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Abstract

Background: Sugarcane (Saccharum) is the most critical sugar crop worldwide. As one of the most enriched
transcription factor families in plants, MYB genes display a great potential to contribute to sugarcane improvement
by trait modification. We have identified the sugarcane MYB gene family at a whole-genome level through
systematic evolution analyses and expression profiling. R2R3-MYB is a large subfamily involved in many plant-
specific processes.

Results: A total of 202 R2R3-MYB genes (356 alleles) were identified in the polyploid Saccharum spontaneum
genomic sequence and classified into 15 subgroups by phylogenetic analysis. The sugarcane MYB family had more
members by a comparative analysis in sorghum and significant advantages among most plants, especially grasses.
Collinearity analysis revealed that 70% of the SsR2R3-MYB genes had experienced duplication events, logically
suggesting the contributors to the MYB gene family expansion. Functional characterization was performed to
identify 56 SsR2R3-MYB genes involved in various plant bioprocesses with expression profiling analysis on 60 RNA-
seq databases. We identified 22 MYB genes specifically expressed in the stem, of which RT-qPCR validated MYB43,
MYB53, MYB65, MYB78, and MYB99. Allelic expression dominance analysis implied the differential expression of
alleles might be responsible for the high expression of MYB in the stem. MYB169, MYB181, MYB192 were identified
as candidate C4 photosynthetic regulators by C4 expression pattern and robust circadian oscillations. Furthermore,
stress expression analysis showed that MYB36, MYB48, MYB54, MYB61 actively responded to drought treatment; 19
and 10 MYB genes were involved in response to the sugarcane pokkah boeng and mosaic disease, respectively.
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Conclusions: This is the first report on genome-wide analysis of the MYB gene family in sugarcane. SsMYBs
probably played an essential role in stem development and the adaptation of various stress conditions. The results
will provide detailed insights and rich resources to understand the functional diversity of MYB transcription factors
and facilitate the breeding of essential traits in sugarcane.
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Background
Modern cultivated sugarcane (Saccharum spp.) is the
primary source of sugar for the world. It is the top-
most crop concerning total biomass production and is
listed among the 10 most valuable crops [1]. Sugar-
cane, having a complex genetic background resulting
from polyploid interspecific hybrids, was first
domesticated approximately 10,000 years ago in New
Guinea. Saccharum spontaneum contributes to 10–
15% chromosomes in modern sugarcane cultivars,
endowing the characteristics such as disease resistance
and ratooning capacity [2]. The genome of haploid S.
spontaneum has been assembled to the chromosome
level and used as the reference genome of sugarcane
[3]. Because of the development of multiple transcrip-
tome models in recent times, including those for
different tissues, developmental stages, and under
various stress treatments, massive RNA-seq data are
available, which can provide detailed insights and rich
resources for studying sugarcane genes functions.
Transcription factors recognize specific DNA motifs in

upstream regions of the genes to regulate their expres-
sion. MYB genes constitute one of the most prominent
families of plant transcription factors and characteristic-
ally possess highly conserved Myb DNA-binding do-
mains, forming a helix-turn-helix structure of about 52
amino acids [4]. MYB genes can be divided into four cat-
egories, including MYB-related, R2R3-MYB, R1R2R3-
MYB, and atypical MYB, depending on the number of
adjacent MYB repeats (R). Proteins with a single or a
partial MYB repeat, generally located at either ends or
middle of the peptide chain, are MYB-related.
MYB-related proteins include critical telomere binding

proteins in maintaining the integrity of the chromosome
structure [5]. Moreover, they also play an essential role
in regulating gene transcription, e.g., the GARP family of
plant Myb-related DNA binding motifs is involved in
organ polarity in Arabidopsis [6]. Further, CIRCADIAN
CLOCK ASSOCIATED1 (CCA1) and LATE ELON-
GATED HYPOCOTYL (LHY) genes regulate the plant
circadian clock [7]. A small number of members of
R1R2R3-MYB genes are found in higher plants. Interest-
ingly, plant R1R2R3-MYB genes share a similar function
of regulating the cell cycle control with the animals [8].
R1R2R3-MYB has also been involved in cell differenti-
ation [9] and plant stress tolerance [10].

Atypical MYB proteins contain four or more adjacent
MYB repeats (R). These proteins have been found to en-
code in a few plants, e.g., Arabidopsis thaliana, Oryza
sativa, Vitis vinifera, Glycine max, Physcomitrella patens
(data sources displayed in Materials and Methods 2.1),
as shown in Fig. 1. Only a few reports have been pub-
lished about atypical MYB proteins by now, and the role
of these proteins in the plant bioprocesses is mainly un-
known. MYB transcription factors binding specific DNA
sequence (CAACG/TG) result from domain structure
that is formed by two closely packed amino acid se-
quence repeats(R) [11]. When the MYB gene contains at
least two MYB repeats (R), it has transcription factor
characteristics and explicitly recognizes the DNA motifs
to regulate the gene transcription. R2R3-MYB proteins
are the largest subfamily of MYB transcription factors in
plants, as well as in S. spontaneum (Fig. 1). R2R3-MYB
is characterized by two MYB repeats and the presence of
a single amino acid (Leu) in the first (R2) repeat [12].
R2R3-MYB has two MYB repeats and a single amino
acid (Leu) inserted in the first (R2) repeat. The R2R3-
MYB family’s expansion originated from the R1R2R3-
MYB gene ancestor when losing the R1 repeat sequences
during evolution [13] and benefiting from gene duplica-
tion events [14].
MYB genes are widely involved in plant-specific pro-

