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Butterfly optimization algorithm (BOA) is a new swarm intelligence algorithm mimicking the behaviors of butterflies. However,
there is still much room for improvement. In order to enhance the convergence speed and accuracy of the BOA, we present an
improved algorithm SCLBOA based on SIBOA, which incorporates a logical mapping and a Lévy flight mechanism. -e logical
chaotic map is used for population initialization, and then the Lévy flight mechanism is integrated into the SCLBOA algorithm. To
evaluate the performance of the SCLBOA, we conducted many experiments on standard test functions. -e simulation results
suggest that the SCLBOA is capable of high-precision optimization, fast convergence, and effective global optimization, all of
which show that our method outperforms other methods in solving mathematical optimization problems. Finally, the BP network
is optimized according to the SCLBOA (SCLBOA-BP) to further verify the availability of the algorithm. Simulation experiments
prove the practicability of this method by building a Boston housing price prediction model for training.

1. Introduction

Inspired by human intelligence, the social behaviors of bi-
ological groups, or the laws of nature, many intelligence
optimization algorithms are developed to solve complex
optimization problems, which represents the applications of
artificial intelligence. As a subfield of artificial intelligence,
swarm intelligence requires effective computational
methods, as the algorithms themselves must show high levels
of adaptability to complex and constantly changing situa-
tions to find optimal solutions. -e metaheuristic methods
for the optimization problem are proved to be a good so-
lution [1].

General purposed metaheuristic methods are evaluated
in eight different groups which are biology based, swarm
based, math based, sport based, chemistry based, social
based, music based, and physics based. Furthermore, there
are hybrid methods that are a combination of these [1].
Genetic algorithm (GA) which solves both constrained and
unconstrained optimization problems that are based on
natural selection [2, 3], differential evolution (DE) which
optimizes a problem by iteratively improving a candidate
solution based on an evolutionary process [4], and slime
mould algorithm (SMA) which is an effective optimizer

motivated by slime behavior to tackle the optimization
problems [5] are biology based; particle swarm optimization
(PSO) which optimizes a problem by iteratively trying to
improve a candidate solution with regard to a given measure
of quality [6], cat swarm optimization (CSO) which is in-
spired by resting and tracing behaviors of cats [7, 8], grey
wolf optimization (GWO) which simulates the leadership
hierarchy and hunting mechanism of grey wolves in nature
[9], and Harris hawks optimization (HHO) which is a
gradient-free optimization algorithm with several active and
time-varying phases of exploration and exploitation [10] are
swarm based; sine cosine algorithm (SCA) which generates
various initial random solutions and asks them to shift
towards the best solution using a mathematical model [11] is
math based; war strategy optimization (WSO) which is
based on the strategic movement of army troops during the
war is sport based [12]; artificial chemical reaction opti-
mization algorithm (ACROA) which mimics chemical re-
action process is chemistry based [13]; teaching-learning-
based optimization (TLBO) which is based on the effect of
the influence of a teacher on the output of learners in a class
is social based [14]; harmony search algorithm (HS) which is
inspired by music to solve computationally involved opti-
mization paradigms is music based [15]. Chaos optimization
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algorithm (COA) which usually utilizes the chaotic map like
a logistic map to generate the pseudo-random numbers
mapped as the design variables for global optimization can
be classified as both math based and physics based [16, 17].

-ese primitive intelligent algorithms are simple and
easy to implement, with fewer parameters and shorter
running time.-erefore, it presents excellent operability and
optimization ability in solving many nonlinear and multi-
modal realistic optimization problems. BOA [18] was pro-
posed by Arora and Singh in 2018. -e method and concept
of this algorithm were first proposed at the 2015 Interna-
tional Signal Processing, Computing, and Control Confer-
ence (2015 ISPCC) [19]. After the algorithm was proposed,
the authors conducted a lot of research on BOA [20, 21]. In
the BOA algorithm, each butterfly has its own unique sense
and individual perception ability. -is is also a major feature
that differentiates it from other metaheuristics.

As a newly proposed natural heuristic algorithm, BOA,
like other intelligent algorithms, also has defects such as
convergence speed, and it is easy to fall into local optimum. In
response to the above problems,many scholars have proposed
different improvement strategies. Wang and Zhang [22] in-
troduced adaptive inertial weights and introduced multi-
segment perturbation strategies into the update of the optimal
nectar position, introduced the crazy factor into the position
formula to increase the population diversity, and proposed a
crazy butterfly algorithm based on adaptive perturbation
(CIBOA). Gao and Liu [23] first introduced the limit
threshold to limit the number of times BOA fell into the local
optimal solution and combined the simplex strategy to op-
timize the poorly positioned butterflies at the later stage of the
iteration to improve the performance of the algorithm. BOA
is a bionic swarm intelligence algorithm derived from sim-
ulating the foraging or courtship behavior of butterflies in
nature. It has successfully solved engineering design problems
[24], image segmentation [25], and data mining [26]. But
these optimizations are difficult to balance the system’s
computational power and exploration power.

