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Abstract: In the past decades, hepatocellular carcinoma (HCC) has been receiving increased attention
due to rising morbidity and mortality in both developing and developed countries. Koumine, one of the
significant alkaloidal constituents of Gelsemium elegans Benth., has been regarded as a promising
anti-inflammation, anxiolytic, and analgesic agent, as well as an anti-tumor agent. In the present study,
we attempted to provide a novel mechanism by which koumine suppresses HCC cell proliferation.
We demonstrated that koumine might suppress the proliferation of HCC cells and promote apoptosis
in HCC cells dose-dependently. Under koumine treatment, the mitochondria membrane potential
was significantly decreased while reactive oxygen species (ROS) production was increased in HCC
cells; in the meantime, the phosphorylation of ERK, p38, p65, and IκBα could all be inhibited by
koumine treatment dose-dependently. More importantly, the effects of koumine upon mitochondria
membrane potential, ROS production, and the phosphorylation of ERK, p38, p65, and IκBα could be
significantly reversed by ROS inhibitor, indicating that koumine affects HCC cell fate and ERK/p38
MAPK and NF-κB signaling activity through producing excess ROS. In conclusion, koumine could
inhibit the proliferation of HCC cells and promote apoptosis in HCC cells; NF-κB and ERK/p38 MAPK
pathways could contribute to koumine functions in a ROS-dependent manner.

Keywords: hepatocellular carcinoma (HCC); koumine; ROS; proliferation; NF-κB and ERK/p38
MAPK signaling

1. Introduction

Hepatocellular carcinoma (HCC) is the most commonly seen primary liver cancer; it accounts
for 85% of the liver cancers [1]. Other forms include cholangiocarcinoma, which begins with cells
surrounding the bile duct, angiosarcoma (or hemangiosarcoma), and hepatoblastoma. Mainly occurring
in the developing world [2,3], HCC has been receiving increased attention due to rising morbidity and
mortality in many countries for the past few years [4–6].

Environmental factors or cellular mitochondrial dysfunction lead to the production of reactive
oxygen species (ROS), thus resulting in sustained oxidative stress, which is related to liver carcinogenesis
according to recent studies [7]. Reduced ROS is required for cell proliferation, apoptosis, cell cycle arrest,
cell senescence, and other physiological processes [8]. Nevertheless, improved ROS can induce oxidative
stress and provide an environment that is potentially toxic to cells. Many intracellular and extracellular
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factors can cause endoplasmic reticulum (ER)-stress, a disorder of Ca2+ homeostasis and mitochondrial
ROS production resulting in apoptosis [9–12]. In addition, it has been revealed by proteomics results
that increased NF-κB-related Wnt-1 expression is a critical mechanism for liver carcinogenesis [13].
MAPK cascade can transduce signals from tyrosine kinase receptors, such as vascular endothelial
growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), insulin-like growth factor
receptor (IGFR), and hepatocyte growth factor receptor (HGFR). Within the cascade, activated Ras
(Ras-GTP) could induce the activation of RAF-1, MEK-1/2, and ERK-1/2 in sequence. ERK1/2 can enter
into the nucleus after activation or phosphorylation, where it transactivates c-JUN, c-FOS, c-MYC
(contributing to the mechanisms of cell proliferation and survival), VEGF and HIF1α (modulating
angiogenesis), hexokinase II, and other growth-associated genes [14–16]. Even without growth factors,
ERK1/2 constitutive activation leads to increased cell proliferation, thus resulting in tumor development.