cesses, such as differentiation [15], hormone response
[16], secondary metabolism [17], environmental stress
tolerance [18], and diseases resistance [19, 20]. At least
four MYB genes are involved in lignin biosynthesis in
Arabidopsis by activating key regulator genes related to
secondary cell wall formation [21]. Under environmental
stress, MYB genes have been reported to function in re-
sponse to adverse stress in Arabidopsis. Moreover,
AtMYB2 and AtMYB96 function as transcriptional acti-
vators in ABA-inducible gene expression under drought
stress [22]. AtMYB96 mediates abscisic acid signaling,
induces pathogen resistance response by promoting sali-
cylic acid biosynthesis, and provides drought tolerance
via controlling the cuticular wax biosynthesis [20, 23].
This study focused on the R2R3-MYB gene family in

the S. spontaneum published sugarcane genome. We
provided a detailed overview of phylogenetic relation-
ship, gene structure, regulatory elements, expression
profiles, allelic evolution, and functional characterization
based on abundant transcriptome data. Our study
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systematically explored the evolutionary dynamics and
functional diversification of SsR2R3-MYB genes and
could facilitate future research on sugarcane MYB tran-
scription factors.

Results
Genome-wide identification of R2R3-MYB genes and
classification in S. spontaneum genome
Based on the functional annotation of the Myb_DNA-
binding domain (PF00249), a total of 418 MYB genes
(695 alleles) were identified in the S. spontaneum
genome by combining the HMMER program and NCBI-
CDD database (Fig. 1). The SsMYB gene family was
classified into four distinct subfamilies, including 207
MYB-related (329 alleles), 202 R2R3-MYB (356 alleles),
3 R1R2R3-MYB (3 alleles), and 5 Atypical MYB (7 al-
leles) genes (detailed data presented in supplementary
Table S1). Total 122 SbMYB-related, 125 SbR2R3-MYB,
three SbR1R2R3-MYB, and two atypical SbMYB genes
were also identified to increase the understanding of the
SsR2R3-MYB genes in sorghum (Table S3).
To analyze the plant MYB genes thoroughly, 20 spe-

cies representing 11 lineages were screened to construct

a plant phylogenetic tree with S. spontaneum, including
Green algae, Bryophyta, Gramineae, Cruciferous, Legu-
minous, Rosaceae, Solanaceae, and others. The tree top-
ology reflected the phylogenetic relationship of these
species and divergence time (Fig. 1). Plant phylogeny
showed that the higher plants possessed more MYB
genes than the lower plants, such as green algae (e.g.,
Ostreococcus lucimarinus, Volvox carteri, and Chlamydo-
monas reinhardtii). A significant expansion of MYB
genes was observed after the Cambrian (about 540 ~
480MYA), demonstrating an explosive biological diversi-
fication episode near the early period [24]. Most of the
phylogenetic nodes of plant species were observed in the
Cretaceous, a geological period when a typical global
warming climate contributed to the terrestrial species di-
versity [25]. Compared with the other four kinds of
grasses, S. spontaneum had one of the most significant
MYB genes as predicted by PlantTFDB. One reason is
the tetraploid nature of the autopolyploid S. spontaneum
(octoploid). However, when corrected for ploidy level,
the number of SsR2R3-MYB genes in S. spontaneum was
still higher than most of the species, including Arabidop-
sis thaliana and other grass species. The number of
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Fig. 1 Phylogenetic tree of diverse species showing the number of MYB family. The phylogenetic tree reflects the evolutionary relationship and
divergence time of various species in plants through the TimeTree database (http://www.timetree.org). Linear scale Time MYA (millions of years
ago) and Geologic Timescale were shown at the tree’s bottom. These species contain Green algae, Grasses (red node), Cruciferous (green node),
Leguminosae (orange node), Rosaceae (purple node), Chenopodiaceae (blue node), and others altogether 11 lineages. MYB gene family could be
divided into four subfamilies according to the number of Myb domains. The available information of the MYB gene family was obtained from the
reported literature. The short line represented undetermined. The MYB families were estimated by performing profile searches using a
combination of the HMMER3 program (PF00249) and NCBI-CDD database for S. spontaneum and S. bicolor. Myb_DNA-binding domain (PF00249)
was downloaded from Pfam (Finn et al., 2010). S. spontaneum MYB gene in brackets was identified throughout the genome and contained
alleles. A single set of genes were shown in outsides for each subfamily. Different alleles of one gene might be divided into different subfamilies.
Thus, to better classification, a single set of genes did not distinguish this condition that one gene was in different subfamilies. Geologic Periods:
C(Cambrian), O(Ordovician), D(Devonian), P(Permian), Tr(Triassic), J(Jurassic), K(Cretaceous), Pg(Paleogene)
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MYB genes with a phylogenetic tree of the plant species
indicated the expansion of MYB genes from alga to land
plants, consistent with previous reports [26].
Maximum likelihood phylogenetic tree of R2R3-MYB

genes from O. sativa and S. spontaneum showed that the
sugarcane genome contained 15 subgroups (G1-G15)
OsR2R3-MYB genes (Fig. 2, Table S2) with each distrib-
uting rice MYBs. Sugarcane and rice diverged in the
Paleogene (67-26MYA) (Fig. 1); the short divergence
time indicated relative conservatism of the ortholog

genes. As expected, two species of R2R3-MYB genes
were evenly distributed in the tree, and most genes in
rice clustered with sugarcane, except for G8. However,
the number of genes in each clade varied greatly; for in-
stance, the biggest group, G3, contained 38 genes while
the group G8 and G13 comprised just two genes.
Twenty SsMYB genes from three unique subgroups, G2,
and G10, did not contain rice genes, indicating the spe-
cies’ genetic divergence. Besides, the clusters depicted
that the sugarcane MYB family exhibited a more
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Fig. 2 Phylogenetic relationships of R2R3-MYB subgroup members from S. spontaneum and rice. A phylogenetic tree of R2R3-MYB proteins from
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significant number of genes than that in rice, showing a
significant expansion of the SsMYB family. In addition,
we also constructed an ML phylogenetic tree with Arabi-
dopsis (Figure S1). Comparative analysis of two trees
showed some differences because of different species,
but overall high similarity implied the topology of
reliability.

