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Abstract: Muskox (Ovibos moschatus), as the biggest herbivore in the High Arctic, has been enduring
the austere arctic nutritional conditions and has evolved to ingest and digest scarce and high ligni-
fied forages to support the growth and reproduce, implying probably harbor a distinct microbial
reservoir for the deconstruction of plant biomass. Therefore, metagenomics approach was applied to
characterize the rumen microbial community and understand the alteration in rumen microbiome of
muskoxen fed either triticale straw or brome hay. The difference in the structure of microbial commu-
nities including bacteria, archaea, fungi, and protozoa between the two forages was observed at the
taxonomic level of genus. Further, although the highly abundant phylotypes in muskoxen rumen fed
either triticale straw or brome hay were almost the same, the selective enrichment different phylo-
types for fiber degrading, soluble substrates fermenting, electron and hydrogen scavenging through
methanogenesis, acetogenesis, propionogenesis, and sulfur-reducing was also noticed. Specifically,
triticale straw with higher content of fiber, cellulose selectively enriched more lignocellulolytic taxa
and electron transferring taxa, while brome hay with higher nitrogen content selectively enriched
more families and genera for degradable substrates-digesting. Intriguingly, the carbohydrate-active
enzyme profile suggested an over representation and diversity of putative glycoside hydrolases (GHs)
in the animals fed on triticale straw. The majority of the cellulases belonged to fiver GH families
(i.e., GH5, GH6, GH9, GH45, and GH48) and were primarily synthesized by Ruminococcus, Piromyces,
Neocallimastix, and Fibrobacter. Abundance of major genes coding for hemicellulose digestion was
higher than cellulose mainly including GH8, GH10, GH16, GH26, and GH30, and these enzymes were
produced by members of the genera Fibrobacter, Ruminococcus, and Clostridium. Oligosaccharides
were mainly of the GH1, GH2, GH3, and GH31 types and were associated with the genera Prevotella
and Piromyces. Our results strengthen metatranscriptomic evidence in support of the understanding
of the microbial community and plant polysaccharide response to changes in the feed type and host
animal. The study also establishes these specific microbial consortia procured from triticale straw
group can be used further for efficient plant biomass hydrolysis.

Keywords: muskoxen rumen; metatranscriptomics; microbiome; triticale straw; brome hay

1. Introduction

It is well established that the bioconversion of feed stuffs and energy outflow are syn-
ergistically conducted by various microbial populations dwelling in the rumen, including
prokaryotes (bacteria and archaea) and eukaryotes (protozoa and fungi), with approximate
80% of the degradative activity contributed by bacteria and fungi, and 20% by protozoa [1].
Those microbial populations are featured by the high population density, vast diversity,
diverse metabolic activities, and complexity of interactions [2–4], and mainly affected
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by feed types [5–7]. Many microbes have been individually characterized and function-
ally grouped into lignocellulolytic [8], electron transferring [9,10], proteolytic, amylolytic,
lipolytic [11], and volatile fatty acid (VFA) producing subpopulation [12], which provided
genetic information and fill the existing taxonomic information [9]. More important, these
organisms produce a range of enzymes collectively known as glycoside hydrolase (GH)
attributed for celluloses, hemicelluloses, and oligosaccharides deconstruction. Accordingly,
rumen can be used as an excellent niche for exploring GH to be used in economic and
efficient conversion of plant biomass to biofuels and other value-added products.

The symbiotic microbial communities residing inside the rumen are characteristic of
both, the concerned animal species, and their diet. In the High Arctic, Muskoxen (Ovibos
moschatus) as the largest herbivore has been enduring the austere arctic nutritional condi-
tions and has evolved to ingest and digest scarce and high lignified forages to support the
growth and reproduction [13,14]. Recently, there are more attentions focused on herbivores
in the Arctic aiming at exploring the microorganism reservoir in their rumen [15–18], for
seeking novel microbes or mechanisms may involve in the bioconversion of high fiber
forages into microbial biomass, energy, or biofuel. For example, more lignocellulolytic
enzymes in muskoxen rumen are transcript than in other well-known high fiber material
fermenters such as macropod foregut, bovine rumen, and termite hindgut, and sequence
annotation of putative protein encoding reads reveals that 63.8% of the sequences has been
unknown and only small proportion of 14.4%, 6.8%, 3.4%, and 0.1% of sequences has been
hit to fungi, protozoa, bacteria, and archaea, respectively [19]. Moreover, multiple-library
comparisons between muskoxen and other ruminants have indicated that bacteria and
archaea in the fecal sample of Norwegian muskoxen show more differences with those
of other arctic ruminants and domesticated ruminants [18]. Dietary interventions and
nature of the forage provided to the host have also been proposed to influence rumen
microbiome for improved feed digestibility. For muskoxen, two high lignified forages of
triticale straw and brome hay both as the main forage could be used to mimic the arctic
forages and induce the metabolically active microbes due to their different in the fiber
content. Collectively although studies have been conducted to investigate the microbiome
of muskoxen, insights into the global microbial community and the effects of forage types
on the rumen microbiome and glycoside hydrolase profile are still unavailable.

