Submitted 27 January 2016
Accepted 2 March 2016
Published 29 March 2016

Corresponding author
A. Murat Eren,
a.murat.eren@gmail.com,
meren@uchicago.edu

Academic editor
Christophe Dessimoz

Additional Information and
Declarations can be found on
page 10

DOI 10.7717/peer;j.1839

© Copyright
2016 Delmont and Eren

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Identifying contamination with advanced
visualization and analysis practices:
metagenomic approaches for eukaryotic
genome assemblies

Tom O. Delmont' and A. Murat Eren'”

! Department of Medicine, University of Chicago, Chicago, IL, United States
?Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, United States

ABSTRACT

High-throughput sequencing provides a fast and cost-effective mean to recover
genomes of organisms from all domains of life. However, adequate curation of the
assembly results against potential contamination of non-target organisms requires ad-
vanced bioinformatics approaches and practices. Here, we re-analyzed the sequencing
data generated for the tardigrade Hypsibius dujardini, and created a holistic display of
the eukaryotic genome assembly using DNA data originating from two groups and
eleven sequencing libraries. By using bacterial single-copy genes, k-mer frequencies,
and coverage values of scaffolds we could identify and characterize multiple near-
complete bacterial genomes from the raw assembly, and curate a 182 Mbp draft
genome for H. dujardini supported by RNA-Seq data. Our results indicate that most
contaminant scaffolds were assembled from Moleculo long-read libraries, and most of
these contaminants have differed between library preparations. Our re-analysis shows
that visualization and curation of eukaryotic genome assemblies can benefit from tools
designed to address the needs of today’s microbiologists, who are constantly challenged
by the difficulties associated with the identification of distinct microbial genomes in
complex environmental metagenomes.

Subjects Bioinformatics, Genomics, Microbiology
Keywords Genomics, Assembly, Curation, Visualization, Contamination, HGT

INTRODUCTION

Advances in high-throughput sequencing technologies are revolutionizing the field of
genomics by allowing researchers to generate large amount of data in a short period of time
(Loman & Pallen, 2015). These technologies, combined with advances in computational
approaches, help us understand the diversity and functioning of life at different scales by
facilitating the rapid recovery of bacterial, archaeal, and eukaryotic genomes (Venter et al.,
2001; Schleper, Jurgens ¢ Jonuscheit, 2005; Brown et al., 2015). Yet, the recovery of genomes
is not straightforward, and reconstructing bacterial and archaeal versus eukaryotic genomes
present researchers with distinct pitfalls and challenges that result in different molecular
and computational workflows.

For instance, difficulties associated with the cultivation of bacterial and archaeal
organisms (Schloss ¢ Handelsman, 2003) have persuaded microbiologists to reconstruct
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genomes directly from the environment through assembly-based metagenomics workflows
and genome binning. This workflow commonly entails (1) whole sequencing of
environmental genetic material, (2) assembly of short reads into contiguous DNA
segments (contigs), and (3) identification of draft genomes by binning contigs that
originate from the same organism. Due to the extensive diversity of bacteria and archaea
in most environmental samples (Gans, Wolinsky ¢ Dunbar, 2005; Rusch et al., 2007), the
field of metagenomics has rapidly evolved to accurately delineate genomes in assembly
results. Today, microbiologists often exploit two essential properties of bacterial and
archaeal genomes to improve the “binning” step: (1) k-mer frequencies that are somewhat
preserved throughout a single microbial genome (Pride et al., 2003) to identify contigs that
likely originate from the same genome (Teeling et al., 2004), and (2) a set of genes that occur
in the vast majority of bacterial genomes as a single copy to estimate the level of completion
and contamination of genome bins (Wu & Eisen, 2008; Campbell et al., 2013; Parks et al.,
2015). These properties, along with differential coverage of contigs across multiple samples
when such data exist, are routinely used to identify coherent microbial draft genomes in
metagenomic assemblies (Dick ef al., 2009; Albertsen et al., 2013; Wu et al., 2014; Alneberg
et al., 2014; Kang et al., 2015; Eren et al., 2015).