Analysis of genomic location, gene structure, and
regulatory elements
A total of 202 SsR2R3-MYB genes were named in turn
according to their physical position on the chromo-
somes. MYB genes were distributed throughout all 32
chromosomes (Fig. 3c); the autopolyploid S. spontaneum
genome comprised of eight homologous groups of four
members each [3]. The chromosome distribution map
showed that the location of the MYB genes was not
evenly distributed. Most of the SsMYB genes were lo-
cated on Chr3A and Chr7A, encompassing 19 and 16
genes, respectively. About 11 enrichment clusters, tiny
fragments on genomic regions containing three MYB
genes, were detected, and half of these genes had MYB-
binding sites (MBS) depicting potential interaction
among each cluster. However, some chromosomes only
contained a few MYB genes. For instance, five chromo-
somes, including Chr2C, Chr2D, Chr6C, Chr8B, and
Chr8D, had only one MYB gene.
S. bicolor is one of the closest lineages of sugarcane,

possessing relatively perfect genomic sequence data [27,
28]. Total 125 SbR2R3-MYB genes were identified from
the available sorghum genome using a similar method
(Fig. 1, Table S3). The diversity of the gene structure
might be a shred of evidence regarding the evolution of
gene families. The Neighbor-Joining method performed
the phylogenetical gene structure analysis using diverse
gene information (Fig. 3a and Figure S2). The distribu-
tion of the tree branches was consistent with the struc-
tural features of the genes. Various sorghum genes were
clustered with highly similar SsR2R3-MYB genes, e.g.,
SbMYB92 clustered with SsMYB149 and SsMYB156
while SbMYB27 was clustered with SsMYB30 and
SsMYB44. These results sharpened our understanding of
the evolution of gene events during sugarcane polyploi-
dization. A total of 19 SsR2R3-MYB genes did not show
the presence of intron, including SsMYB154, SsMYB188,
SsMYB194, SsMYB170, SsMYB122, SsMYB182, and
SsMYB189. Many MYB genes demonstrated a domain
with a cross-intron structure.
Cis-elements in promoter regions play an essential role

in controlling transcription and expression, which can
deepen the understanding of the regulatory function of
MYB genes. Total 2000 bp upstream of transcription ini-
tiation site (ATG) was regarded as MYB gene promoters
and submitted to the PlantCARE for predicting the

motifs. Various motifs from 202 SsR2R3-MYB gene pro-
moters were involved in various plant bioprocesses (Fig.
3b). These diversified cis-regulatory elements could be
divided into four main categories in terms of function:
stress response, hormone response, light response, and
plant growth and metabolism. A high percentage of
MYB genes in the anaerobic induction (92%) and
drought elements (58.9%) indicated that the MYB genes
were more likely to function under these stresses. More-
over, a notable gene, MYB88, was found to have 10 LTR
motifs, which is a cis-acting element involved in low-
temperature responsiveness. The significantly enriched
LTR elements (5′-CCG AAA-3′) suggested that the
MYB88 gene might be involved in plant metabolic re-
sponse to cold stress. Many of the MYB genes regulate
the plant hormone response, especially methyl jasmonate
(MeJA) and abscisic acid (ABA) responsiveness. A total
of 75 gene promoters had enriched regulatory elements
TGACG-motif (5′-TGACG-3′) and CGTCA-motif (5′-
CGTCA-3′) involved in MeJA-responsiveness, while 38
gene promoters enriched regulatory elements ABRE in-
volved in abscisic acid responsiveness. These MYB genes
were predicted to regulate MeJA and ABA signaling in
plants and function in plant defense and leaf abscission.
Furthermore, more than 30 light response-related ele-
ments were predicted; for instance, conservative light
element G-box was widely present in the upstream se-
quence of genes. Several regulatory elements were also
associated with other plant growth and development
functions and regulation of seed growth and meristem
development. Genes involved in seed-specific regulation
contained the same RY-element (5′-CATGCATG-3′),
and the elements involved in meristem expression dem-
onstrated CAT-box (5′-GCC ACT-3′) and NON-box
(5′-AGATCGACG-3′) in promoter regions. Finally, 119
genes were scattered on MYB binding sites, and 49 genes
showed more than one binding site, suggesting that these
genes probably interacted with other MYB genes. Four
MYB binding elements were found in 202 SsR2R3-MYB
promoters, including CCAAT-box (5′-CAACGG-3′),
MBS (5′-CAACTG-3′), MBSI (5′-aaaAaaC(G/C)GTTA-
3′), and MRE (5′-AACCTAA-3′). There was only one
base difference between the former two elements, which
accounted for 80% of the total MYB binding elements,
suggesting the conservative nature of the sequence CAAC
G/TG of the MYB binding site. The autoregulation of
plant transcription factors is common in one family, which
showed sequence-specific interactions of the family [29,
30]. Dof1 binds the PEPC1 promoter, but Dof2 blocks the
transactivation of Dof1 [31]. Some identified MYB genes
were co-expressed on the STRING network (http://string-
db.org/), such as MYB114, MYB 168, and MYB167;
MYB109, MYB108, and MYB47. These MYB genes with
MYB binding site indicated the potential interaction
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effects. Co-expression analysis further supports the
hypothesis.