Application of small subunit (SSU) rRNA gene sequence analysis have demonstrated
the inability of culture-dependent methods due to failed to discover the whole microbial
structure and underestimate the diversity of the entire microbiota. Up to now, most of the
investigations on the structure and composition of rumen microbiota have been conducted
using SSU rRNA gene sequencing based on DNA-derived amplicons, such as prokary-
otes [17,20,21], eukaryotes [22–24], and smaller taxonomic group [25]. This strategy could
decipher the comprehensive diversity of primers-targeted groups including both the living
and inactive microorganisms; however, it can’t reflect that the active microbial community
changes corresponding to the environmental shifting. Although the modified strategy
based on RNA-derived amplicons could describe the potential biological activity of the
rumen microbial community in real time [26,27], it still fails to simultaneously investigate
the prokaryotic and eukaryotic populations and inevitably introduce primer bias in PCR
step [28,29]. In this context, metatranscriptomics could reveal the structure and diversity
of active microbial community and metabolic pathways depending on the type of RNA,
total RNA [30,31] or enriched mRNA [19,32,33] that used in sequencing library preparation.
Given that the abundance of non-coding RNA accounts for approximately 99 % of total
RNA, and the dominant comes from rRNA, metatranscriptomics based total RNA allows
robust and simultaneous assessment of the metabolically active microbiome, with no need
for prior selection of taxonomic groups for study. It also avoids PCR bias and can be straight-
forwardly carried out through a multiple sample and parallel sequencing approach [30]. In
the view of the above, comparative metatranscriptomics was used for sequencing rumen
metagenomes of muskoxen. The results enrich our information on the relationship between



Microorganisms 2022, 10, 71 3 of 19

fiber digestion and microbial communities of livestock to improve the utility of rumen
microbiome as a unique resource for mining diverse lignocellulolytic enzymes.

2. Materials and Methods

All the animals involving were cared in agreement with the protocol of by the Institu-
tional Animal Care and Use Committee at the University of Alaska Fairbanks and fed at
the Robert G. White Large Animal Research Station, Fairbanks, AK, USA. (No. 139821).

2.1. Experimental Design and Sample Collection

In a crossover design, 8 castrated muskoxen with ruminal cannulas were housed in in-
dividual pens and assigned into two groups based on their initial body mass (268 ± 18.4 kg
vs. 278 ± 27.2 kg), and ad libitum fed with triticale (Triticosecale hexaploide) straw as a
low-quality diet or brome (Bromus spp.) hay as a medium-quality diet from August to
September (Figure S1). The chemical composition of which showed in Table S1. Each
stage contained three weeks for diet adaptation and one week for sampling and study.
During the period, animals were offered the forages twice daily (mid-morning and late
afternoon), plus a supplement of 335 g d-1 of protein and mineral (M Ration, Alaska Pet
and Garden, Anchorage, AK; 2.24% nitrogen, 24% Neutral Detergent Fiber (NDF), 16%
Acid Detergent Fiber (ADF), 2% lignin and 2% total ash, DM basis) once at mid-morning,
and had continuous access to fresh water or snow. Due to an infection of the horn boss, one
of the animals was removed from the experiment.

Before the morning feeding on the fourth day of sampling week, solid content was
collected from different site of rumen and was filtered out the rumen fluid using a coffee
filter plunger (Bodum Inc., Triengen, Switzerland). Subsamples of solid digests (about
5 g) were obtained according to Meng Qi’s method [19] and frozen in liquid nitrogen for
further application.

2.2. RNA Extraction

To mostly efflux the total RNA, a modification of the method described by Wang [34]
was used. Briefly, ruminal solids were manually ground to a fine powder in liquid nitrogen
using a liquid-nitrogen pre-chilled mortar and pestle and performed for further 5 min
grinding in liquid nitrogen using a Retsch RM100 grinder (Retsch GmbH, Haan, Germany).
1 g of each milled sample was weighed and 10 volumes of Trizol® Reagent (Life Tech-
nologies, Carlsbad, CA, USA) was added into. RNA isolation was carried out according
to protocol of Trizol® Reagent. Small fragments and contaminants in the extracted total
RNA samples were removed using MEGAclearTM kit (Life Technologies, Carlsbad, CA,
USA) and OneStepTM PCR Inhibitor Removal Kit (Zymo Research, Irvine, CA, USA). The
integrity and concentration of the purified RNA were assessed using a high-sensitivity
Agilent 2100 bioanalyzer (Agilent, Santa Clara, CA, USA) with Agilent RNA 6000 Nano kit
under manufacturer’s recommendation.

2.3. Total RNA Library Construction and Sequencing

100 ng of total RNA of each sample was prepared for sequencing according to the
protocols supplied with the Illumina TruSeq RNA Sample Prep Kit-v2, Set A and B (Illumina,
San Diego, CA, USA), with jumping the steps for the enrichment of mRNA or PolyA
selection. The barcodes targeted metatranscriptomic cDNA libraries were detected using
the DNA 1000 kit (Agilent Technologies) and quantified using the KAPA SYBR Fast qPCR
kit for illumina Technologies (Kapa Biosystems, Boston, MA, USA). All the sample libraries
were multiplexed into one pool after being normalized based on the qPCR results. All the
barcoded fragments were sequenced in the way of paired end (2 × 300 bp) sequencing on
all Illumina MiSeq platform using a MiSeq Reagent v3 600 cycle kit (Illumina, San Diego,
CA, USA).
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2.4. Sequences Analysis of Microbiome

The output sequence profiles of the MiSeq platform were analyzed using a pipeline
developed in house to obtain a snapshot of the microbial community of the rumen and a
comparison file of community composition of the two treatments. A merged read/sample
was generated after blasting and assembly paired-end reads (R1&R2) based on the barcodes,
from which, rRNA was identified using the rRNA-HMM tool [35] of the Rapid Analysis
of Multiple Metagenomes with a Clustering and Annotation Pipeline (RAMMCAP) [36],
and then separated into LSU (23S or 28S) and SSU (16S or 18S) rRNA profiles of each
taxonomic domains, including archaea, eukaryotes, and bacteria. For subsequent steps,
20,000, 20,000, and 2000 sequences from SSU rRNA profiles of bacteria, eukaryote and
archaea were respectively randomly subsampled using the fasta-subsample tool in the
MEME 4.10.2 [37] toolkit for furtherly taxonomical analysis. The subsampled SSU rRNA
reads of eukaryote and archaeal were binned based on the best hits after searched against
the SILVA SSURef-111 database using a threshold e-value of 1e-5 using BLASTN [38]. While
the bacterial SSU sequences were binned using the “classify.seqs” command of MOTHUR
1.33.1 [39] into operational taxonomic units (OTUs), for which, the SSURef-108 gene and
the SSURef-108b taxonomy databases were used as reference. The binned comparison file
was then parsed for furtherly analysis.