-e SCLBOA algorithm differs from the traditional BOA
algorithm in that it is developed based on the SIBOA al-
gorithm with an integration of the logical chaotic map and
the Lévy flight mechanism. -is paper aims to balance the
exploratory capacity and exploitative capability of the
SCLBOA. -e major contributions of this study are sum-
marized as follows:

(i) -e method used for initializing the individuals of
the population is a chaotic sequence generated
based on logistic mapping, which exhibits higher
uniformity and diversity and helps to improve the
efficiency and quality of the solution.

(ii) -e Lévy flight mechanism is introduced in the
solution search to generate random steps. Ran-
domly smaller steps for long-distance and more
giant steps for short-distance are applied to prevent
the solution search from stagnating.

(iii) To balance the local search ability and global search
ability of the algorithm, individuals’ Lévy flight state

is adjusted periodically, and a limit range is set, both
of which are realized by changing the mathematical
function.

-e rest of the paper is organized as follows. Section 2
introduces related work and existing BOA and SIBOA al-
gorithms. Section 3 proposes a new SCLBOA algorithm and
introduces the improved algorithm in detail. Section 4 ex-
plains the solution quality and convergence performance of
benchmark functions. Section 5 uses SCLBOA as the
training algorithm for the BP network, that is, the SCLBOA-
BP network predicts Boston housing prices. Section 6
provides an in-depth analysis of the method proposed in this
paper. Section 7 depicts the main works in this study and
gives some suggestions for future research.

2. Related Research Works

2.1.BOA. BOA [18, 19] is a metaheuristic algorithm inspired
by natural organisms, which simulates the foraging and
mating behavior of butterflies. In order to determine the
potential direction of mating objects and food sources,
butterflies judge by a certain concentration of aroma in the
air. -e scent intensity is determined by each butterfly and
directly determines the fitness of the butterfly to find the
best, so the fitness of the butterfly will vary according to the
change of position. -e global search in BOA is that the
butterflies in the population move towards the target in-
dividual that emits fragrance, and the local search is the
random movement of butterflies when they do not perceive
the fragrance of other individuals. -e concentration of the
butterfly’s fragrance depends on the following three factors:
sensory factor, stimulation intensity, and power index. -e
equation is as follows:

f � cI
a
, (1)

where f is the scent concentration, c is the sensory factor,
usually taking the value of 0.01, a is a power exponent that
depends on f, usually taking the value of 0.1, and I is the
stimulus intensity, which is related to the optimal fitness.

Before BOA begins a local search and global search, the
algorithm will randomly generate the positions of the
population individuals and generate their respective fra-
grances accordingly.

In the common global search stage, when a butterfly
senses the smell of other butterflies, it moves towards the
current global optimal position gbest. xt

i is the position vector
of the i-th butterfly in the t-th iteration, which is the part of
its own cognitive flight; fi is the scent size of the i-th
butterfly; r1 is a random number in [0,1].

x
t+1
i � x

t
i + fi r

2
1gbest − x

t
i􏼐 􏼑. (2)

In another case when a butterfly cannot sense the smell
of its nearby environment, it moves randomly. Intensive
local search updates as equation (3). Among them, xt

j, xt
k are

the j-th butterfly and the k-th butterfly randomly selected
from the solution space; r2 is a random number in [0,1].
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x
t+1
i � x

t
i + fi r

2
2x

t
j − x

t
k􏼐 􏼑. (3)

In the butterfly foraging process, the switching proba-
bility P � 0.8 controls whether the algorithm is in the dense
local search or the ordinary global search stage. Each iter-
ation compares the switch probability P and the size of a
random number r3 to decide whether to perform a global
search or a local search. -e final update formula of the
butterfly algorithm is as follows:

x
t+1
i �

x
t+1
i � x

t
i + fi r

2
1gbest − x

t
i􏼐 􏼑, r3 <P,

x
t+1
i � x

t
i + fi r

2
2x

t
j − x

t
k􏼐 􏼑, r3 ≥P.