Pervasive gene duplications
Duplication is a striking feature of the plant genome.
Gene duplication in the R2R3-MYB gene family occurred
during earlier evolution in land plants and contributed
to its amplification [32]. We estimated gene duplication
events in the S. spontaneum genome by collinearity ana-
lysis. A total of 274 collinearity pairs of SsR2R3-MYB
genes were identified by Blastp for all protein sequences
and evaluated with MCScanX, including 144 allelic pairs
and 130 non-allelic pairs (Fig. 4, Table S4). The collin-
earity relationships revealed that over half of the collin-
earity genes were concentrated in Chr 3 and Chr 7. The
duplication events for MYB genes were predicted. Total
91 (25.84%) genes were tandem repeats, of which one-
quarter of genes were located on Chr 7. Furthermore,
146 (39.88%) genes were identified to derive from seg-
mental duplication events; 28.1% genes on Chr 2 and
33.5% on Chr 3 evolved from segmental duplication (Fig.
4, Table S5). Segmental duplication played a critical role
in the MYB gene evolution of S. spontaneum, similar to
other species. About 66.5% of the R2R3-MYB genes de-
rived from gene duplication events drove the MYB gene
family expansion.

Temporal and spatial expression of the R2R3-MYB gene
family
To characterize the expression profile of MYB transcrip-
tion factors, the temporally and spatially expression pro-
files of 202 SsR2R3-MYB genes were analyzed using a
total of 50 RNA-seq data among three transcriptome
models, including tissue and developmental stages, leaf
developmental gradient, and circadian rhythm. The ex-
pression heatmap showed that most of the MYB genes
had low expression levels, but 71% of gene expression
values were greater than 1 (FPKM) in at least one RNA-

seq sample (Fig. 5a, Table S6). Expression values of 15
MYB groups were presented in Table S6, and group G6
genes seemed to be expressed greater than that in the
other groups.
Five different expression patterns, i.e., C1-C5, were in-

vestigated on the tissue and developmental stages
transcriptome by K-means (Fig. 5b). A total of 85
SsR2R3-MYB genes belonging to the C1 and C3 clusters
had low expression value, particularly C1 genes with al-
most no expression. On the contrary, C2 cluster genes
displayed a relatively higher expression level in all devel-
opmental periods of leaf and stem. Interestingly, 37
genes of the C4 cluster were highly expressed in the
stem during the seedling stage, the early stage of the
stem formation (Figure S3A). Moreover, in the C5 clus-
ter, 35 genes were highly expressed in the stem during
each period, probably playing a regulatory role in the
stem development (Figure S3B). The clusters indicated
that the global gene expression levels in the stem were
significantly higher than those in the leaves, suggesting
SsR2R3-MYB genes might play an essential role in stem
tissue. The relative expression of SsMYB43, SsMYB52,
SsMYB65, SsMYB78, and SsMYB99 were quantified by
RT-qPCR, verifying the results of RNA-seq data (Figure
S4A); additionally, SsMYB3, SsMYB15, and SsMYB157
predominant expressed in the early stage of stem forma-
tion depicted as prophase of the stem (Pro-stem), which
was much higher than those in other stem nodes and
leaf tissues (Figure S4B).
Sugarcane is a typical C4 plant with high light use effi-

ciency. The developmental gradient model of grass
leaves could be used to study C4 photosynthesis and its
regulatory factors [33, 34]. The regulatory role of SsMYB
genes on C4 photosynthesis was investigated on the de-
velopmental dynamical transcriptome of sugarcane leaf.
As suggested by the C4 photosynthetic development
model, leaves are gradually differentiated for active
photosynthesis [33]. A total of 27 differentially expressed

(See figure on previous page.)
Fig. 3 Structure, distribution, and regulatory elements of SsR2R3-MYB genes. a Comparison of gene structure between S. spontaneum and S.
bicolor based on the phylogenetic tree. ClustalX performed the sequence alignment of SsR2R3-MYB and SbR2R3-MYB proteins, and the
Phylogenetic tree was constructed using MEGA 7.0 with Neighbor-Joining (NJ) method, 1000 bootstrap replicates, Pairwise deletion, and
Bootstrap values on the nodes. SsMYB gene names are marked black, and SbMYB gene names are marked red. Gene sequences were modified to
start at the transcription initiation site (ATG), and gene structures were displayed using GSDS2.0 (http://gsds.cbi.pku.edu.cn/). The CDS sequence
and intron were represented as fine lines and yellow cylinders, and green cylinders highlighted the MYB domain. The first subgroup was
presented here when the estimated phylogenetic relationship of S. spontaneum and S. bicolor and others were shown in Figure S2. b Cis-
regulatory elements of SsR2R3-MYB gene promoters with diversified plant biological functions. The functions of the predicted cis-regulatory
elements covered four main categories: stress response, hormone response, light response, plant growth, and metabolism. The x-axis showed
divers plant biological functions, and the y-axis indicated the number of a specific category of genes in that main category. The red rectangle
represented the genes containing more than six elements involved in regulating a particular plant function. c Distribution of SsR2R3-MYB gene
members in S. spontaneum genome. 202 SsR2R3-MYB genes were named according to their physical position on the chromosome and tagged in
red font. Yellow font indicated chromosome name, and chromosome was represented as hollow cylinders with length scale (bp) on the left. The
green spots displayed a gene enrichment cluster
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SsR2R3-MYB genes were detected by the leaf develop-
mental gradient. Most of the genes (Class I) showed an
expression profile, illustrating high value in the early
stage of leaf development (Figure S5). Only three genes
SsMYB169, SsMYB181, and SsMYB192 in Class II (Fig.
5c, Figure S5), were identified as putative C4-related
transcription factors using the method that associated
the co-expression pattern with the photosynthetic activ-
ity [35]. The expression increased with the development