On the other hand, researchers who study eukaryotic genomes generally focus on
the recovery of a single organism, which, in most cases, simplifies the identification
of the target genome in assembly results. However, sequences of bacterial origin can
contaminate eukaryotic genome assemblies due to their occurrence in samples (Chaprman
et al., 20105 Artamonova & Mushegian, 2013), DNA extraction kits (Salter et al., 2014), or
laboratory environments (Laurence, Hatzis & Brash, 2014; Strong et al., 2014). One of the
major challenges of working with eukaryotic genomes is the extent of repeat regions
that complicate the assembly process (Richard, Kerrest ¢~ Dujon, 2008). To optimize
the assembly, researchers often employ multiple library preparations for sequencing
(Gnerre et al., 20105 Ekblom ¢ Wolf, 2014), which may increase the potential sources of
post-DNA extraction contamination. Contaminants in assembly results can eventually
contaminate public databases (Merchant, Wood ¢ Salzberg, 2014), and impair scientific
findings (Artamonova et al., 2015). The detection and removal of contaminants poses a
major bioinformatics challenge. To identify undesired contigs in a genomic assembly,
scientists can simply compare their assembly results to public sequence databases for
positive hits to unexpected taxa (Ekblom ¢ Wolf, 2014), use k-mer coverage plots to
identify distinct genomes (Percudani, 2013), or employ scatter plots to partition contigs
based on their GC-content and coverage (Kumar et al., 2013). However, advanced solutions
developed for accurate identification of microbial genomes in complex metagenomic
assemblies can leverage these approaches further, and offer enhanced curation options for
eukaryotic assemblies.

The first release of a tardigrade genome by Boothby et al. (2015) demonstrates a striking
example of the importance of careful screening for contaminants in eukaryotic genome
assemblies. Tardigrades are microscopic animals occurring in a wide range of ecosystems
and they exhibit extended capabilities to survive in harsh conditions that would be
fatal to most animals (Ramlov ¢ Westh, 2001; Jonsson, Harms-Ringdahl ¢ Torudd, 2005;
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Jonsson et al., 2008; Horikawa et al., 2013). Boothby and his colleagues generated a
composite DNA sequencing dataset from a culture of the tardigrade Hypsibius dujardini
by exploiting some of the best practices of high-throughput sequencing available today
(Boothby et al., 2015). In their assembled tardigrade genome, the authors detected a
large number of genes originating from bacteria, making up approximately one-sixth of
the gene pool, and suggested that horizontal gene transfers (HGTs) could explain the
unique ability of tardigrades to withstand extreme ranges of temperature, pressure, and
radiation. However, Koutsovoulos et al’s (2016) subsequent analysis of Boothby et al.’s
assembly suggested that it contained extensive bacterial contamination, casting doubt on
the extended HGT hypothesis. By applying two-dimensional scatterplots on their own raw
assembly results, Koutsovoulos et al. also reported a curated draft genome of H. dujardini.

Here we re-analyzed the raw sequencing data generated by Boothby et al. (2015) and
Koutsovoulos et al. (2016), in combination with an independent RNA-Seq dataset generated
by Levin et al. (2016) for H. dujardini. Using anvi’o, an analysis and visualization platform
originally designed for the identification of bacterial genomes in metagenomic assemblies
(Eren et al., 2015), we employed bacterial single-copy genes to assess the occurrence of
bacterial genomes in the raw and curated assembly results, utilized k-mer frequencies and
coverage values across multiple sequencing libraries to organize scaffolds, and visualized
our findings in a single display.

MATERIAL AND METHODS

Genome assemblies, and raw sequencing data for DNA and RNA
Boothby et al. (2015) constructed three paired-end Illumina libraries (insert sizes of 0.3, 0.5
and 0.8 kbp) for 2 x 100 paired-end sequencing on a HiSeq2000, and six single-end long-
read libraries (five Illumina Moleculo libraries sequenced by the Illumina “long read” DNA
sequencing service, and one PacBio SMRT library sequenced using the P6-C4 chemistry and
a 1 X 240 movie), which altogether provided a co-assembly of 252.5 Mbp. The tardigrade
genome released by Boothby et al. (2015), along with the nine sequencing data used for its
assembly, are available at http://weatherby.genetics.utah.edu/seq_transf. Independently,
Koutsovoulos et al. (2016) generated a 0.3 kbp insert library and a 1.1 kbp insert mate-pair
library for 2 x 100 paired end sequencing on a HiSeq2000 that provided a co-assembly
of 185.8 Mbp (nHd.1.0). These authors subsequently curated a 135 Mbp draft genome
(nHd.2.3) by removing potential contamination and re-assembling filtered short reads
(Koutsovoulos et al., 2016). The tardigrade raw assembly and curated draft genome released
by Koutsovoulos et al. (2016) are available at http://badger.bio.ed.ac.uk/H_dujardini,

and their two sequencing datasets are available from the ENA, under study accession
PRJEBI11910 .

