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ABSTRACT
Although immunotherapy has been remarkably effective across multiple cancer types, there continues to
be a significant number of non-responding patients. A possible factor proposed to influence the efficacy
of immunotherapies is the gut microbiome. We discuss the results and implications of recent research on
the relationship between the gut microbiome, our immune systems, and immune checkpoint inhibitor
therapies including anti-CTLA-4 Ab and anti-PD-1 Ab. While the investigations all exhibit interesting results
and conclusions, we find little congruence in the specific bacteria that were found favorable for antitumor
responses. It is unclear whether the inconsistencies are due to differential approaches in study design
(pre-clinical or clinical subjects, anti-CTLA-4 Ab or anti-PD-1 Ab), experimental methods and
measurements (metagenomics sequencing and clustering variations) or subject population dynamics
(differential cancer types and baseline characteristics). Moreover, we note studies regarding particular
bacterial commensals and autoimmune diseases, which challenge findings from these investigations. We
conclude that with the current research, clinical investigators can appreciate the critical role of gut
microbiota in mediating immunostimulant response. However, prospective research exploring the
biochemical mechanisms which commensal bacteria communicate with each other and the immune
system is imperative to understand how they can be adjusted properly for higher immunotherapy
response.
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In recent years there has been increasing recognition that
humans harbor an extensive microbial community within the
gut and skin, and that alterations of this flora can lead to pro-
found alterations in health. Amongst the contributions of our
extensive population of microbial flora, currently estimating to
be 30 trillion microbes per human,1 is an important role in the
regulation of the immune system.2 Thus, upon the develop-
ment of immune checkpoint inhibitors for melanoma and
other cancers, there was interest amongst translational
researchers to explore how the gut microbiota interacts with
these agents and whether these interactions influence the safety
and/or efficacy of these drugs. In this commentary, we examine
the research that links gut flora with response to immune
checkpoint inhibitor therapy.

Authored by Zitvogel and colleagues in 2015, one of the ear-
liest publications examined the relationship between the gut
microbiota and immunotherapy, specifically between commen-
sal bacteria and anti-Cytotoxic T-lymphocyte Associated Pro-
tein 4 (CTLA-4) antibody (Ab) treatment. In mice reared
under either specific pathogen free (SPF) conditions, germ-free
(GF) conditions, or in antibiotic-treated mice models, the
authors found that the efficacy of anti-CTLA-4 Ab was
impaired without the presence of gut commensal bacteria and
was significantly higher with the colonization of two species
from the Bacteroidales order (Bacteroidetes phylum) and
one species from the Burkholderiales order (Proteobacteria
phylum). Additionally, these studies suggested that two species

from the Bacteroidales and Burkholderiales order significantly
reduced the histopathological signs of colitis,3 a common, high-
risk, immune-related adverse event associated with anti-CTLA-
4 Ab therapy.4-7 While there is supportive evidence that species
from the Bacteroidales order are associated with decreased inci-
dence of colitis in patients administered anti-CTLA-4 Ab,8

there is also data correlating the colonization of certain Bacter-
oidales species in the gut with colitis9,10 and Crohn’s dis-
ease.11,12 Inconsistencies and multiple variables in comparative
research force the analysis of factors which might confound the
results in this publication, including the possibility of antibiotic
resistance and inexplicit microbial baseline values in antibiotic-
treated mice models.13 Additionally, while mice models are
crucial, as they enable experimental procedures that cannot be
replicated easily in humans, data extrapolation from mice stud-
ies into humans is difficult and fraught to repeat and transfer
without accumulating additional variables. Not only are the
anatomical structures of a human and mouse gastrointestinal
tract and intestinal wall linings significantly different,14-16 but it
has also been observed that eighty-five percent of gut-coloniz-
ing microbes in mice are not found in humans.17 Furthermore,
if prospective research showed that administering live bacterial
cultures to patients before and after anti-CTLA-4 Ab treatment
yielded significantly favorable results, variables including
microbial shifts in species distribution due to individual host
diet or lifestyle18-21 and interspecies interactions such as com-
petitive exclusion influenced by host gut motility22 between
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foreign cultures and baseline microbiota should be considered.
Interestingly, this publication demonstrated that after anti-
CTLA-4 Ab administration in metastatic melanoma (MM) or
non-small cell lung cancer (NSCLC) patients, the population of
one microbial group increased in size at the expense of another
group, suggestive of interspecies competitive exclusion. Under-
standing the significance and molecular processes involved in
anti-CTLA-4 Ab driving this adjustment in gut bacteria popu-
lation dynamics might give insight to the overarching mecha-
nisms behind bacteria-mediated boosts in antitumor immune
activity.