of C4 photosynthesis and displayed the highest accumu-
lation at the leaf mature zone. SsMYB181 and SsMYB192
shared one haplotype gene Sspon.07G0015250 with
SsMYB169, as the tandem genes SsMYB181 and
SsMYB192 derived from a gene duplication event. Circa-
dian rhythm is another module to study photosynthesis,
in which previously identified C4-related regulators
could also be verified. Nine SsR2R3-MYB genes showed
a significant association of expression profile with the
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light-dark cycle (Fig. 5d). Their expression patterns were
divided into three modules, each module containing
three genes. The expression level of SsMYB169,
SsMYB159, and SsMYB153 tailed off during the daytime
until around 6:00 pm and then gradually recovered till
the next cycle. However, SsMYB48, SsMYB57, and
SsMYB158 raised their expressions during the day and
fell at night. Unexpected but reasonable, the preliminary
identification of three C4-related regulators, SsMYB169,
SsMYB181, and SsMYB192, also showed daylight expres-
sion pattern, hinting at their involvement in the regula-
tion of circadian rhythm, indicating that the three
candidate MYB transcription factors were associated
with C4 photosynthesis.

MYB genes involved in response to drought and disease-
induced stress
The expression patterns of SsR2R3-MYB genes were
evaluated under environmental stress (biotic and abiotic
stress). Six SsR2R3-MYB genes with significantly differ-
ential expression were responsive to drought induction
(Fig. 6a, Table S7). The transcripts of four genes,
SsMYB54, SsMYB36, SsMYB61, and SsMYB48, rapidly
accumulated after drought treatment, but their expres-
sion reduced normal level after rehydration. On the
other hand, SsMYB29 and SsMYB166 showed the oppos-
ite trend. Further, the upstream regulatory elements of
these six genes contained the MBS element (5′-CAAC
TG-3′), which was identified as MYB binding site
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Fig. 5 Temporal and spatial expression dynamics of SsR2R3-MYB genes. a A heatmap showed the expression profile of SsR2R3-MYB genes.
Columns showed 202 SsR2R3-MYB genes, and rows showed developmental stages and tissues, leaf developmental gradient, and circadian
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involved in drought-inducibility. Half of these genes
retained more than one MBS.
Pokkah boeng disease of sugarcane (PBD) is one of the

most severe and devastating diseases caused by the
Fusarium species complex, a fungal pathogen [36, 37].
Nineteen different MYBs were associated with sugarcane
PBD-infection and response (Fig. 6b, Table S7). Accord-
ing to the gene expression profiles, these genes included
14 genes with increased expression in defense response
and five genes with reduced expression.
Sugarcane mosaic disease is a highly transmissible viral

disease present in cane-growing regions worldwide. Sugar-
cane mosaic virus (SCMV), belonging to the positive-sense
single-stranded RNA viruses, reduces yields by damaging

chloroplast and blocking photosynthesis [38, 39]. After
SCMV infection, 10 SsR2R3-MYB gene expression in-
creased, and one gene, MYB176, decreased, suggesting that
these MYB genes were involved in defense against SCMV
infection (Fig. 6c, Table S7). We discovered that these MYB
genes were unique to sugarcane diseases, indicating the
defense specificity of MYB genes for conferring the resist-
ance of sugarcane pokkah boeng and mosaic disease.

Functional characterization
The potential function of SsR2R3-MYB genes was pre-
dicted on the identified genes with significantly specific
expression. Fifty-six SsMYB genes were involved in seven
plant bioprocesses (Fig. 6d). Six MYB genes only
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expressed during seeding stem and were possibly involved
in stem differentiation and formation (Fig. 6a). Three
MYB genes were identified as candidate C4 photosynthesis
regulators, and nine genes responded in the circadian
clock. Under diverse stresses, it was seen that 6, 19, and
10 SsR2R3-MYB genes responded to drought, pokkah
boeng disease, and mosaic disease, respectively. Notably,
SsMYB51 and SsMYB162 illustrated different expression
changes between two sugarcane diseases (pokkah boeng
and mosaic disease). SsMYB162 significantly accumulated,
actively responding to the infection of two diseases (Table
S7). However, SsMYB51 showed a different expression
pattern, negatively responding to pokkah boeng but posi-
tively answering SCMV. Moreover, 13 MYB genes had
more than one putative function, indicating their role in
diverse plant bioprocesses (Fig. 6d).