RNA-seq data

We obtained the RNA-seq data using the NCBI accession id PRJNA272543 (Levin et
al., 2016). Briefly, Levin et al. isolated RNA from H. dujardini using the Trizol reagent
(Invotrogen), constructed paired-end Illumina libraries according to the TruSeq RNA-seq
protocol, and sequenced their cDNA libraries with a read length of 100 bp.
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Quality filtering and read mapping

We used illumina-utils (Eren et al., 2013) (available from http://github.com/meren/
illumina-utils) for quality filtering of short Illumina reads using ‘iu-filter-quality-minoche’
script with default parameters, which implements the quality filtering described by Minoche,
Dohm & Himmelbauer (2011). Bowtie2 v2.2.4 (Langmead ¢ Salzberg, 2012) with default
parameters mapped all reads to the scaffolds, and we used samtools v1.2 (Li et al., 2009) to
convert reported SAM files to BAM files.

Overview of the anvi’o workflow

Our workflow with anvi’o to identify and remove contamination from a given collection
of scaffolds consists of four main steps. The first step is the processing of the FASTA
file of scaffolds to create an anvi’o contigs database (CDB). The resulting database holds
basic information about each scaffold in the assembly (such as the k-mer frequency, or
GC-content). The second step is the profiling of each BAM file with respect to the CDB
we generated in the previous step. Each anvi’o profile describes essential statistics for each
scaffold in a given BAM file, including their average coverage, and the portion of each
scaffold covered by at least one read. The third step is the merging of all anvi’o profiles. The
merging step combines all statistics from individual profiles, and uses them to compute
hierarchical clusterings of scaffolds. The default organization of scaffolds is determined by
the average coverage information from individual profiles, and the sequence composition
information from the CDB. This organization makes it possible to identify scaffolds that
distribute similarly across different library preparations. The final step is the visualization
of the merged data on the anvi’o interactive interface. The anvi’o interactive interface
provides a holistic perspective of the combined data, which allows the identification of
draft genome bins, and removal of contaminants.

Processing of scaffolds, and mapping results

We used anvi’o v1.2.2 (available from http://github.com/meren/anvio) to process scaffolds
and mapping results, visualize the distribution of scaffolds, and identify draft genomes
following the workflow outlined in the previous section, and detailed in Eren et al. (2015).
We created an anvi’o contigs database CDB for each scaffold collection using the ‘anvi-gen-
contigs-database’ program with default parameters (where k equals 4 for k-mer frequency
analysis). We then annotated scaffolds with myRAST (available from http://theseed.org/)
and imported these results into the CDB using the program ‘anvi-populate-genes-table’
to store the information about the locations of open reading frames (ORFs) in scaffolds,
and their taxonomical and functional inference. We profiled individual BAM files using
the program ‘anvi-profile’ with a minimum contig length of 1 kbp, and the program
‘anvi-merge’ combined resulting profiles with default parameters. For the analysis of
Boothby et al. (2015) assembly, we also profiled the RNA-Seq data published by Levin et
al. (2016) to identify scaffolds with transcriptomic activity, and exported the table for
proportion of each scaffold covered by transcripts using the script ‘get-db-table-as-matrix.’
We used the supplementary material published by Boothby et al. (2015) (“Dataset S1”

in the original publication) to identify scaffolds with proposed HGTs. Finally, we used
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the program ‘anvi-interactive’ to visualize the merged data, and identify genome bins.
We included RNA-Seq results and scaffolds with HGTs into our visualization using the
‘--additional-layers’ flag. To finalize the anvi’o generated SVG files for publication, we used
Inkscape v0.91 (available from https://inkscape.org/).