2.5. Mining of Carbohydrate-Active Enzymes for Muskoxen Fed Triticale Straw

mRNA-Seq libraries and sequence analysis were constructed according to Meng
Qi’s method [19]. A metagenomic analyzer, MEGAN [40] was used for function-based
taxonomy binning combining the trimmed down non-redundant muskoxen amino acid
database (NRMO), which built by our lab [19]. The identified coding regions for GH and
carbohydrate-binding modules (CBMs) were further examined using HMMER hmmsearch
with Pfam hidden Markov models (HMMs) as previous description [41]. GHs and CBMs
were named using carbohydrate-active enzymes (CAZymes) nomenclature. When a Pfam
HMM for a given GH either did not exist or did not correspond to the catalytic module,
BLAST searches against the data set were performed using regions of sequences listed at
the Carbohydrate-Active Enzymes database. In addition, the coding sequences predicted
as GHs were further characterized bysimilarity search against NCBI’s protein data bank
and non-redundant (nr) database using the BLASTP algorithm [42]. The output obtained
were analyzed manually for determining the diversity and abundance of the various
CAZymes classes: GHs, CBMs, carbohydrate esterases (CEs), glycosyl transferases (GTs),
and polysaccharide lyases (PLs) in the rumen metagenomes.

2.6. Statistical Analysis

Annotation information of all randomly picked reads was profiled and a comparison
file was presented for all 14 samples. Relative expression values for a taxonomic phylotype
in a sample was defined as the ratio of the number of reads assigned to this phylotype to
the number of reads assigned to the corresponding kingdom. Means of relative expression
value of each taxonomic phylotype was calculated for each treatment. We examined
the effects of forage, stage, and feeding sequence on the diversity and abundance of
rumen microbial populations, including all bacteria, archaea, fungi and protozoa, under
a crossover design. Statistical power of 0.80 (80%) was obtained in this study when the
minimally detectable effect size was 1.0 and the significance level was 0.05. A paired
t-test was used to determine significant differences for pairwise comparisons between
the two forages, two stages, and feeding sequences, statistical significance was noted as
Ptr, Pst, and Pco, respectively. Statistically significant differences were further filtered
using a relative abundance cutoff of 0.01% for each phylotype and being detected in at
least half of the samples for at least one treatment. It meant that a phylotype statistically
more abundant in the triticale straw compared with brome hay would be ignored unless it
contributed at least 0.01% of the reads assigned to the triticale straw feeding community
and was detected in at least half of triticale straw samples. Based on the phylotype-related
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relative abundances, between-classes principal component analysis (PCA) [30] was taken
to analysis the different effects of two forages on the diversity and structure of microbial
population using the R package ade4 [43]. A Monte-Carlo test was used to determine
significant differences between the two forages [30]. Correlation analysis was employed to
visualize the relationships among specific microbial populations and displayed as a heat
map of Spearman correlation coefficients.

3. Results
3.1. Metatranscriptomics Sequence Data Statistics

Under a crossover design, although one animal was removed from trial due to
an infection of the horn boss, Illumina next generation sequencing led to the thorough
elucidation of rumen microbial diversity and their functional capacity to hydrolyze lig-
nocellulosic biomass in muskoxen rumen under different (roughage) feeding scenario.
Metatranscriptomics sequence from 14 biologically independent samples generated about
11,044,327 effective reads having an average of 788,881 effective read. The number of large
subunits SunUnitrRNA (LSU) reads was slightly higher than that in small subunit (SSU)
rRNA (49.74% vs. 50.19%). In addition, 0.07% of reads could not be classified into LSU
rRNA and SSU rRNA clusters (Table S2).

3.2. Total Community Structure and Diversity

The results of β-diversity analysis showed that different feeding stages and feeding
order had no significant microbial diversity, while forage type result in a notably difference
in rumen microbiome structure and composition (Figure 1A). Specifically, the SSU rRNA
reads identified by rRNA-HMM were separated into bacteria, archaea, and eukaryotes.
No significant difference for relative abundance of total genotypes of either bacterium or
eukaryote in muskoxen rumen fed triticale straw and brome hay (Figure 1B,C; P > 0.05).
The relative abundance of the archaea was significant higher in triticale straw feeding group
than that of brome hay (Figure 1D; P = 0.037).

As showed in Figure 1E, forage scenario had no effect on the prokaryotic and eu-
karyotic population at the phylum level. However, at the genus level, difference of either
prokaryotes or eukaryotes between the two forages was visualized and Monte-Carlo test
indicated the difference was significant (P < 0.05). Comparison was also performed at
the genus level for bacteria, archaea, fungi, and protozoa separately (Figure 1F). It indi-
cated that at the genus level, each of the four groups was strikingly distinct between the
muskoxen rumen fed either triticale straw or brome hay, as determined by a Monte-Carlo
test (n = 999) in all four cases (P < 0.05).