Koumine, one of the significant alkaloidal constituents of Gelsemium elegans Benth., has increasingly
received greater attention because of its multiple biological effects [17]. Koumine has been regarded as
a promising anti-inflammation, anxiolytic, and analgesic agent, as well as an anti-tumor agent [18–21].
Koumine exerts its biological functions in tumors by modulating different intracellular physiological
processes via diverse mechanisms. In human breast cancer cells, koumine promotes apoptosis and
cell cycle arrest in G2/M phase via reducing Bcl2 and increasing the pro-apoptotic factors Bax and
Caspase-3 [22]. In human colonic adenocarcinoma cells, koumine can inhibit the mitochondrial
membrane potential while enhancing the production of ROS [23]. Within human cervical cancer HeLa
cells, studies have found that koumine promotes the apoptosis and cycle arrest of cancer cells by
suppressing ROS-dependent NF-κB pathway [24]. Interestingly, koumine reduces proinflammatory
factor production within mouse macrophages via inhibiting ERK/p38 MAPK phosphorylation and
the NF-κB pathway [25]. Considering the critical roles of ROS and ERK/p38 MAPK and NF-κB
signaling pathways within HCC, we hypothesize that koumine contributes to regulating the signaling
pathways of NF-κB and ERK/p38 MAPK within HCC through the excessive production of ROS,
therefore inhibiting HCC cell proliferation and promoting HCC cell apoptosis.

Herein, the killing effects of koumine upon HCC were evaluated by examining HCC cell viability,
apoptosis, and apoptosis-related factors. Next, the changes in the mitochondrial membrane potential,
ROS production, and ERK/p38 MAPK and NF-κB pathways in response to koumine treatment were
determined. Finally, the dynamic effects of koumine and ROS inhibitor on HCC cells were examined
to investigate whether koumine exerts its effects via ROS production and ERK/p38 MAPK and NF-κB
signaling pathways. These data indicate that koumine exerts effects upon HCC cell proliferation and
apoptosis and shed light on the underlying mechanism. According to the findings of this research,
koumine might be a promising anti-tumor agent for HCC treatment.

2. Materials and Methods

2.1. Cell Lines and Cell Culture

Huh-7 cell line (JCRB0403) was obtained from the Japanese Collection of Research Bioresources
Cell Bank (Osaka, Japan) and cultured in Dulbecco’s minimal essential medium (DMEM) with 10%
fetal bovine serum (FBS) (Invitrogen, Waltham, MA, USA). SNU-449 cell line (ATCC CRL-2234) was
obtained from ATCC (Manassas, VA, USA) and cultured in RPMI-1640 Medium (Catalog No. 30-2001;
ATCC) supplemented with 10% FBS. All cells were cultured at 37 ◦C in 5% CO2. For koumine and
N-acetylcysteine (NAC) treatment, HCC cells were exposed to different concentration of koumine
(100 µg/mL, 200 µg/mL, 400 µg/mL, and 800 µg/mL) or 400 µg/mL koumine plus 800 µM NAC for 24 h,
then cells were harvested for further experiments.

2.2. Cell Viability Determined by MTT Assays

The cell viability was determined by a modified MTT assay following previously described
methods [26]. After discarding the supernatant, the formazan was dissolved by DMSO; then,
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the optical density (OD) values were determined at 490 nm. The cell viability was calculated by taking
the cell viability in the non-treatment group as 100%.

2.3. Cell Apoptosis Determined by Flow Cytometry

The cell apoptosis was determined using flow cytometry by using Cell Apoptosis Kit with Annexin
V-FITC & Propidium Iodide (PI) (Nanjing KeyGen Biotech, Nanjing, China) following previously
described [25]. Data procession was conducted by Flow Cytometry analysis (BD, New York, NY, USA).