⎧⎪⎨

⎪⎩
(4)

2.2. SIBOA. In the butterfly optimization algorithm, the
position of the nectar source of the population plays an
important role as it guides the individual butterfly tomove to
the optimal solution. However, if the population falls into
the local optimal position, it will easily cause the search to
stop in the group, and a better global optimization cannot be
obtained. -erefore, in order to balance the ability of local
search and global search of BOA, SIBOA [27] introduces the
sine cosine operator in its own cognitive flight part:

x
t+1
i �

x
t+1
i � x

t
ir4 sin r5 + fi r

2
1gbest − x

t
i􏼐 􏼑, r3 <P,

x
t+1
i � x

t
ir4 cos r5 + fi r

2
2x

t
j − x

t
k􏼐 􏼑, r3 ≥P,

⎧⎪⎪⎨

⎪⎪⎩

r4 � 2 − 2
t

Maxiter
􏼠 􏼡,

r5 � 2π · rand,

(5)

where t represents the current number of iterations;
Max_iter represents the maximum number of iterations; r1,
r2, r3 represent a random number within [0, 1]; P is the
switching probability, which determines the choice of al-
gorithm update formula; r4 is the control parameter, which
determines the location area of the i-th butterfly individual
in the next iteration; r5 is a random number in [0,2π], which
defines whether the current solution should be close to the
target or far away from the target; and r4 sin r5 and r4 cos r5
jointly control the algorithm for local search and global
search. When the value of r4 sin r5 and r4 cos r5 is greater
than 1 or less than −1, develop different areas for global
search. When it is between −1 and 1, develop the desired
search space for local search.

In SIBOA, the scent size changes with the degree of
butterfly absorption, which is realized by the power index
parameter a. -e behavior of the individual butterfly in the
control algorithm affects the convergence speed and opti-
mization accuracy of the entire algorithm. When a� 1, it
means that no fragrance is absorbed, which means that the
fragrance is spread in an ideal environment. -e fragrance
emitted by the butterfly can be felt from anywhere in the
search domain, and the global optimal value can be easily
obtained. a� 0 means that the fragrance of any butterfly
cannot be detected by other butterflies. -erefore, in the

original BOA, the power exponent a that depends on the
scent size f is set to a specific value of 0.1, which results in
poor optimization performance. -erefore, a in SIBOA
adopts the following calculation formula:

a � amax amax − amin( 􏼁
Max iter − t

Max iter
􏼒 􏼓, (6)

where amax, amin represent the maximum and minimum
power exponent coefficients, respectively. -e value of a
decreases linearly from 0.3 to 0.01, which can effectively
adjust the butterfly’s absorption of fragrance, which is
convenient for the individual butterfly to perform better
local search and global search and improves the accuracy of
convergence.

3. Fusion of Logistic Chaotic Mapping and Lévy
Flight Sine-Cosine Butterfly Optimization
Algorithm (SCLBOA)

3.1. Logistic Chaotic Map Initialization. Studies have shown
that the initialization of the population has a certain impact
on the performance of the algorithm. As the chaotic se-
quence can be easily generated, it has attracted significant
attention from researchers. Recently, chaotic ensemble
optimization has been adopted in many studies[28, 29].
Richards et al. were the earliest ones who proposed such
insights [30]. A slight difference in the initial state of a
nonlinear system will lead to very different state develop-
ment and change. -e development and change of the
position of the population are chaotic, and different initial
positions will produce very different solutions. If the initial
population is better, it will improve the solution efficiency
and the quality of the solution, so the population individuals
should be uniformly initialized in the solution space as much
as possible.

-e initialization process of the basic BOA is random.
However, based on the sine operator introduced in SIBOA,
the improvement of SCLBOA uses the logistic mapping in
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Figure 1: Logistic map bifurcation.
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the chaotic sequence to initialize the position and velocity of
the butterfly due to the chaotic sequence. -ose with
nonrepetitive ergodicity and pseudo-random characteristics
can help increase the diversity of the population.

Logistic mapping is currently the most widely used
nonlinear dynamics discrete chaotic mapping system. Its
mathematical model is defined as follows:

xi+1 � S xi( 􏼁 � αxi 1 − xi( 􏼁, i � 1, 2, 3, · · ·{ }, (7)

where xi is the input and xi+1 is the output, both of which are
the state values of the logistics mapping; α represents system
control parameters; and S(xi) is the logistic mapping be-
tween variable xi and control parameter α. Logistic mapping
is used to generate chaotic variables to describe position and

Start

Initialization parameters

Initialize population positions and
velocities using logistic chaotic mapping

Calculate the fitness value of the individual butterfly
and record the current optimal individual position

Select the nectar source, and calculate the
scent size according to formula (1)

Rand < P ?

According to formula (5)
ordinary global search

According to formula (5) 
dense local search

Perform levy flight mechanism
according to formula (8-10)

Calculate the new fitness value and update the
global optimal position 

Does it meet the
Conditions ?

end

Yes

Yes No

No

Figure 2: SCLBOA algorithm flowchart.
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velocity. At this time, the chaotic position variables gen-
erated have better ergodicity.