3.3. Highly Abundant Microbes in Muskoxen Rumen

In muskoxen rumen fed either triticale straw or brome hay, 15 phyla of bacteria were de-
tected, and the most abundant bacteria was Firmicutes, followed by Bacteroidetes, Spirochaetes,
Fibrobacteres, Proteobacteria, Actinobacteria (Figure 2A). At the genus level, 73 phylotypes
were observed (Figure 2B). Treponema and Fibrobacter contributed most to their respective phyla,
whereas the representations of Firmicutes and Bacteroidetes were more diverse. Major contribu-
tions of Firmicutes came from RFN8-YE57, IS_C_leptum_sporosph, Ruminococcus, vadinHA42
and Butyrivibrio_fibrisolvens, and major contributions of Bacteroidetes came from Prevotella,
Prevotellaceae_uncultured, RC9_gut_group. Most of the major phylotypes, in particular at the
higher taxonomic levels, were of high consistency across environments.
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Figure 1. The structure of microbial community response to forages scenario. (A) the effect of
feeding stages, feeding order, and forages scenario on the structure microbiome was analyzed. The
composition of microbiota in (B) bacteria, (C) eukaryotes, and (D) archaea of muskoxen rumen.
Between-classes PCA revealing the differences of microbial population structure of solid-phase
rumen contents from muskoxen in two groups crossover fed either triticale straw (blue circle noted)
or brome hay (red circle noted) in term of (C) prokaryotes and eukaryotes at the levels of phylum
and genus, as well as (D) in population structure of bacteria, archaea, fungi, and protozoa at the
genus level. The statistical significance of the between-classes PCA, as determined by a Monte-Carlo
test (n = 999), gave P ≤ 0.05 in all four cases. The letters of ATS and ABH refer to the muskoxen fed
triticale straw in autumn and brome hay in autumn, respectively. * P < 0.05.
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contents from 7 muskoxen in two groups crossover fed either triticale straw (TS noted) or brome hay
(BH noted).

Regarding archaea, five genera of archaea, i.e., Methanomicrobium, Methanobre-
vibacter, Methanospaera, Methanonacterium, and Thermoplasmatales were observed
(Figure 3A). All organisms are methanogenic archaea and fall into the phylum Eur-
yarchaeota. The most representations of archaea communities were great diverse between
the two forages. In the muskoxen rumen fed triticale straw, major contributions came
from Methanobrevibacter (36.62%), Methanomicrobium (33.34%), and Thermoplasmatales
(14.26%); while in brome hay, major contributions came from Methanobrevibacter (52.65%)
and Thermoplasmatales (32.19%), and the abundance of Methanomicrobium was dramati-
cally decreased (1.97%).

As illustrated in Figure 3B,C, the majority of eukaryotic sequences were derived
from fungi and protozoa, the relative abundance of fungi was lower in triticale straw
than in brome hay, while the relative abundance of Protozoa was higher in triticale straw
than in brome hay. In addition, anaerobic fungi observed included Rhizophydium and
Spizellomyces, which belonged to phylum Chytridiomycota, three genera Neocallimastix,
Cyllamyces, and Piromyces were included and Neocallimastix and Cyllamyces were the
major contributions for the two forages. Six genera of Entodiniomorphid protozoa in the
family of Ophryoscolecidae (Entodinium, Polyplastron, Diplodinium, Eudiplodinium, Epidinium,
and an uncultured group), two genera of holotrich protozoa in the family of Isotrichidae
(Isotricha and Dasytricha), and an uncultured group in the subclass of Trichostomatia were
observed in this study. Entodiniomorphid protozoa Entodinium and Polyplastron were
predominant at the genus level for the two forages.
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Figure 3. Contribution of archaea and eukaryotic in solid phase rumen contents from muskoxen in
two groups crossover fed either triticale straw (TS noted) or brome hay (BH noted); (A) The relative
abundance of archaeal phylotypes of the muskoxen rumen on either triticale straw or brome hay
during fall, and (B) the composition eukaryotes of the muskoxen rumen, as well as (C) the distribution
of eukaryotic community at the genus level in solid phase rumen contents.

3.4. Unfolding Microbial Diversity in Response to Dietary Changes and Ruminant Animal

As shown in Table 1, the selectively enriched bacterial phylotypes mainly distributed in
the groups of Bacteroidales, Clostridiales, Cytophagaceae, Chloroflexi, Thermoactinomyc-
etaceae, and four classes of Proteobacteria, as well as two classes of phylum Actinobacteria.
The taxa most strongly selected by triticale straw included Fervidicella, Desulfoluna, Ther-
moactinomycetaceae, Seinonella, Nonlabens, SP3-e02-2, Betaproteobacteria, Desulfobacteraceae,
IS_C_leptum_sporosph, Thermobrachium, and Anaerovirgula. Selenomonas was only detected
in brome hay, so it was strongly selected by brome hay. Besides Selenomonas, other bacteria
taxa such as Rhodospirillales, Rhodospirillaceae, Roseburia, Quinella, and Xylanibacter were
strongly selected by brome hay. The selection of fungi by forages included the Cyllamyces
and Spizellomyces, which were selected by triticale straw and brome hay, respectively
(Table 1). Regarding protozoa, Entodinium was strongly selected by triticale straw, and
both Dasytricha and Diplodinium were selected by brome hay strongly and moderately,
respectively. The selection of Archaea by forages included Methanomicrobium, Thermo-
plasmatales, and Methanobrevibacter that moderately selected by triticale straw and brome
hay, respectively.
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Table 1. The phylotypes selectively enriched by forages.