Predicting the number of bacterial genomes in an assembly

We used the occurrence of bacterial single-copy genes as a proxy to the expected number
of bacterial genomes in a raw assembly or in a curated genome bin. First, we ran on each
CDB generated in this study the anvi’o program ‘anvi-populate-search-tables’ to search
using HMMer v3.1b2 (Eddy, 2011) for bacterial single-copy genes Campbell et al. (2013)
published. Then, we used the anvi’o script ‘gen-stats-for-single-copy-genes’ to report the
number of hits per single-copy gene as an array of integers from each CDB. We finally used
mode (i.e., the most frequently occurring number) of this array as the expected number
of complete bacterial genomes in a given collection of scaffolds. For additional discussion
regarding the relevance of this metric to predict the number of bacterial genomes in an
assembly, see the Supplemental Information 1. The script ‘gen-stats-for-single-copy-genes’
also used the R library ‘ggplot’ v1.0.0 (R Development Core Team R, 2011; Ginestet, 2011)
to plot the occurrence of single-copy genes.

Taxonomical and functional annotation of bacterial genomes

We uploaded bacterial draft genomes identified from the raw tardigrade genomic assembly
results into the RAST server (Aziz et al., 2008), and used the RAST best taxonomic hits and
FigFams to infer the taxonomy of genome bins and functions they harbor.

Data availability

The URL http://merenlab.org/data/ reports (1) anvi’o files to regenerate Figs. 1 and 2,
(2) our curation of the tardigrade genome from Boothby et al.’s assembly (which is also
available through the NCBI under the bioproject ID PRJNA309530), and (3) the FASTA
files for bacterial genomes we identified in the raw assemblies from Boothby et al. and
Koutsovoulos et al.

RESULTS AND DISCUSSION

Boothby et al. (2015) generated sequencing data from a tardigrade culture using three
short read (Illumina) and six long read (Moleculo and PacBio) libraries, which altogether
provided a co-assembly of 252.5 Mbp. Using this assembly, the authors suggested that
6,663 genes were entered into the tardigrade genome through HGTs. Independently,
Koutsovoulos et al. generated sequencing data from another tardigrade culture using
two short read Illumina libraries that provided a co-assembly of 185.8 Mbp, from which
they could curate a 135 Mbp tardigrade draft genome by removing potential bacterial
contamination using two-dimensional scatterplots of scaffolds with respect to their GC-
content and coverage (Koutsovoulos et al., 2016).

A holistic view of the data
The use of multiple library preparations and sequencing strategies is likely to result in more
optimal assembly results (Gnerre et al., 2010). Hence, we focused on the scaffolds generated
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Genomic selections

| HGTs identified by Boothby et al.
lllumina GAIIX RNA-Seq, Yanai et al.

lllumina HiSeq 0.5 kbp insert, Boothby et al.
lllumina HiSeq 0.3 kbp insert, Boothby et al.
Illumina HiSeq 0.3 kbp insert, Koutsovoulos et al.
lllumina HiSeq 0.8 kbp insert, Boothby et al.
Illumina HiSeq 1.1 kbp insert, Koutsovoulos et al.
PacBio SMRT, Boothby et al.

lllumina Moleculo (#05), Boothby et al.

lllumina Moleculo (#04), Boothby et al.

lllumina Moleculo (#01), Boothby et al.

lllumina Moleculo (#02), Boothby et al.

lllumina Moleculo (#03), Boothby et al.

GC-content

22,496 (252 Mbp)
/ scaffolds

© Hypsibius dujardini curated draft genome. 182.2 Mbp (14,961 scaffolds).
9 Bacterial draft genome #1. 4.8 Mbp (4 scaffolds; 100% complete with 5.9% redundancy. RAST Taxonomy: Chitinophaga pinensis).
e Bacterial draft genome #2. 4.5 Mbp (29 scaffolds; 97% complete with 0% redundancy. RAST Taxonomy: Chitinophaga pinensis).

0 Bacterial draft genome #3. 3.8 Mbp (5 scaffolds; 97% complete with 5.9% redundancy. RAST Taxonomy: Thermosinus carboxydivorans).