2.4. Immunoblotting

Protein concentrations of cleaved-Caspase3, Caspase3, Bax, Bcl-2, cytochrome c, p-ERK, ERK, p-p38,
p38, p-p65, p65, p-IκBα, and IκBα were quantified using the BCA kit (Beyotime, Shanghai, China)
and then the protein levels were determined following previously methods described [27] using
the antibodies listed below: anti-cleaved-Caspase3 (ab2302, Abcam, Cambridge, MA, USA),
anti-Caspase3 (ab13847, Abcam), anti-Bax (ab32503, Abcam), anti-Bcl-2 (ab32124, Abcam), anti-cytochrome
c (ab13575, Abcam), anti-p-ERK (ab50011, Abcam), anti-ERK (ab54230, Abcam), anti-p-p38 (ab31828, Abcam),
anti-p38 (ab4822, Abcam), anti-p65 (ab16502, Abcam), anti-p-p65 (ab86299, Abcam), anti-p-IκBα
(#2859, Cell Signaling, Danvers, MA, USA), anti-IκBα (#2859, Cell Signaling), anti-Tubulin (ab6046, Abcam),
anti-GAPDH (ab8245, Abcam), anti-COXIV (ab14744, Abcam), and horseradish peroxidase combined
second antibody. The binding antibody was visualized with an enhanced chemiluminescence detection
system (ECL) (Beyotime, Shanghai, China). GAPDH was used as an endogenous control. Tubulin was
used for cytoplasm protein loading control. COXIV was used as mitochondrial protein loading control.

2.5. Mitochondrial Membrane Potential (∆Ψm) Assay

∆Ψm was detected in Huh-7 and SNU-449 cells with the JC-1 mitochondrial transmembrane
potential detection kit (Beyotime, Shanghai, China) according to the manufacturer’s protocols and
the methods described previously [28].

2.6. Determination of the Intracellular ROS

The intracellular ROS levels were determined by using a ROS Assay Kit (Beyotime, Shanghai, China)
following the protocols and the methods described previously [29]. Target cells were treated under
different conditions and incubated with 2’,7’-Dichlorodihydrofluorescein diacetate (DCFH-DA) for thirty
minutes at 37 ◦C. Then cells were harvested for flow cytometery (BD, USA) analysis [30,31].

2.7. Data Process and Statistical Analysis

All the data obtained from at least three independent experiments were processed using GraphPad
Prism 5 software (San Diego, CA, USA) and presented as the mean ± standard deviation (SD).
One-way analysis of variance (ANOVA) was used for all data analyses. A p value of < 0.05 was
considered statistically significant.

3. Results

3.1. The Killing Effects of Koumine upon Hepatocellular Carcinoma Cells

Firstly, we treated HCC cells with 0 µg/mL, 100 µg/mL, 200 µg/mL, 400 µg/mL, and 800 µg/mL
koumine and examined the specific cellular functions. As revealed by the MTT assays, the cell viability
of HCC cells were significantly inhibited by koumine dose-dependently (Figure 1A). Meanwhile, it was
demonstrated by flow cytometry that the apoptosis was enhanced by koumine dose-dependently
(Figure 1B). Consistently, apoptosis-associated factor protein levels, including cleaved-Caspase3 and
Bax, were significantly increased, while Caspase3 and Bcl2 protein levels were decreased by koumine
dose-dependently (Figure 1C). In summary, koumine might affect the proliferation and apoptosis
of HCC cells dose-dependently.
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Figure 1. The killing effects of koumine on hepatocellular carcinoma (HCC) cells. HCC cells were treated
with 0, 100, 200, 400, and 800 µg/mL koumine and examined for (A) cell viability by MTT assays; (B) cell
apoptosis by flow cytometry; (C) protein levels of apoptosis-related factors, including cleaved-Caspase3,
Caspase3, Bax, and Bcl-2. * p < 0.05, ** p < 0.01.