Item Triticale Straw Brome Hay

Bacteria Phylum Proteobacteria, CandidatedivisionOD1, Chloroflexi,
and Chlamydiae

Synergistetes, Tenericutes,
and Cyanobacteria

Class Chlamydiae, Deltaproteobacteria, Anaerolineae,
Actinobacteria, and Betaproteobacteria

Coriobacteria, BD2-2, Synergistia,
and Mollicutes

Order
Chlamydiales, Micrococcales, Rickettsiales, Anaerolineales,

Desulfovibrionales, Bacillales, Burkholderiales,
Rhodobacterales, and Thermoanaerobacterales

Coriobacteriales, RF9, Synergistales,
Rhodospirillales,

and Aeromonadales

Family

Ruminococcaceae, Rikenellaceae, BS11_gut_group, Clostridiaceae,
Simkaniaceae, Anaerolineaceae, Desulfovibrionaceae,

Heliobacteriaceae, Peptococcaceae, Thermoactinomycetaceae,
Cytophagaceae, Family_IIIIncertaeSedis, Desulfobacteraceae,
Flammeovirgaceae, Cystobacterineae, Flavobacteriaceae, and

Parachlamydiaceae

Prevotellaceae,
Veillonellaceae,

Coriobacteriaceae,
S24-7, Synergistaceae,
Rhodospirillaceae, and

Succinivibrionaceae

Genus

IS_C_leptum_sporosph, RC9_gut_group, Parasporobacterium,
Papillibacter, Ruminococcus_2, SP3-e02_2, Sporobacterium,

adhufec311, Geosporobacter, Simkania, SP3_e08, Thermobrachium,
RFN63, Desulfovibrio, Anaerolineaceae|uncultured, Fervidicella,

Heliobacillus, RFN71, aab48a04, Anaerovirgula,
Erysipelotrichaceae|uncultured, Ruminococcaceae|uncultured,

Seinonella, Nonlabens, Mogibacterium, Desulfoluna, Persicitalea,
Caldanaerovirga, Fulvibacter, Candidatus_Kleidoceria,

Sediminitomix, Candidatus_Metachlamydia, and Propionispira

Ruminococcus, Prevotella,
Quinella, Atopobium,

RC25, Ruminococcus_1, Xylanibacter,
IS_Eub_rum_Coprococcus_A2_166,

hoa5-07d05_gut_group, Selenomonas,
Roseburia, Acetivibrio_ethanolgignens,

RF38, Olsenella, Incertae_Sedis,
Synergistaceae|uncultured,

Pseudobutyrivibrio, and wet75

Species R. flavefaciens, and R.albus

Fungi Cyllamyces Spizellomyces

Protozoa Entodinium Dasytricha, and Diplodinium

Archaea Methanomicrobium Thermoplasmatales and
Methanobrevibacter

Concerning the correlation analysis between forage and microflora, in triticale straw,
there was a significant positive correlation among Proteobacteria (including Alphapro-
teobacteria, Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria), Chlamydiae,
Synergistetes (including Synergistia) CandidatedivisionOD1, Cytophagia, Actinobacteria,
Flavobacteria, and Bacilli (named as FTs1_1). Similarly, Firmicutes such as Clostridia,
Bacteroidia, Coriobacteria, Archaea, Eukaryotes also were significantly related (named as
FTs1_2). Besides, there was a significant negative correlation between FTs1_1 and FTs1_2,
for instance, Firmicutes/Proteobacteria (r = −0.85), Archaea/Proteobacteria (r = −0.97),
Archaea/ Cytophagia (r = −0.95) and Eukaryota/Actinobacteria (r = −0.89) (Figure 4A). In
brome hay, an apparently positive correlation was notice among Proteobacteria including
Deltaproteobacteria, Chlamydiae, Chlamydiae, CandidatedivisionOD1, Actinobacteria,
Flavobacteria, and Bacilli that was named as FBh1_1 (Figure 4B).
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3.5. CAZymes Profile of Muskoxen Rumen Microbiome

The total number of hits obtained for CAZymes classes were 2131–2886 corresponding
to 159–184 families. Out of the total CAZymes, GHs were the most abundant class (45.87%
to 51.01%) followed by CBMs (20.41% to 22.63%), CEs (10.09% to 18.70%), GTs (5.70% to
12.26%), and PLs (1.97% to 3.07%) (Figure 5A). Further, as showed in Figures 5B and 6, GHs
were the major CAZymes involved in cellulose digestion (GH5, GH6, GH9, GH45, GH48,
GH94 and GH124). Among cellulases, the rumen microbes contributing to GHs majorly
included Ruminococcus (70.8 ± 16.6), Piromyces (58.8 ± 8.1), Neocallimastix (36.5 ± 8.6),
Fibrobacter (32.5 ± 6.0), Epidinium (19.5 ± 7.0), and Polyplastron (18.0 ± 3.6). Abundance of
major genes coding for hemicellulose digestion was higher than cellulose, and included
GH8, GH10, GH11, GH16, GH26, GH30, GH51, GH74, GH114 and GH115. These enzymes
were related with Fibrobacter (49.7 ± 6.5), Ruminococcus (29.0 ± 3.9), Clostridium (14.2 ± 3.5),
Piromyces (13.2 ± 5.2). Enzymes dedicated for hydrolysis of oligosaccharides (GH1, GH2,
GH3, GH31, GH32, GH33, GH42, and GH109) were associated with Prevotella (24.0 ± 11.5),
Piromyces (19.2 ± 4.3), Butyrivibrio (14.5 ± 3.4), Bacteroides (14.0 ± 2.5), Cellulosilyticum
(12.3 ± 3.0), and Fibrobacter (11.0 ± 4.1). In addition, starch degrading enzymes encoded
by GH13, GH77, and GH119, which were concerned with Oxytricha (26.5 ± 7.4) and
Eudiplodinium (11.3 ± 3.8).
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Figure 6. Putative microorganisms involved in the breakdown of cellulose, chitin, fructan, glucan,
hemicellulose, mucopolysaccharide, oligosaccharide, and starch hydrolysis. Substrates degrading
involved microorganisms were determined by the known activities of their original glycoside hydro-
lases. Phylotypes which were binned for less than ten contigs of glycoside hydrolases were included
in the group of “others”, and the glycoside hydrolases without binned phylotypes were included in
the group of “Not assigned”.
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4. Discussion