Figure 1 shows the bifurcation diagram of logistic
mapping.

When x takes a value between [0, 1] and α takes a value
between [2, 4], the logistic map bifurcation graph is shown
above. When α=3.569945672, it enters the chaotic state.

3.2. Lévy Flight Mechanism. -e SCLBOA proposed in this
paper not only uses the logistics chaotic map but also in-
troduces the Lévy flight mechanism [31, 32]. -e Lévy flight
search strategy is mainly used to generate random steps,
similar to a random walk, where the solution search moves
towards a completely random direction at every step.

-e characteristic performance of the Lévy flight
mechanism is similar to the global search and local search
features in the intelligent optimization algorithm. In one
case, it repeatedly walks randomly with a small step size over
a long distance to ensure that it can enter another area and
search in a wider range. In another case, the direction
mutation jump is occasionally performed in a short distance
with a large step size, to ensure that the individual carefully
searches the small area around itself. Its step size satisfies the
form of power-law distribution, which can be expressed as
follows:

Levy(x) � 0.01
rσ

r
(1/ξ)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (8)

σ �
Γ(1+ ξ) · sin(πξ/2)

Γ (1+ ξ)/2 · ξ · 2((ξ−1)/2)
􏼐 􏼑

⎛⎝ ⎞⎠ where Γ(x) �(x − 1)!,

(9)

where r is a random number in the range of [0, 1] and the
value of ξ is set to 1.5.

In this paper, the experiment sets the limit range. When
it is less than 1/5 of the population, the Lévy flight strategy is
introduced to improve the global search ability; when it is
greater than 1/5 of the population, the butterfly updates its
position compared with the worst value. -e core idea is to
change the individual state of the butterfly population
through the change of mathematical functions, increase the
diversity of the population, and improve the global search
ability. -e updated position formula after introducing Lévy
flight is as follows:

x
t+1
i �

Q · exp
x

t
worst − x

t
i􏼐 􏼑

i
2

⎛⎝ ⎞⎠,
i> popsize

5
,

x
t
pbest + x

t
pbest ⊗Levy(dim), other.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

Table 1: Benchmark functions.

Name Formula of functions Ranges Type fmin

Step F1(x) � 􏽐
dim
i�1 (xi + 0.5)2 [−10, 10] U 0

Exponential F2(x) � exp(0.5􏽐
dim
i�1 xi) [−10, 10] U 0

Rosenbrock F3(x) � 􏽐
dim
i�1 (100(xi+1 − x2

i ) + (xi − 1)2) [−5, 10] U 0

Trid F4(x) � (xi − 1)2 + 􏽐
dim
i�1 i · (2x2

i − xi− 1)
2 [−10, 10] U 0

Alpine F5(x) � 􏽐
dim
i�1 |xi · sin(xi) + 0.1xi| [−10, 10] M 0

Penalized2
F6(x) � 1/10 sin2(πx1) + 􏽘

dim−1

i�1
(xi − 1)

2
[1 + sin2(3πxi+1)] + (xdim− 1)

2
[1 + sin2(2πxi+1)]

⎧⎨

⎩

⎫⎬

⎭

+ 􏽐
dim

i�1
u(xi, 5, 100, 4)

[−100, 100] M 0

Schwefel F7(x) � 􏽐
dim
i�1 |xi · sin(

���
|xi|

􏽰
)| [−100, 100] M 0

Lévy F6(x) � sin2(3πxi) + 􏽘

dim−1

i�1
(xi − 2)

2
[1 + sin2(3πxi+1)]+

|xdim − 1| · [1 + sin2(2πxdim)]

[−10, 10] M 0

Table 2: Parameter setting of each algorithm.

Algorithm Main parameter setting
PSO c1 � c2 � 1; Vmax � 2; Vmin � −2; w � 0.3
DE βmax � 0.8; βmin � 0.2; PCR � 0.2
SCA a � 2
BOA P � 0.8; a � 0.1; c � 0.01
SIBOA P � 0.8; a � 0.1; c � 0.01; amax � 0.3; amin � 0.01; β � 0.5
HHO β � 0.5
SCLBOA P � 0.8; a � 0.1; c � 0.01; amax � 0.3; amin � 0.01; β � 0.5
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Table 3: 30-dimensional analysis of experimental results.

