed clear evidence of 
activity in CLL126,127, current efforts in this area are focusing on 
developing agents that are selective for CDK9. CYC065, for exam-
ple, is highly selective for CDK2 and CDK9.

A relatively new therapeutic target in CLL is colony-stimulating 
factor 1R (CSF1R), expressed on tumor-associated macrophages 
(TAMs), and macrophage killing by CSF1R blockade induces 
CLL cell death, primarily through the tumor necrosis factor  
pathway128. TAMs provide support to CLL cells via a PI3K-AKT-
mammalian target of rapamycin (mTOR)-dependent translational 
upregulation of MCL-1129. Both small-molecule kinase inhibi-
tors (for example, pexidartinib130 and BLZ945131) and monoclonal 
antibodies targeting CSF1R are in development for various tumor 
types.

Conclusions
The past few years have seen enormous advancements in our  
understanding of CLL biology and drug discovery and clinical 
development. The advent of the BCR inhibitors and venetoclax 
has fundamentally changed the paradigm of CLL management 
and brought unprecedented benefits to patients, particularly those 
with historically poor outcomes with CIT (for example, those with 
del(17p) or TP53 abnormalities). The challenges facing the field in 
the coming years will be how to optimally combine and sequence 
these and newer agents so as to achieve high rates of MRD eradica-
tion, hopefully enabling treatment discontinuation and translating 
to long-term relapse-free survival. Identification of mechanisms of 
resistance to the novel targeted agents and their abrogation, along 
with effective treatment and prevention of RT, will likely become 
a major focus of CLL research in the years to come. New drugs 
targeted against CD37, MCL-1, CDK9, CSF1R, and so on hold 
promise for an even more robust therapeutic armamentarium in the 
near future.
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