Ruminants utilize carbohydrate-rich agricultural waste residues such as triticale straw
as substantial energy resources. The host itself is unable to synthesize any enzymes
required for deconstructing the plant biomass and primarily depend on rumen microbiota
to liberate the energy from plant polysaccharides in the form of carbohydrates and sugars.
Muskox, as the biggest herbivore in the High Arctic, has been enduring the austere arctic
nutritional conditions and has evolved to ingest and digest scarce and high lignified
forages to support the growth and reproduce, which could be an outstanding animal
to characterize the alteration in rumen microbiome with forage. The SSU rRNA reads
identified by rRNA-HMM were separated into bacteria, archaea, and eukaryotes. Of note,
the relative abundance of eukaryotic population was proximate to that of bacteria in solid
digesta of muskoxen rumen at the transcription level regardless feeding scenario, which was
more different than the proportion estimated by traditional technologies [44,45], indicating
that eukaryotic population performed high activity responding to the environment. This
phenomenon was also observed in cattle (Elekwachi et al., submitted) and in lactating dairy
cow [31] that revealed through the same approach, although they were less abundant than
in muskoxen rumen. Comtet-Marre et al. revealed that the Intranmacronulceata of protozoa
actively expressed 542 folds compared with its low relative abundance on a DNA basis [31].
It indicated that the roles of eukaryotic community in the degradation has been beyond
our previous understanding.

For comparing the composition and structure of microbial community in muskoxen
rumen fed triticale straw or brome hay, our data showed that feeding scenario had no
effect on the prokaryotic and eukaryotic population at the phylum level. However, at
the genus level, difference of either prokaryotes or eukaryotes between the two forages
was visualized and Monte-Carlo test indicated the difference was significant, implying
that selection of rumen microbiomes was largely forage specific at the genus level. The
difference in the content of NDF, ADF and cellulose between the two forages probably
contributed to this selection. In addition, Statistical student t -test under a crossover design
showed no significant difference for relative abundance of total genotypes of either bacteria
or eukaryota in muskoxen rumen fed triticale straw and brome hay, while archaea were
striking affected by forages in muskoxen rumen, and was higher in triticale straw than
brome hay, indicated that there was correlation between the methane emission and quality
of diets in ruminant, more methane producing in lower quality diet [46].

Concerning the relationship between forages and microbial community, it was es-
tablished that the rumen flora is dynamic and known to adapt to changes in the host
diet [2,47,48]. Recently, cellulolytic Ruminococcus spp., Fibrobacter spp., and Cytophaga
spp. clearly played important roles in fiber degradation [8,49–55]. In the present study,
there was no difference in the relative abundance of Fibrobacter between triticale straw
and brome hay. However, diverse genera in families of Ruminococcaceae and Cytopha-
gaceae had selectively enriched by triticale straw. Prevotellaceae, Veillonellaceae, Coriobac-
teriaceae, and Succinivibrionaceae were selectively enriched by brome hay. Those groups
seemed to play pivotal roles in the degradation of corresponding forage and most of
those phylotypes had been only detected in the rumen of Angus heifer fed forage other
than high grain [21]. In addition, some species of non-cellulolytic families were thought
to be involved in the fermenting of oligosaccharides, starch, sugar to produce formate,
acetate, lactate, propionate, butyrate, and other volatile fatty acid that provide most of
energy for host, i.e., Prevotellaceae, Rikenellaceae, Peptococcaceae, Veillonellaceae, Succinivib-
rionaceae, and Lachnospiraceae [11,56–58]. In this study, Prevotellaceae and its two genera
(Prevotella and Xylanibacter), genus of hoa5-07d05_gut_group of Rikenellaceae, Veillonel-
laceae and its genera (Quinella and Selenomonas), some genera of Lachnospiraceae (such as
Acetivibrio_ethanolgignens, IS_Eub_rum_Coprococcus_A2_166, Pseudobutyrivibrio, RC25, and
Roseburia), and Succinivibrionaceae were selectively enriched by brome hay. Similarly,
Rikenellaceae and its genera (RC9_gut_group and SP3-e08), Peptococcaceae, Propionispira of
Veillonellaceae, two genera of Lachnospiraceae (Parasporobacterium and Sporobacterium) were
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selectively enriched by triticale straw. These data indicated that triticale straw and brome
hay could share with homologous non-cellulolytic families to ferment of oligosaccharides,
starch, sugar for energy production in muskoxen.

Of note, the accumulating of electron and hydrogen generated in the fermentation
would inhibit hydrogenase activity and the oxidation of sugar and would be transferred to
acceptors other than oxygen under the anaerobic conditions in rumen. Acetogens would
dispose hydrogen with carbon dioxide to produce acetate by the acetyl-CoA pathway [46].
This is an economic approach because it not only disposes the hydrogen, but also recycles
the carbon dioxide. Propionogens would sink hydrogen with acrylate and fumarate to
produce propionate through propionogenesis [46]. Those two pathways could generate
VFA, the main energy source for the host [46]. However, the well-known acetogens, genera
of Acetonema [59] and Acetitomaculum [12], did not show difference between animals fed
either triticale straw or brome hay, and Propionispira [60] was selectively enriched by
triticale straw, which were inconsistent with the things that the produce of acetate or
propionate is related to biomass of the fermentable components of forages [46] and brome
hay contains more fermentable components than triticale straw. Therefore, there should be
other acetogens and propionogens in muskoxen rumen and further experiments should
be conducted.