Function Algorithm Best Worst Avg Std

F1

PSO 181.0466 307.1147 254.8166 46.0806
DE 33.9266 49.3303 44.5132 6.3153
SCA 23.9701 70.5908 41.5468 21.2888
BOA 21.4097 23.1179 22.4268 0.6297
SIBOA 17.6355 21.6636 19.7345 1.6576
HHO 10.6009 17.8826 14.6023 2.7722

SCLBOA 2.442E− 05 3.2606E− 05 2.7866E− 05 2.9876E− 06

F2

PSO 9.0741E− 44 2.0754E− 31 4.1508E− 32 9.2814E− 32
DE 5.9582E− 12 5.2214E− 11 2.3922E− 11 2.0591E− 11
SCA 2.6114E− 98 6.7331E− 95 1.5011E− 95 2.9398E− 95
BOA 1.3086E− 55 5.9319E− 20 1.1864E− 20 2.6528E− 20
SIBOA 1.4789E− 74 7.6676E− 53 1.5335E− 53 3.4291E− 53
HHO 7.1246E− 218 7.1246E− 218 7.1246E− 218 0

SCLBOA 1.6537E− 216 6.728E− 216 4.6404E− 216 0

F3

PSO 140239.9167 243377.7711 195488.8397 44764.0715
DE 11839.8713 35188.7375 23764.3119 10714.2515
SCA 2277.7938 290472.4339 99063.1951 118202.1576
BOA 98.8842 98.9504 98.9070 0.0265
SIBOA 98.8251 98.9378 98.8675 0.0422
HHO 98.5189 98.6574 98.5958 0.0521

SCLBOA 0.0571 0.0837 0.0749 0.0103

F4

PSO 35632.7692 67202.0223 46545.5662 12160.8160
DE 3852.1301 13770.3416 8823.3375 4093.7086
SCA 330.1615 39322.9625 9019.2035 17021.1627
BOA 0.9985 0.9993 0.9989 0.0003
SIBOA 0.9950 0.9979 0.9965 0.0011
HHO 0.9989 1.0000 0.9997 0.0005

SCLBOA 0.2526 0.2533 0.2528 0.0003

F5

PSO 52.5303 93.1237 75.2543 15.8363
DE 0.9282 0.9851 0.9639 0.0228
SCA 2.0739 11.6098 5.3512 3.8515
BOA 0 0 0 0
SIBOA 0 0 0 0
HHO 0 0 0 0

SCLBOA 0 0 0 0

F6

PSO 2.6915 4.3265 3.6479 0.7616
DE 1.5783 2.5096 2.1159 0.3542
SCA 1.1047 1.5366 1.3326 0.1570
BOA 0.8182 1.0525 0.9715 0.0915
SIBOA 0.5146 0.7051 0.6039 0.0789
HHO 0.1357 0.6058 0.2748 0.1915

SCLBOA 3.0132E− 07 7.0776E− 06 1.8989E− 06 2.9017E− 06

F7

PSO 23.6924 30.0171 26.6267 2.6927
DE 5.7179 8.8331 7.5446 1.2827
SCA 9.8780 10.7831 10.2416 0.3511
BOA 9.9811 9.9942 9.9879 0.0049
SIBOA 9.9762 9.9935 9.9837 0.0064
HHO 2.9914 7.4718 5.4866 2.2858

SCLBOA 1.995E− 07 6.4009E− 06 3.6767E− 06 2.4289E− 06

F8

PSO 65.2500 96.4219 80.7352 13.9351
DE 22.6352 30.5916 27.4761 3.0171
SCA 55.6301 64.542 60.6603 3.9797
BOA 47.4816 63.2023 58.2287 6.3632
SIBOA 28.5665 53.8007 44.8094 9.8536
HHO 1.1811 39.8297 9.7527 16.8752

SCLBOA 9.8249E− 06 2.8067E− 05 1.8968E− 05 7.7381E− 06
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Table 4: 100-dimensional analysis of experimental results.

Function Algorithm Best Worst Avg Std

F1

PSO 166.3619 205.7117 184.3892 16.3906
DE 40.1283 48.2946 43.8668 3.3597
SCA 21.3722 32.4426 24.5616 4.5361
BOA 20.9834 22.6447 22.0810 0.7283
SIBOA 10.9430 16.1625 14.2100 2.3283
HHO 4.2899 7.8830 6.4240 1.4162

SCLBOA 6.5225E− 08 3.2177E− 07 2.2888E− 07 9.7767E− 08

F2

PSO 3.8062E− 60 5.3637E− 37 1.0727E− 37 2.3987E− 37
DE 3.4098E− 14 6.842E− 12 3.3576E− 12 2.9254E− 12
SCA 1.0787E− 110 2.316E− 100 6.051E− 101 1.0042E− 100
BOA 1.8496E− 72 2.0661E− 36 4.1322E− 37 9.2399E− 37
SIBOA 9.9255E− 93 6.7142E− 79 4.0286E− 79 3.6774E− 79
HHO 7.1246E− 218 7.1246E− 218 7.1246E− 218 0