3.2. Koumine Induced Mitochondrial Dysfunction and ROS Production in HCC Cells

It was found that, in human colorectal adenocarcinoma cells, koumine can reduce mitochondrial
membrane potential within cancer cells while increasing ROS production [3]. Thus, the effects
of koumine upon the mitochondrial function and ROS production in HCC cells were determined.
We treated HCC cells with 0µg/mL, 400µg/mL, and 800µg/mL koumine and examined related indicators.
Koumine treatment significantly decreased the mitochondrial membrane potential while it increased
the ROS production dose-dependently in HCC cells (Figure 2A,B). Moreover, cytochrome C protein level
was determined within the cytoplasm and mitochondria of HCC upon 0, 400, and 800 µg/mL koumine
treatment; as shown in Figure 2C, cytochrome C protein could be remarkably upregulated within
cytoplasm while it was downregulated within mitochondria by koumine treatment dose-dependently.
In summary, koumine treatment could modulate the mitochondrial functions and ROS production
of HCC cells.
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Figure 2. Effects of koumine on mitochondrial function in HCC cells. HCC cells were treated with
0, 400, and 800 µg/mL koumine and examined for (A) the mitochondrial membrane potential (∆Ψm)
with the JC-1 mitochondrial transmembrane potential detection kit; (B) the reactive oxygen species
(ROS) production by 2’,7’-Dichlorodihydrofluorescein diacetate (DCFH-DA) assay; (C) the protein level
of cytochrome C by immunoblotting. * p < 0.05, ** p < 0.01.
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3.3. Koumine Inhibits NF-κB and ERK/p38 MAPK Signaling Pathways within HCC Cells

To further confirm the molecular mechanism, we also examined the effects of koumine upon NF-κB
and ERK/p38 MAPK signaling pathways. We treated HCC with 0 µg/mL, 400 µg/mL, and 800 µg/mL
koumine and examined p-ERK, ERK, p-p38, p38, p-p65, p65, p-IκBα, and IκBα protein levels.
Figure 3 shows that ERK, p38, p65, and IκBα phosphorylation could be remarkably decreased by 400
and 800 µg/mL koumine, and further reduced by 800 µg/mL koumine treatment.

Figure 3. Koumine inhibits NF-κB and ERK/p38 MAPK signaling pathways in HCC cells. HCC cells
were treated with 0, 400, and 800 µg/mL koumine and examined for the protein levels of p-ERK, ERK,
p-p38, p38, p-p65, p65, p-IκBα, and IκBα.

3.4. Koumine Modulated HCC Cell Apoptosis and ERK/p38 MAPK and NF-κB Signaling Activation via
Producing Excessive ROS

To further investigate the role of koumine-induced excessive ROS generation, HCC cells were
co-treated with 400 µg/mL koumine and 800 µM ROS inhibitor (NAC) and examined for the related
indicators. Koumine induced the cell viability inhibition, and ROS generation was significantly
reversed by NAC co-treatment (Figure 4A,B). Moreover, the cell apoptosis rate was also significantly
inhibited by NAC co-treatment (Figure 4C).

Next, the western blot results showed that p-ERK, p-p38, p-p6, and p-IκBα protein levels were
decreased by koumine, while partially reversed by NAC co-treatment, without affecting the total
ERK, p38, p65 and IκBα protein (Figure 5A). Koumine-increased cleaved-Caspase 3 and Bax protein
levels were also partially reduced by NAC co-treatment. In the contrast, caspase-3 and Bcl2 protein
levels were increased by NAC co-treatment (Figure 5B). These data indicate that koumine-induced
cell apoptosis and inhibition of ERK/p38 MAPK and NF-κB signaling were associated with excessive
ROS generation.
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Figure 4. Koumine affects HCC cell behaviors through producing excess ROS. HCC cells were co-treated
with 400 µg/mL koumine and 800 µM N-acetylcysteine (NAC) and examined for (A) cell viability
by MTT assay; (B) the production of ROS by DCFH-DA assay; (C) cell apoptosis by flow cytometry.
* p < 0.05 and ** p < 0.01 vs. DMSO control group, # p < 0.05 and ## p < 0.01 vs. KM group.