Figure 1 Holistic assessment of the tardigrade genome assembly from Boothby et al. (2015). Dendrogram in the center organizes scaffolds based
on sequence composition, and coverage values acquired from 11 DNA libraries. Scaffolds larger than 40 kbp were split into sections of 20 kbp for vi-
sualization purposes. Splits are displayed in the first inner circle and GC-content (0~71%) in the second circle. In the following 11 layers, each bar
represents the portion of scaffolds covered by short reads in a given sample. The next layer shows the same information for RNA-Seq data. Scaffolds
harboring genes used by Boothby et al. to support the expended HGT hypothesis is shown in the next layer. Finally, the outermost layer shows our
selections of scaffolds as draft genome bins: the curated tardigrade genome (selection #1), as well as three near-complete bacterial genomes originat-

ing from various contamination sources (selections #2, #3, and #4).
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by Boothby et al. (2015) as a foundation to maximize the recovery of the tardigrade genome.
To provide a holistic understanding of the composite sequencing data generated by the
two teams, we mapped the raw data from the nine DNA sequencing libraries from Boothby
et al., and the two Illumina libraries from Koutsovoulos et al. (2016) on this assembly.
Anvi’o generated a hierarchical clustering of scaffolds by combining the tetra-nucleotide
frequency and coverage of each scaffold across the 11 DNA sequencing libraries (Eren et
al., 2015). Besides visualizing the coverage of each scaffold in each sample, we highlighted
scaffolds with HGTs identified by Boothby et al. on the resulting organization of scaffolds,
and visualized RNA-seq mapping results. Figure 1 displays the anvi’o merged profile that
represents all this information in a single display.

A draft genome for H. dujardini

Through the anvi’o interactive interface we selected 14,961 scaffolds from the Boothby et
al. assembly that recruited large number of short-reads in a consistent manner (Fig. 1).
This 182.2 Mbp selection with consistent coverage (#1 in Fig. 1) represents our curation of
the tardigrade draft genome from Boothby et al.’s assembly. The remaining 7,535 scaffolds,
which total about 70 Mbp of the assembly, harbored 96.1% of HGTs identified by Boothby
et al. These scaffolds recruited only 0.05% of the reads from the RNA-Seq data, highlighting
the extent of contamination in the original assembly. This finding is in agreement with
Koutsovoulos et al.’s findings; however, our curated draft genome from the Boothby et
al.’s assembly is 47 Mbp larger than the draft genome released by Koutsovoulos et al. (2016),
most probably due to Boothby et al.’s inclusion of longer reads from Moleculo libraries.
While the portion of scaffolds covered by RNA-Seq data suggests that this additional 47
Mbp still originate from the tardigrade genome, the biological relevance of this information
(or lack thereof) for the characterization of the tardigrade genome falls outside of the scope
of our study.

The origin of bacterial contamination

Our mapping results indicate the presence of non-target sequences in the assembly that
recruit reads only from long-read libraries. One interpretation could be that most of
the contamination in Boothby et al.’s assembly originated from Moleculo libraries, post
DNA-extraction (Fig. 1). However, while a recent study shows that the majority of long
reads from Moleculo libraries originated from low-abundance organisms in the analyzed
samples (Sharon et al., 2015), another study suggests relatively more sequencing bias in
Moleculo library preparation results (Kuleshov et al., 2015). Therefore, an alternative
interpretation of the mapping results can be that the bacterial contaminants were present
in the sample pre-DNA extraction at very low abundances, and each Moleculo library
preparation included long reads originating from different parts of this rare community.
Regardless, long reads considerably improved Boothby et al.’s assembly, which resulted
in a larger tardigrade genome following the removal of non-target sequences. While
these results reiterate that the use of long-read libraries is essential to generate more
comprehensive assemblies, they also suggest that extra care should be taken to better
mitigate the presence of non-target sequences in assembly results when long-read libraries
are used for sequencing.
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We identified three near-complete bacterial genomes affiliated to Chitinophaga and
Thermosinus in Boothby et al.’s assembly (Fig. 1). Surprisingly, Boothby et al. identified
only a small portion of these complete bacterial genomes as sources of HGTs while applying
a metric specifically designed to detect foreign DNA in eukaryotic genomes. For instance,
none of the 4,459 genes in bacterial draft genome #2 (selection #3 in Fig. 1) were reported
in Boothby et al.’s findings as HGTs. We also processed and visualized the raw assembly
(nHd.1.0) from Koutsovoulos et al. (2016) using anvi’o (Fig. S1), and recovered eight
bacterial genomes. However, we found no taxonomical overlap between high-completion
bacterial genomes from the two sequencing projects (Table S1).