SCLBOA 1.2383E− 216 2.056E− 216 1.4769E− 216 0

F3

PSO 90692.9315 140515.2230 118456.9363 20760.1363
DE 9871.3375 20299.4107 13178.9125 4327.3757
SCA 620.2451 55904.5248 22780.9838 23313.5681
BOA 98.8360 98.9177 98.8696 0.0328
SIBOA 98.5826 98.7606 98.6448 0.0695
HHO 98.2441 98.2830 98.2658 0.0173

SCLBOA 0.0006 0.0008 0.0007 7.2565E− 05

F4

PSO 21127.2238 32223.9219 26148.6597 4345.0129
DE 6282.9754 9259.7245 7784.3796 1258.2453
SCA 238.3159 4856.4503 1888.1436 1896.3551
BOA 0.9981 0.9988 0.9984 0.0003
SIBOA 0.9866 0.9919 0.9887 0.0021
HHO 0.9985 1.0000 0.9997 0.0007

SCLBOA 0.2499 0.2500 0.2500 2.7724E− 05

F5

PSO 19.1422 25.6965 22.2168 2.3686
DE 0.8677 0.9558 0.9204 0.0328
SCA 0.3738 2.5592 1.2125 0.8094
BOA 0 0 0 0
SIBOA 0 0 0 0
HHO 0 0 0 0

SCLBOA 0 0 0 0

F6

PSO 2.1051 2.5453 2.3114 0.2214
DE 1.5428 2.0325 1.7948 0.2451
SCA 0.9820 1.2824 1.0960 0.1627
BOA 0.7780 0.9038 0.8356 0.0635
SIBOA 0.2969 0.3963 0.3317 0.0560
HHO 0.0313 0.1258 0.0673 0.0512

SCLBOA 1.9045E− 09 2.2081E− 09 2.0529E− 09 1.5192E− 10

F7

PSO 16.3137 22.2838 19.1493 2.9963
DE 5.0175 6.9523 6.2227 1.0514
SCA 9.7129 10.6423 10.2291 0.4732
BOA 9.9769 9.9950 9.9841 0.0096
SIBOA 9.9536 9.9616 9.9573 0.0040
HHO 0.8146 2.4986 1.5703 0.8552

SCLBOA 1.1533E− 08 1.7277E− 07 9.3842E− 08 8.067E− 08

F8

PSO 51.8956 63.0998 58.4043 5.8180
DE 18.7263 27.7898 22.0143 5.0177
SCA 49.7574 63.8980 55.1068 7.6729
BOA 46.4013 50.9537 48.1928 2.4261
SIBOA 16.8091 25.6142 21.6965 4.4820
HHO 0.3503 18.5150 6.7313 10.2167

SCLBOA 2.5586E− 08 1.2642E− 07 8.7767E− 08 5.4379E− 08
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Figure 3: Continued.
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3.3. Algorithm Steps. -e specific steps of SCLBOA are as
follows:

Step 1. Initialize parameters. Use logistic mapping to
chaotically initialize the population position within the
boundary range to ensure that the initial position
traversal is distributed in the search space.
Step 2. Calculate the initial fitness value. Calculate the
fitness value of the individual butterfly according to the
test function.
Step 3. Select the source of nectar.-e butterfly position
with the best fitness value is selected as the nectar
source position, and the fragrance size is calculated
according to formula (1).
Step 4. Update the butterfly position. In order to reduce
the influence of external environmental factors,
according to (2)formulas –(4) and the random number
P, it is judged whether the current iteration is per-
forming a global search or a local search. -e position
update formulas (5) and (8)–(10) use the sine cosine
operator and the Lévy flight mechanism.
Step 5. Calculate the fitness value and update the op-
timal position. Compare the target value of the current
individual of the butterfly with the previous individual
and replace it if it is superior.
Step 6. Repeat the iterative process of Step 4 and Step 5.
If the set accuracy requirements or the specified
maximum number of iterations are reached, the al-
gorithm is terminated and the global optimal solution is
output.

3.4. SCLBOA Flowchart. According to the description of
SIBOA improvement in Section 3, the specific imple-
mentation process of SCLBOA is shown in Figure 2.

When running the SCLBOA algorithm, the initialization
is performed first, and then the iterative search is performed,
and in the final phase, the algorithm running terminates until
the optimal solution is found. In the initialization stage, by
initializing the position of the population through chaotic
logic mapping, the algorithm defines the target function and
its solution space and records the optimal position of indi-
viduals while calculating the individual fitness value. At the
multiple-iteration stage, individual butterflies in the solution
space move and update their positions following the Lévy
flight mechanism, thereby evaluating their fitness values.
When the maximum number of iterations is completed, the
iteration ends, and the algorithm outputs the optimal solution
with the highest fitness value. -e above steps constitute the
whole procedure of the SCLBOA algorithm.