Allelic expression dominance drove SsMYB to function in
stem
The transcriptional levels of R2R3-MYB allelic genes were
compared among different tissues and different develop-
mental stages to investigate the transcriptome dynamics
of R2R3-MYB genes in the allopolyploid across eight
homoeologous chromosome pairs, of which 25% of the
R2R3-MYB genes displayed allelic expression dominance
in all samples. The number of expression dominant genes
in the A, B, C, and D genomes was 84, 93, 82, and 79, re-
spectively. Further, the allelic genes were compared in
pairs, including A-B, A-C, A-D, B-C, B-D, and C-D
(Fig. 7a). Both the number of dominant genes in a single
set of homoeologous chromosomes and the pairwise com-
parison of alleles showed no significant allelic dominance.
Captivatingly, the number of dominant genes in the stem
was more than that in the leaf in each allelic pair compari-
son. For four sets of homoeologous chromosomes, the
percentages increase was 46.5, 90.6, 10.2, 143.4%, corre-
sponding to A, B, C, and D genomes, respectively, and the
overall average rise was 64.5%. The transcriptional expres-
sion of allelic genes in the stem tissues showed significant
differences among different alleles than those in the leaf
tissues. Allelic expression dominant genes derived pre-
dominantly from stem transcriptomes. Selective pressure
analysis demonstrated that the Ka/Ks median values of
dominant allelic pairs in the stem and leaf were mainly in
the range of 0.3–0.5 (Fig. 7b). The number of dominant
genes in the stem with positive selection (Ka/Ks > 1) was
twice that in the leaf, indicating MYB dominant genes
evolved faster. MYB allelic genes with median Ka/Ks in
the range from 0.4 to 0.6 were divided into three categor-
ies: dominant, subordinate, and neutral alleles, of which
neutral genes were the majority (Fig. 7c). The differentially
expressed dominant and subordinate genes might contrib-
ute to allelic variation that affected gene expression, func-
tion, and phenotype.

Discussion
Gene duplication played an essential role in gene expan-
sion and functional diversification in the genetic revolu-
tion and phenotypic evolution [40]. A total of 202
SsR2R3-MYB genes were identified, the second-highest
number of these genes among the 21 essential plant spe-
cies (displayed in Fig. 1). The number of R2R3-MYB in
sugarcane was far more than the other members of the
grass family. Nevertheless, sugarcane with octoploid na-
ture had a higher number of MYB genes compared with
the other species. The significant enrichment of SsMYB
genes probably was affected by two rounds of whole-
genome duplication, including allopolyploidization
followed by autopolyploidization [41], or two rounds of
autopolyploidization [3]. In grasses, 11 (7.09%) genes in
O. sativa were derived from tandem duplications, 26
(21.31%) in B. distachyon, and 24 (15%) in Z. mays,
while 44 (28.38%) segmental gene pairs were derived
from segmental duplications in O. sativa, 34 (45.08%) in
B. distachyon, and 19 (24%) in Z. mays, respectively [42].
The duplication of genes distribution indicated that the
MYB genes family expansion in S. spontaneum could be
attributed to these duplication events.
The large R2R3-MYB gene family resulted from dupli-

cation events, and autopolyploidization demonstrated di-
verse functions in plant-specific processes. Some genes
specially expressed in stem tissues were concentrated in
the stem prophase, indicating that these MYB genes
might regulate biological processes related to stem de-
velopment. Stem morphogenesis is tightly associated
with the formation and lignification of the secondary
wall (the central mechanical tissue in the stems of grass
species) [43]. Indeed, some MYB transcription factors
are identified to be involved in sugarcane stem develop-
ment. A previous study revealed that 7 ScMYB genes
were correlated with lignin content and biosynthesis
[44]. ShMYB78 has been recognized as an activator of
suberin biosynthesis and regulates suberin deposition
[45]. In Arabidopsis, the asymmetric leaves1 (as1) gene
encoding an MYB protein-mediated stem cell function
interacted with meristematic genes to regulate the shoot
morphogenesis [46]. Furthermore, a group of rice and
maize MYB genes (OsMYB46 and ZmMYB46) activated
the transcription of secondary cell wall biosynthesis and
probably interacted with secondary wall-associated NAC
genes [43]. The role of these SsMYB genes in stem de-
velopment might provide potential genetic resources for
sugarcane breeding.
MYB genes also play an important role in leaf develop-

ment in grasses. In maize, a group of MYB was recog-
nized to be involved in leaf development, as indicated by
expression gradients. Myb-ZmRS2, MYB60, and MYB61
influence adaxial/abaxial polarity and stomata patterning
[47]. Moreover, some ZmMYBs are highly expressed in
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the transition zone, affecting secondary cell wall and lig-
nin production [33]. The Class I containing 24 SsR2R3-
MYB genes were also inferred to have similar functions.
A few MYB genes were identified as C4 regulators and
correlated with C4 photosynthetic cell type-specific gene
expression. An MYB gene encoding GRMZM2G130149,
which regulates the transcription of phosphoenolpyr-
uvate carboxykinase (PEPCK) in Z. mays, was catego-
rized as a C4 transcription factor [34]. Three putative C4

transcription factors (SsMYB169, SsMYB181, and
SsMYB192) identified in this study might play a potential
role in forming photosynthetic organs and regulating the
C4 photosynthetic pathway. The LATE ELONGATED
HYPOCOTYL (LHY) gene, encoding an MYB transcrip-
tion factor, regulated circadian rhythms in Arabidopsis,
and MYB-LHY was involved in circadian photoperiod
[48]. In sugarcane, nine candidate MYB genes with high
expression were associated with the circadian cycle and
therefore performed similar functions. The genes associ-
ated with leaf development showed relatively low expres-
sion levels (FPKM< 10) than those linked with the stem
tissues, hinting at a stem-related expression dominance
for most SsMYB genes.
Drought is one of the main factors restricting sugar-

cane growth and sugar production [49]. Identifying par-
ticular and novel candidate genes is a great strategy to
improve stress tolerance in sugarcane in this context.
Certain MYB transcription factors, for instance, MYB_2
[50], SoMYB18 [51], ScMYB2S1 & 2 [52], and ScMY-
BAS1 [53], have been associated with the response to
drought-induced stress in sugarcane. Six MYB genes
were identified as a differential expression in this study,
helping understand the sugarcane drought tolerance
mechanism.
Following pathogen invasions, plants turn on a series

of plant defense mechanisms. MYB transcription factors
play a facilitating role in disease resistance by regulating
plant hormone metabolism and mediating systemic re-
sistance [54]. AtMYB30 [55], AtMYB96 [20], and SpMYB
[56] have already been reported to be involved in disease
resistance. Several defense-related MYB candidate genes
were identified against pokkah boeng disease and mosaic
disease of sugarcane. Hence, MYB genes are a compo-
nent of plant defense mechanisms against fungal and
viral pathogens.