Figure 5. Koumine exerts its effects on HCC cells via ERK/p38 MAPK phosphorylation and NF-κB
signaling. HCC cells were co-treated with 400 µg/mL koumine and 800 µM NAC and examined
for (A) the protein levels of p-ERK, ERK, p-p38, p38, p-p65, p65, p-IκBα, and IκBα by immunoblotting;
(B) the protein levels of apoptosis-related factors, including cleaved-Caspase3, Caspase3, Bax, and Bcl-2
by immunoblotting.
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4. Discussion

We demonstrated that koumine might suppress the proliferation of HCC cells while promoting
apoptosis in HCC cells dose-dependently. Under koumine treatment, the mitochondria membrane
potential was significantly decreased, while ROS production was increased in HCC cells; in the
meantime, the phosphorylation of ERK, p38, p65, and IκBα could all be inhibited by koumine treatment
dose-dependently. More importantly, the effects of koumine upon mitochondria membrane potential,
ROS production, and the phosphorylation of ERK, p38, p65, and IκBα could be significantly reversed
by ROS inhibitor, indicating that koumine affects HCC cell fate through producing excess ROS via
ERK/p38 MAPK phosphorylation and NF-κB signaling.

The anti-tumor effects of koumine on many types of cancers have been widely reported
previously [32,33]. As for the underlying mechanism, the anti-tumor effects of koumine have been
attributed to its effects on mitochondria functions and mitochondrial production of ROS. Koumine not
only lowers colorectal cancer LoVo cell membrane potential and mitochondrial membrane potential but
also frees cytosolic calcium concentration, while it increases ROS production and LoVo cell gap junction
intercellular communication. Via the above-mentioned mechanisms, koumine induces LoVo cell
apoptosis [23,33]. In breast cancer, koumine affected the apoptotic Caspase 3/Bcl-2 cascades to induce
G2/M arrest and apoptosis in breast cancer MCF-7 cells [22]. Herein, koumine can remarkably suppress
the proliferation of HCC cells while it promotes the apoptosis of HCC by enhancing cleaved-Caspase
3 and Bax protein levels, whereas it inhibits Bcl-2 protein. Additionally, koumine treatment also
dose-dependently reduced the mitochondria membrane potential and increased the production of ROS,
indicating that the killing effects of koumine upon HCC cells could be attributed to koumine-induced
excessive production of ROS by mitochondria.

An essential feature for cancer cells is the possibility to respond to various proliferative or
inflammatory factors provided by the microenvironment, possibly through several essential signaling
pathways. For example, MAPK signaling pathways, which are involved in mediating processes of cell
growth, survival, and death, could be activated in response to various chemicals and environmental
stresses [34,35] and then induce apoptosis by phosphorylating or indirectly down-regulating
pro-survival Bcl-2 proteins under conditions of cellular stress [36,37]. Earlier publications about
HCC have often focused on activation of the ERK pathway by serum factors [38] and inhibition of ERK
phosphorylation by sorafenib, a multikinase inhibitor and one of the most widely used anti-tumor agents
for HCC treatment. Additionally, another anti-tumor agent, evodiamine (Evo), an active ingredient
isolated from the fruit of Evodia rutaecarpa Bentham, has been shown to exert its antitumor activities
via inhibiting the activation of NF-κB and MAPK [39–41]. In the present study, we also investigated
the involvement of NF-κB and MAPK signaling pathways in the anti-tumor effects of koumine on HCC.
Koumine treatment dramatically inhibited ERK, p38, p65, and IκBα phosphorylation in HCC cells.
More importantly, the inhibitory effects of koumine on the phosphorylation of these factors mentioned
above could be significantly reversed by the application of ROS inhibitor, indicating that koumine exerts
its effects on HCC cells through NF-κB and ERK/p38 MAPK pathways ROS-dependently (Figure 6).
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Figure 6. A schematic diagram of the proposed mechanisms of koumine induced apoptosis in HCC
cells. The→ indicates release, activation or induction.

5. Conclusions

In conclusion, koumine was shown to inhibit the proliferation and promote the apoptosis
in HCC cells; NF-κB and ERK/p38 MAPK pathways were shown to contribute to koumine functions
in a ROS-dependent manner.
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