4. Experimental and Result Analysis

In this section, to find the optimal solution, the exploratory
and exploitative capacity of the proposed method is ex-
amined by eight typical standard test functions in different
dimensions. Also, six algorithms (i.e., PSO, DE, SCA, BOA,
SIBOA, and HHO) are adopted to verify and compare the
performance of the proposed algorithm. -e starting search
points of the algorithms selected for the comparison were
the same for all the algorithms, and the simulations were
performed in the same situations.

4.1. Benchmark Functions. -e benchmark functions F1∼F8
include functions with different characteristics such as
unimodal and multimodal. -e unimodal function only has
a strict maximum value (or minimum value) within defined
upper and lower limits, which is usually used to detect the
convergence speed of the algorithm. -e multimodal
function is a function containing multiple locally optimal
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Figure 3: 30-dimensional convergence curve of benchmark function. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f ) F6. (g) F7. (h) F8.
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Figure 4: Continued.
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solutions or global optimal solutions and is often used to
detect algorithm exploration and development capabilities.
-e specific expression, dimension, value range, function
type, and optimal value of the theoretical value of the
function are shown in Table 1.

4.2. Algorithm Parameters. -e parameter settings of each
algorithm are shown in Table 2.

4.3. Development Environment. -e software and hardware
environment of the experimental platform of numerical
simulation includes MatlabR2018b and Windows10, the
main frequency of the machine is 2.00GHz, and the memory
is 8GB.

In order to avoid contingency, all the algorithms are
independently run in 50 comparative experiments on
MatlabR2018b. -e highest, lowest, average, and standard
deviation of each function are calculated. -e maximum

number of iterations is set to 5000. -e results are shown in
Tables 3 and 4.

4.4. Experiments to Analyze the Optimality. -e bold part in
Tables 3 and 4 shows the optimal solution derived by the
algorithm iteration under the same experimental conditions.
And the optimal solutions searched by the F2 and HHO are
smaller than those searched by the SCLBOA. SIBOA shows
premature stagnation in F5. To sum up, the SCLBOA excels
other algorithms on the benchmark function. In this ex-
periment, just the single-modal and multimodal mathe-
matical functions of the benchmark functions are adopted to
do a model evaluation, and future experiments are suggested
to incorporate composite functions.

4.5. Experimental Convergence Analysis. -e eight standard
test functions in Table 1 are solved by the seven algorithms,
and their fitness function value curves are shown in Figures 3
and 4. -e horizontal axis represents the maximum number
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Figure 4: 100-dimensional convergence curve of benchmark function. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f ) F6. (g) F7. (h) F8.
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of iterations in the program running and the vertical axis
stands for the corresponding fitness values. It can be seen
from the figure that the convergence of the SCLBOA al-
gorithm proposed in this paper is significantly better than
other algorithms, which shows that the solution accuracy of
the proposed algorithm has been significantly improved.

5. SCLBOA-BP Network Predicts Boston
Housing Prices

5.1. BP Network. BP network [33, 34] is a multilayer feed-
forward neural network that includes two processes which
are input signal forward and error backpropagation. -e
structure is generally composed of an input layer, hidden
layer, and output layer [35, 36]. -e neuron state of each
layer only affects the neuron state of the next layer. It is
widely used in various prediction models.-e dimensions of
the input and output vectors of the training samples would
determine the number of neural nodes in the input and
output layers of the network, respectively. A typical BP
neural network structure with only a single hidden layer and
a single output is shown in Figure 5.

In Figure 5, xi � (x1, x2, x3, · · · , xn) is a set of input
vectors of the BP network; y is the target output value of the
network; wij is the connection weight between the input

layer and the hidden layer; wj1 is the connection weight
between the hidden layer and the output layer; and aj and b
are the node thresholds of the hidden layer and output layer,
respectively. If the number of hidden layer nodes is m, then
j� 1,2,3, . . .,m. In the forward pass, the input signal vector xi

is first transmitted layer by layer from the input layer to the
hidden layer and then finally to the output layer, connecting
the weight vector and the threshold vector sum through each
layer and calculating the corresponding activation function
of each layer to get the predicted output value Y of the output
layer. On the other hand, if an error occurred between the
predicted value Y and the target value y, the error part would
be transferred to the reverse layer-by-layer transmission, and
the weights and thresholds of the network layers would be
adjusted in the direction of reducing the error.