Interestingly, one bacterial genome (selection #2 in Fig. 1) was detected in DNA libraries
from both groups, as well as in the RNA-seq data, suggesting that the related bacterial
population was in all samples prior to the DNA/RNA extraction step. This genome is
affiliated to Chitinophaga, and harbors genes coding for chitin degradation and utilization
(Table S2). Chitin occurs naturally in the feeding apparatus of tardigrades (Guidetti et
al., 2015), and might be a source of carbon for its microbial inhabitants. The genome
also harbors genes coding for the biosynthesis of proteorhodopsin, host invasion and
intracellular resistance, dormancy and sporulation, oxidative stress, and tryptophan, which
is an essential amino acid for animals (Crawford, 1989; Zelante et al., 2013). Although this
genome may belong to a tardigrade symbiont, the generation of the data does not allow
us to rule out the possibility that it may be associated with the food source. Nevertheless,
this finding suggests that there may be cases where non-target genomes in an assembly can
provide clues about the lifestyle of a given host.

Best practices to assess bacterial contamination
Initial assessment of the occurrence of bacterial single-copy genes can provide a quick
estimation of the number of bacterial genomes that occur in assembly results (Supplemental
Information 1). The use of bacterial single-copy genes can give much more accurate
representation of potential bacterial contamination than screening for 16S rRNA genes
alone, as they are less likely to be found in co-assembly results (Miller et al., 2011; Delmont
et al., 2015). Although Boothby et al. (2015) reported the lack of 16S rRNA genes in their
assembly, anvi’o estimated that it contained at least 10 complete bacterial genomes
(Fig. 2) using a bacterial single-copy gene collection (Campbell et al., 2013). This simple
yet powerful step could identify cases of extensive contamination, and alert researchers
to be diligent in identifying scaffolds originating from bacterial organisms. Figure 2 also
summarizes the HMM hits in scaffolds found in curated tardigrade genomes from our
analysis and Koutsovoulos et al.’s study. We observed that the average significance score
for the remaining HMM hits for bacterial single-copy genes in curated genomes was 4.2
times lower in average compared to the HMM hits in assembly results (Table S3). The
decrease in the significance scores, and the very similar patterns of occurrence of HMM
hits between the two curation efforts suggest that some of the HMM profiles may not be
specific enough to be identified only in bacteria.

Two-dimensional scatterplots have a long history of identifying distinct genomes in
assembly results (Tyson et al., 2004) and continue to be used for delineating microbial
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Figure 2 Occurrence of the 139 bacterial single-copy genes reported by Campbell et al. (2013) across scaffold collections. The top two plots dis-
play the frequency and distribution of single-copy genes in the raw tardigrade genomic assembly generated by Boothby et al. (2015), and Koutsovou-
los et al. (2016), respectively. The bottom two plots display the same information for each of the curated tardigrade genomes. Each bar represents
the squared-root normalized number of significant hits per single-copy gene. The same information is visualized as box-plots on the left side of each
plot.

genomes in metagenomic assemblies (Albertsen et al., 2013; Cantor et al., 2015), as well
as detecting contamination in eukaryotic assembly results (Kumar et al., 2013). Although
scatterplots can describe the organization of assembled contigs, they suffer from limited
number of dimensions they can display, and their inability to depict complex supporting
data that can improve the identification of individual genomes. These limitations are
particularly problematic in sequencing projects covering multiple sequencing libraries,
where displaying mapping results from each library can help detecting sources of
contaminants. Despite their successful applications, two dimensional scatter plots limit
researchers to the use of simple characteristics of the data that can be represented on
an axis (such as GC-content). In contrast, clustering scaffolds, and overlaying multiple
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layers of independent information produce more comprehensive visualizations that display
multiple aspects of the data.

CONCLUSIONS

The field of genomics requires advanced computational approaches to take best advantage
of constantly evolving ways to generate sequencing data, and to identify and remove
contamination from genome assemblies. Our study indicates that some of these advanced
approaches may emerge from the field of metagenomics, where the need for de novo
reconstruction of microbial genomes from environmental samples has given raise to
techniques and software platforms that can make sense of complex assemblies. Here
we used k-mer frequencies to organize scaffolds, the occurrence of bacterial single-
copy genes to estimate the extent of contamination, and an advanced visualization
strategy to detect and remove contamination in a eukaryotic assembly project while
simultaneously characterizing the sources of contamination. Our results also suggest that
metagenomic binning strategies can be used to recover near-complete bacterial genomes
from raw eukaryotic assemblies, which can provide insights into the potential host-microbe
interactions during the curation step.
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