Alternatively, sulfate was another acceptor to sink electron and hydrogen to bioconvert
to sulphide by sulfur reducing bacteria [61]. Muskoxen had high intake and digestibility
of sulfate in autumn [62]. It indicated that sulfur compounds played important roles in
electron transferring and microbiota regulating in muskoxen rumen. Deltaproteobacteria
was a class of sulfur-reducing bacteria that can provide oxidizing force through reducing
oxidized sulphate to sulphide [61]. All the phylotypes of this class detected in this study,
including its derived orders, families, and genera (Desulfobacterales, Desulfobacteraceae, Desul-
foluna, Desulfovibrionales, Desulfovibrionaceae, and Desulfovibrio), were selectively enriched
by triticale straw. Coupling with the reduction of oxidized sulphate to sulphide, organic
moleculars were oxidized and energy was transferred. Sporobacterium spp. were identified
as possessing the ability to degrade aromatic compound [63,64] and were also selectively
enriched by triticale straw. Those psionics could be pivotal in the degradation of aryl
ether bonds linking the p-hydroxycinnamates and lignin, as well as the C-C bonds. In
an anaerobic environment of rumen, those metabolic capabilities could be supported by
the activity of organisms of Deltaproteobacteria. The metabolic synergy performed by
those two groups was pivotal for the degradation of the triticale straw. Besides the taxa
of Deltaproteobacteria, other phylotypes known to be involved in electron and energy
transferring, such as Chloroflexi [65,66], some genus of Clostridiaceae (such as anaerovigula
and Fervidicella [9]), Geosporobacter [10,67] and Thermobrachium [68] were also detected in
this study and all were selectively enriched by triticale straw. It indicated that the organ-
isms of those groups played pivotal roles in the transferring of electron and energy in the
degradation of triticale straw. Given that triticale straw contained more components that
not easy to break down than brome hay, the degradation of triticale straw was harder and
more taxa involved, evidenced by the results of the microflora action model in this study.

Methanogens would sink hydrogen with carbon dioxide to produce methane through
methanogenesis [46]. Although this pathway prevented the accumulation of reducing
equivalents, it was also considered to be sub-economic [46]. Even so, the metabolic activity
of methanogens was proved to enhanced the degradation of forages [69]. The supplement
of Methanobrevibacter sp and Ruminococcus flavefaciens to new born lambs increased the
population of R. flavefaciens, the straw degradation, the activity of some glycoside and
polysaccharide hydrolases of the adherent microbial populations and the concentration
of acetate in ruminal contents [69]. Thus, there was a trade-off for the proportion of
methanogens of the entire rumen microbial population. For the basis of efficient degra-
dation and utilization of lignin enriched forages, it was supposed that the proportion of
methanogens in the population of entire community in muskoxen rumen was approximate
to ideal. Further, in this study, the selection of methanogens in muskoxen rumen was forage



Microorganisms 2022, 10, 71 14 of 19

specific. The major archaeal Methanobrevibacter and Thermoplasmatales were selectively
enriched by brome hay, while the Methanomicrobium was strongly selectively enriched
by triticale straw, which contributed to the difference in the total abundance of archaea
between the two forages. In rumen, Methanobrevibacter spp. metabolically preferred to
the CO2 or formate, and H2 [70] that produced through the succinate-propionate path-
way [71,72]. While Methanomicrobium spp. preferred to use acetate as substrate [73]. It
indicated that succinate-propionate pathway was the main pathway to produce carbon
dioxide in the degradation of brome hay and the contribution of acetogenesis pathway
in the degradation of triticale straw was dramatically increased compared to brome hay,
although further experiments would be carried out for the characterization of effects of
trial stages and feed sequences. This was also evidenced by that the ratio of acetate to
propionate was related to biomass of the fermentable components of forages [46] and
triticale straw contained less fermentable biomass than brome hay.

With regard to fungi and protozoa, most of the recognized so far anaerobic fungi
in ruminant is that they could produce a wide range of high cellulolytic and xylanolytic
enzymes to degrade the high-fiber feed particles, which were found to associated with the
rhizomycellium and excreted into the surrounding microenvironment, and were known to
preferentially adhere to the lignin rich regions and acted as the primary invader to initiate
the degradation of fibrous feed particles [74]. Cyllamyces (the family Neocallimastigaceae) was
related to fiber degradation [75], which probably took part in the degradation by rupturing
the colonized tissues with bulbous holdfasts [76]. For this, Cyllamyces was strongly selected
by triticale straw in this study. Spizellomyces is in the phylum Chytridiomycota, which is
essentially ubiquitous zoospore-producing fungi. Like all chytrids, Spizellomyces might
be related to the degradation cellulose degradation through producing GH [77]. The
specific selection by brome hay suggested that Spizellomyces probably was important for the
degradation of triticale straw. As far as protozoa is concerned, in addition to degrade the
plant cell walls and cell wall fragments by the excreted extracellular enzymes, protozoa also
acted as predators of bacteria and fungi, and were responsible for the protein turnover in
rumen. Particularly, the small Entodinium spp contributed to much of the bacterial predation
and protein turnover [78]. In the present study, protozoa accounted a large proportion
of the entire microbial population and Entodinium contributed the majority in muskoxen
rumen. The outcomes of the selection of protozoa by forages showed that Dasytricha and
Diplodinium were selected by brome hay, while Entodinium was enriched by triticale straw.
Study that focused on ruminal fermentation and microbial community responding to four
typical subtropical forages in vitro indicated that the most abundance of Entodinium was
observed with cassava residues when compared to corn straw silage and elephant grass [79].
The alteration in protozoa may be highly associated with the requirement for high efficiency
of utilizing energy of muskoxen.