Polyploids are widely distributed among plants, and
about 70% of the angiosperms have experienced one or
more polyploidization events during their evolution. As
a plant genome evolutionary force, polyploidization plays
an essential role in speciation and genomic plasticity. In
this study, homologous expression dominant genes Ka/
Ks of autopolyploid sugarcane were higher than those of
neutral genes, consistent with the report of allopolyploid
of B. juncea [57]. The asymmetric evolution of alleles
facilitated differential expression, then affected plant
biological processes. No significant differences were de-
tected between the four unichromosomal genomes A, B,
C, and D for MYB dominance. However, MYB homolo-
gous expression of dominant genes was more remark-
able in number in the stem tissues than that in the leaf,
and the former were subject to selection pressures with
more powerful, implying that MYB stems dominant
genes intensified selection in sugarcane. Not surpris-
ingly, the transcription level of MYB genes more signifi-
cantly enriched in the stem. The transcriptional
advantages of these MYB homologous expression dom-
inant genes in stem tissues might provide new insights
for facilitating polyploid crop breeding for sugarcane.

Conclusions
It is the first time deciphering the phylogeny, gene struc-
ture, and expression of the MYB family in S. sponta-
neum. Genome-wide expression analysis demonstrated
that SsMYB genes were involved in stem development
and stress response. The MYB genes might be engi-
neered to adjust important sugarcane traits, and there-
fore, these genes would be a promising target for
sugarcane genetic improvement.

Materials and methods
Obtainment of MYB genes
The autopolyploid sugarcane S. spontaneum L. genomic
sequence was published in 2018 and available online
(ht tp : / /www. l i f e . i l l ino i s . edu/ming/downloads/
Spontaneum_genome/). The Hidden Markov Model
(HMM) profile of the MYB DNA-binding domain
(PF00249) downloaded from Pfam database (http://pfam.
xfam.org/) [58] was used to search protein sequences
containing MYB domain by hmm search program
(HMM3.0) [59]. Then, putative MYB proteins were

(See figure on previous page.)
Fig. 7 Allelic expression dominance and selective pressure analysis in SsR2R3-MYB family. a Expression histograms of SsR2R3-MYB allelic genes
among the tissue and development stage of S. spontaneum. N values indicate the number of dominant genes in allelic genes identified R2R3-
MYB genes. b The distribution of Ka/Ks of expressedly dominant genes in leaf and stem. Each KaKs interval corresponds to the number of genes.
Ka/Ks median values of leaf and stem were 0.455 and 0.482, respectively. c The distribution of Ka/Ks values among allelic genes as dominant,
subordinate, and neutral (equal expression level in allelic gene pair). Each KaKs interval corresponds to the percentage of genes. Ka/Ks median
values of dominant, subordinate, and neutral genes were 0.491, 0.506, and 0.485, respectively
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further screened through the NCBI-CDD database to in-
vestigate the former protein sequences and delete the
proteins with incomplete domains. SbR2R3-MYB genes
were obtained by performing the same sugarcane
method without publicly available data for sorghum
MYB genes. Data for sorghum protein sequences (the
newest version of Sbicolor_454_v3.1.1.) were down-
loaded from the plant genome website Phytozome
(https://phytozome.jgi.doe.gov/). Finally, we identified
418 SsMYB genes and 252 SbMYB genes (Table S1), in-
cluding 202 SsR2R3-MYB genes and 125 SbR2R3-MYB
genes, belonging to haplotype genes. All SsMYBs and
SbMYBs sequences were placed in the Supplementary
FASTA file. A plant phylogeny tree was constructed by
the TimeTree Database [60]. The distribution of MYB
family genes in 19 plant species were demonstrated on
the previously published reports: Ostreococcus lucimari-
nus, Volvox carteri and Chlamydomonas reinhardtii
from PlantTFDB (http://planttfdb.cbi.pku.edu.cn/), and a
public plant transcription factor database [61], including
Physcomitrella patens [62], Oryza sativa [63], Brachypo-
dium distachyon [26], Zea mays [42], Ananas comosus
[64], Vitis vinifera [65], Arabidopsis thaliana [63], Bras-
sica napus [66], Glycine max [67], Medicago truncatula
[68], Pyrus bretschneideri [69], Rosa chinensis [70], Popu-
lus trichocarpa [71], Beta vulgaris [72], Solanum tubero-
sum [73], and Solanum lycopersicum [74].

Phylogenetic analysis
To generate the phylogenetic trees of MYB transcription
factor family genes, multiple protein sequence alignment
was performed through the MATTF program (https://
mafft.cbrc.jp/alignment/server/index.html) [75] with the
reported 88 rice and 138 Arabidopsis R2R3-MYB pro-
teins [63], respectively. Moreover, different phylogenetic
trees were constructed via the maximum likelihood
method using software FastTree2 [76]. Neighbor-joining
phylogenetic trees of sugarcane and sorghum were per-
formed using MEGA7.0 [77].