5.2. SCLBOA-BPNetwork. -is section explains how we use
the SCLBOA to train the BP network. In the SCLBOA al-
gorithm, the position of each butterfly in the butterfly group
represents a set of weights in the current iteration of the BP
network, and the dimension of each butterfly represents the
number of weights that play a role in the network. Mean-
while, it takes the neural network output error of a given
training sample set as the fitness function of the neural
network training problem. -e fitness value represents the
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Figure 6: Comparison of prediction errors of BP and BOA-BP networks.
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error threshold of the neural network. -e smaller the error
is, the better performance in the search will be. In the weight
space, butterflies would move and search, which reduces the
MSE of the output layer of the network. -us, in this way,
SCLBOA optimizes the search and training of the weight of
the neural network to obtain a smaller output error, and in
each iteration process, it would calculate andmove towards a
new position. -e new position will be a new set of weights,
and then a new MSE is obtained according to the set of
weights, and the individual with the smallest MSE would be
the current global optimal solution. Repeat the above pro-
cess to make the predicted value of BP neural network
approach the actual output value.

5.3. Boston Housing Price. -is SCLBOA-BP network is
trained and tested on the Boston house price dataset. -e
model’s performance and predictability are evaluated. It is
expected that this model can be used for in-house price
estimation to improve the efficiency of real estate agents.-e
initial parameters of the SCLBOA-BP network are deter-
mined as follows. -e group scale is 50; the maximum
number of iterations Max_itera is 30; the number of input
nodes is 13; the number of output nodes is 1; the number of
hidden layer nodes is 13; the number of weights is
13×13+13×1 = 182; the number of thresholds is 13+1 = 14.
-e previous 50 sets of data are used as the test set, and the

remaining 456 sets of data are used as the training set to train
and test the Boston housing price prediction model.
-erefore, the entire input vector is a 13× 506 matrix. At the
same time, BP, BOA-BP, and SCLBOA-BP prediction
models are trained to predict the test set, compare the
prediction results, and perform performance analysis.

Figure 6 shows the visual comparison of the BP network
predicted value and the true value before and after BOA
optimization. In the meantime, Figure 7 shows the visual
comparison of the BP network predicted value and the true
value before and after SCLBOA optimization and the error
results between them. At the same time, Table 5 presents the
numerical comparison of the predictive evaluation indica-
tors, where MAEG, MSEG, RMSEG, and MAPEG represent
the average absolute error, mean square error, standard
error, and average absolute percentage error in the test set,
respectively, and MSET represents the mean square error in
the training set.
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Figure 7: Comparison of prediction errors of BP and SCLBOA-BP networks.

Table 5: Error results.

Predictive evaluation index BP BOA-BP SCLBOA-BP
MAEG 3.252 2.5572 2.2617
MSEG 17.6617 10.207 7.4199
RMSEG 4.2026 3.1948 2.724
MAPEEG 19.6249% 15.0638% 11.0334%
MSEG 0.011434
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As shown in the simulation results, the SCLBOA algo-
rithm proposed in this paper can train the BP network to
avoid the inability of finding the optimal solution in the BP
training process due to the defects of the BOA itself and to
avoid the algorithm from premature convergence to obtain
smaller prediction error.

6. Discussion

-emajor issue in metaheuristic algorithms is being stuck in
local optima. -e solution search performance of the
SCLBOA algorithm is tested on different functions, and the
results we obtained are compared with those of other six
well-established metaheuristic algorithms (i.e., PSO, DE,
SCA, BOA, SIBOA, andHHO), and obtained results confirm
the superiority of the proposed algorithm compared to the
other metaheuristic algorithms. -e real-life optimization
problem, house price forecasting, is solved with the help of
the newly proposed algorithm.

From the performed convergence analysis of
SCLBOA, we confirm that the algorithm will guarantee
convergence, but the rate of convergence is still influenced
by several factors. Since the experiment is mainly to verify
the effectiveness of the algorithm, the calculation time test
of the algorithm is lacking, and the algorithm can be
further optimized and tested in the future. Another
strategy is the combination comparison of the proposed
method to see if there is synergy between different
strategies.

7. Conclusion

Butterfly optimization algorithm (BOA) has gained huge
popularity among the research community and is being used
to solve optimization problems in various disciplines. -e
SCLBOA algorithm proposed in this paper combines lo-
gistics chaotic mapping and Lévy flight mechanism based on
the SIBOA. -e simulation results show that the conver-
gence speed of the algorithm is greatly improved, and the
problem of the defect that is easy to fall into local optimality
is significantly eliminated. Using SCLBOA as the training
algorithm of the BP network, the SCLBOA-BP network is
applied to train the Boston housing price prediction model,
which verifies the practicability of the SCLBOA-BP network.
It is noteworthy that the SCLBOA algorithm works well on
the Boston house price dataset. It is recommended that
future research evaluate the performance of this algorithm
on real-life optimization problems.
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website: https://www.kaggle.com/schirmerchad/bostonh
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