Rumen microbes harbor complex array of enzymes which work synergistically for
plant fiber degradation, including GHs, CBMs, CEs, GTs, PLs, etc. Of various CAZyme fam-
ily, GHs are the most abundant and diverse group of enzymes accountable for hydrolyzing
glycosidic bonds of carbohydrates in plant polysaccharide [80]. Date from buffalo and
cattle rumen showed that the presence of 72 and 78 distinct families of GHs, respectively,
to hydrolyze the various plant cell wall constituents [33,81]. In this study, the notably enor-
mous enzymes categorized into GH family in the rumen metagenome of muskoxen (159 to
189 families) indicated a more complex process of lignocellulose breakdown compared to
others. In particular, a higher proportion of genes from GH48, GH5, GH45, and GH9 fami-
lies encoding endoglucanase were present in the present study. Previous analogous studies
have reported that GH48 family that one of the components in most of the cellulosome
system was found to be the most abundant enzyme subunit in cellulosome-producing
bacteria [82]. In addition to endoglucanase activity, GH5 family proteins are also reported
to exhibit endo-xylanase mannanase and exoglucanase activity [83]. The higher abundance
of genes encoding putative GH5 family in this study indicates that rumen microbiome of
muskoxen may comprise a unique approach for plant polycarbohydrate deconstruction.
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Moreover, in line with the other studies [84], we also noticed that the abundance of major
genes coding for hemicellulose digestion was higher than cellulose. This was expected since
the diversity of side chains in hemicellulose requires a diverse pool of hydrolytic enzymes
for its degradation. Compared with the muskoxen mixed fed triticale straw and brome
grass hay [19], the muskoxen fed triticale straw exhibited lower GH10 abundance (4.69% vs.
6.96%) and higher levels of GH8 (2.07% vs. 0.59%) and GH11 (5.81% vs.4.41%), indicating
that the GH8 and GH11 exerted critical role in hemicellulose degradation for muskoxen.
Apart from GHs, other CAZyme classes including CBMs, GTs and PLs, are involved in
hydrolysis of cellulose, hemicelluloses, xylan and pectin [85]. CBMs which do not exhibit
the enzymatic activity of their own but helps in binding CAZymes to polysaccharide, thus
potentiating their activities [86], accounted for 20.41% to 22.63% of CAZymes in the current
study. CEs play key role in breaking the ester bonds between lignin and carbohydrates
in the rumen [85], and were found to be the third most profuse CAZy family (10.09% to
18.70% of total CAZyme). Nearly 5.70% to 12.26% of the CAZymes were found to have
similarity with class CEs that facilitate the action of catalyzing the breakage of glycosidic
linkage [87].

Rumen microbes like Fibrobacteraceae, Clostridiaceae, Ruminococcaceae, Prevotellaceae,
Bacteroidaceae, and Lachnospiraceae have been reported to be the major fiber degrading
microbes in muskoxen [19]. Accordingly, Prevotella has been identified closely related with
GHs involved in the degradation of oligosaccharides and hemicelluloses [88]. Ruminococcus
and Fibrobacter affiliated to the majority of the putative cellulases belonged to GH families,
especially GH5, GH9, GH45, and GH48 [32]. Perhaps therefore, Ruminococcus is proficient in
the deconstruction of cellulose and hemicellulose [89]. In the present study, our date showed
that major fiber degrading rumen microbes like Bacteroides, Butyrivibrio, Cellulosilyticum,
Clostridium, Fibrobacter, Prevotella, Ruminococcus, etc. contributed to GHs. It is well-known
that cellulose and hemicellulose in plant biomass are considered as one of the prevalent
renewable resources of fermentable sugars that could be utilized further in numerous
industrial processes, like ethanol generation. Therefore, the distinct microbial reservoir
in muskoxen reflects its efficiency for the deconstruction of plant biomass. Nonetheless,
further research is required to explore the rumen microbiome and the way it carries out
fiber deconstruction

5. Conclusions

Ruminants harbor a vast and diverse microbial community that functions in the utiliza-
tion of fibrous feedstuffs. In the present study, comparative metatranscriptomics approach
was employed to portray the rumen microbial diversity and define the relationship between
fiber digestion and microbial communities of muskoxen fed on either triticale straw or
brome hay. The global effects of triticale straw and brome hay on the prokaryotic and
eukaryotic population, and of the lower clade (bacteria, archaea, fungi, and protozoa) were
observed at the lower taxonomic level of genus, indicating more detailed selection in the
degradation of two forages original from the same gramineae. Further analysis revealed
that triticale straw with higher content of NDF, ADF, cellulose selectively enriched more
lignocellulolytic taxa and electron transferring taxa, while brome hay with higher N content
selectively enriched more families and genera for degradable substrates-digesting. Further
analysis revealed the existence of enormously diverse CAZyme belonging to classes: GHs,
CBMs, CEs, GTs, and PLs, with the dominance of GHs. Of the total GHs identified were
found to be responsible for direct plant polysaccharide deconstruction, especially cellulose
and hemicellulose. The presence of higher bacterial population and its close connection
with CAZyme concludes that the rumen of muskoxen as an important converser of plant
biomass to high-value products.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10010071/s1, Figure S1: Schematic presentation
of a crossover design; Table S1: Comparison of chemical composition between triticale straw and
brome hay (% dry matter); Table S2: Summary of sequencing output.
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