Naming R2R3-MYB genes and gene structure
Because of the autopolyploid nature of sugarcane (S.
spontaneum), the identified SsR2R3-MYB genes partly
possessed several alleles. The representative gene models
for different alleles were screened by comparing the
phylogenetic relationship and protein identity with sor-
ghum homology protein and paralogs. Tandem replica-
tion genes and paralogs were regarded as new, which
gene IDs were followed by P and T, respectively. The
202 representative SsR2R3-MYB genes were named from
SsMYB1 to SsMYB202 according to their physical
position on the chromosomes. Subsequently, allele
names were supplemented with numbers (e.g., The
Sspon.01G0002470-1A gene located at the top of

chromosome 1A is MYB1–1, and Sspon.01G0002470-2D
is named as MYB1–2). In general, MYB1–1 as a repre-
sentative gene model was directly regarded as MYB1.
The naming method of sorghum MYB genes was also
treated like that of S. spontaneum.
SsR2R3-MYB genes and CDS sequences come from

the newest version of Sspon.v20190103. The domain lo-
cation was derived from the previous hmm search re-
sults. Gene structures were displayed using the Gene
Structure Display Server (GSDS2.0) [78], consisting of
the CDS region, intron region, and MYB domain. Each
gene structure was arranged according to the phylogen-
etic location.

Collinearity analysis
Utilizing MCScanX analysis [79], collinearity relation-
ships of SsR2R3-MYB genes and classifier program were
used to sort gene duplication types. The identified col-
linear gene pairs were mapped to their respective locus
in the S. spontaneum genome in a circular diagram using
Circos 0.69 [80].

Regulatory element of upstream sequences
The 2000 bp upstream sequences were extracted from
SsR2R3-MYB genes to the PlantCARE website, plant
promoter, and cis-element database [81]. Then, we used
them to predict regulatory motifs and estimate poten-
tially related functions.

Abundant RNA-seq data showing gene expression
To analyze SsR2R3-MYB gene expression profiles thor-
oughly, 60 RNA-seq data were conducted to decipher
their expressions from our lab and cooperative labs.
Tissue and development transcriptome contained RNA-
seq data of 16 samples, including leaf, stem, three differ-
ent development stages viz. seeding (35-day-old), pre-
maturity (9-month-old), and maturity (12-month-old)
stages in S. spontaneum [82]. The leaf development tran-
scriptome was derived from the second leaf alone, the
ligule on 11-day-old seedlings; 15 cm leaves were se-
lected and cut into 15 pieces with one segment per
centimeter [83]. Mature leaves corresponding to ligule in
S. spontaneum, over 12-month-old, were selected to sup-
ply circadian rhythm transcriptome using 19-time
points, i.e., 2 h intervals apart from 6:00 am to the sec-
ond day 4:00 am, and 4 h apart from 6:00 am to the third
day 6:00 am.
RNA-seq were extracted from the drought-

treatment sugarcane of FN95–1702, a new sugarcane
variety for both sugar and energy, bred by Fujian
Agriculture and Forestry University. Sugarcane grown
to 4–5 leaves was subjected to the natural drought
stress treatment in the greenhouse. The mild drought
was characterized by soil relative water content of
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about 55% ~ 60% after 6 days, and severe drought by
25% ~ 30% after 12 days. After a severe drought, rehy-
dration was done, and relative water content was kept
around 75% ~ 85%, and then leave samples were re-
taken (5 days later). The R2R3-MYB gene expression
profiles were obtained by Blast mapping to express
data with transcripts of unreferenced genomes. RNA-
seq for pokkah boeng disease was extracted from hy-
brid sugarcane ZZ1, which is highly resistant to smut
disease but highly susceptible to pokkah boeng dis-
ease. According to the severity of the diseased leaves,
pokkah boeng disease was divided into five grades
from 0 to 5. The mildly diseased leaves (1 or 2
grades) and severely diseased leaves (4 or 5 grades)
were selected for analysis, while healthy leaves were
used as control (CK). Three samples were extracted
for RNA-seq of sugarcane mosaic disease. For the in-
fection experiment, sugarcane grown through virus-
free tissue culture was used, and then leaves corre-
sponding to ligule were collected 1 month after the
infection, while the control plants were not infected.
An expression ratio > 2 (adjusted p-value< 0.05) was
considered statistically significant for evaluating differ-
entially expressed genes.

Quantitative RT-PCR
S. spontaneum was planted in Multifunctional Specimen
Garden, Institute of Agriculture, Guangxi University.
The stem-3 at the third internode and mature leaves
were collected for comparing the difference of relative
expression between stem and leaf. Pro-stem is short
for prophase stem, in which the samples were taken
from the stem precursor tissue wrapped in the leaf
sheath and located on the upper part of the stem
with prominent stem nodes. Combining with stem-3,
stem-6, stem-9, and mature leaves was used to verify
the expression during the prophase of stem forma-
tion. Total RNA was carried out using TRIZOL re-
agent (Takara), employing the corresponding protocol.
The qualified RNA was reverse transcribed to pro-
duce cDNA using PrimeScript™ RT reagent Kit with
gDNA Eraser reagent (Takara, Japan). Primers were
designed by qPCR-PrimerQuest Tool, and qPCR
primers were shown in Table S8. Glyceraldehyde-3-
phosphate dehydrogenase gene (GAPDH) was selected
as a reference gene [84]. The real-time qPCR with
three biological replications was performed with SYBR
green on Roche Lightcyler® 480 instrument using 2 ×
TB Green Mix (Takara). The reaction profile was as
follows: 95 °C for 30s, followed by 40 cycles of 95 °C
for 10s, 60 °C for 30s, and 95 °C for 10s. The relative
expression levels were calculated by the 2-△△CT
method.
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