In 2015, Gajewski and colleagues published research sug-
gesting that commensal microbial compositions might promote
the response to immunotherapy.23 Through noted differences
in immune checkpoint response in mice reared in different
microbial flora colonies and fecal microbial transplantation
(FMT) experiments, they found the bifidobacterium species
(Actinobacteria phylum) to be significantly more abundant in
mice that had higher antitumor responses to anti-Programmed
Cell Death-1 (PD-1) Antibody (Ab).23 Gajewski and colleagues
added to their previously published research in their recent
publication where they analyzed baseline fecal samples from
metastatic melanoma patients treated with anti-PD-1 Ab.
Through both 16s ribosomal RNA (rRNA) sequencing and
shotgun sequencing, they concluded that a patients’ gut micro-
biome composition, with the bifidobacterium species being
highly overrepresented in responding patients, often predicted
their outcome to immunotherapy.24 Given the significant dif-
ferences between the mechanism of action of anti-CTLA-4 Ab
versus anti-PD-1 Ab, (the former work at the priming stage of
the immune response while the latter are predominantly
involved peripherally activating “exhausted” or chronically acti-
vated T-cells)25 the differences between the microbial flora
associated with response to immunotherapies are interesting.
Other known distinctions between the CTLA-4 and PD-1
receptor proteins include their membrane location and endocy-
tosis (for CTLA-4), immune cell location, associated antigen
presenting cells, and the phase in which each regulates T-cell
proliferation.26 Moreover, whether the impact of commensal
bacteria on systemic immunity in humans is dependent solely
on bacterial characteristics or rather on the host-bacterial eco-
system remains a critical question for prospective research.

To better appreciate the functional biomolecular mechanism
by which the bifidobacterium species instigate an immune anti-
tumor response either alone and in combination with anti-PD-
1 Ab, Spranger et al. contextualized the research done by
Gajewski and colleagues with other findings. Predominantly
based off the function of genes expressed on tumor infiltrating
dendritic cells (DCs) of bifidobacterium-hosting mice, critical
immunologic processes for tumor detection and destruction
were present. While the proposed model is provisional, the
authors emphasize that certain dendritic cells are clearly depen-
dent on bifidobacterium species for proper priming and prolif-
eration of CD8C effector T cells.27 Supporting the authors’
claims, some bifidobacterium species have been recognized as
immunomodulators.28,29 However, at what concentration or in
what situation do gut microbiota stimulate the immune system
so that healthy tissue is at stake? As other investigations reveal
that certain bifidobacterium species influence the development

of autoimmune thyroid diseases30 and allergic disorders in
infants and children,31,32 further research, especially research
focusing on the factors that establish the immunomodulating
function of the microbiome, is clearly required to resolve the
inconsistencies amongst present data.

Interestingly in contrast, research by Rutkowski et al. in
2015 revealed evidence of TLR-5 dependent commensal bacte-
ria, which are species originating from the Bacteriodetes and
Tenericutes phylum, stimulating the growth of tumor cells.
Through increasing IL-6, these microbes send a cascade of sig-
nals that increase the concentration of suppressor Treg-cells in
the tumor microenvironment.33 Although apparently contra-
dictory, the diversity of the gut microbiome could include some
species of bacteria as suppressive while others could function to
stimulate an immune inflammatory response.34 Rutkowski and
colleagues did not find a significant difference in the quantity
of PD-1 between Tlr5-/- and wild-type mice models, however,
it could be of further interest to measure responses to anti-
CTLA-4 Ab. Even more intriguingly, the functional role of
TLR-5 immunosuppressive bacteria might be useful for
research regarding the efficacy of immunosuppressive drugs
such as anti-CD3 mAb, or teplizumab, supported by prelimi-
nary investigations focusing on the synergistic functionality
between gut commensal bacteria and immunosuppressive
drugs.35,36 A study by Herold and colleagues in December 2017
found systemic immune activation in humanized mice models
given anti-CD3 mAb in combination with antibiotics, shown
through elevated numbers of effector T-cells and IFN-g,
decreased production of IL-10, and the presence of anti-nuclear
antibodies.35 While there are other investigations demonstrat-
ing that gut dysbiosis, or a microbial imbalance or modification
in the host gut, may counteract the effects of both immunosup-
pressive35 and immunostimulatory drugs,3,23,27,37,38 it may be
that microbiota have a more potent or direct interaction with
the immune checkpoint drugs rather than the immunomodula-
tory cells involved per se. All in all, these apparent contradic-
tions reinforce that the function and mechanisms by which
commensal bacteria communicate with the immune system are
poorly understood and remain a fascinating challenge for pro-
spective researchers.

Expanding current knowledge on what explicit profile of
commensal bacteria governs a favorable response to anti-PD-1
Ab, Zitvogel and colleagues published another interesting
report in November 2017 suggesting that the efficacy of anti-
PD-1 Ab depends on the host gut microbiome. Utilizing quan-
titative metagenomics by shotgun sequencing, fecal matter
from 67 renal cell carcinoma (RRC) and 140 NSCLC patients
was collected before and after anti-PD-1 Ab administration. In
responders, there was significantly more bacteria from the spe-
cies Akkermansia Muniniphila (Verrucomicrobia phylum), the
genus Alistipes (Bacteroidetes phylum), and more generally in
the phylum Firmicutes.37 The microbiome composition result
of anti-PD-1 Ab responders found in mice by Gajewski and
colleagues is different from that of human patients in this pub-
lication. As previously discussed, animal studies are inherently
different and thus yield results which cannot be easily applied
to human studies. Additionally, differences between how bacte-
ria are tested and measured from fecal samples among
researcher teams complicates formal comparisons, as there is
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currently no single, standardized test for analyzing bacterial
metagenomics and an unclear comparative system declaring
which phylogenetic level should be measured. For instance,
while Gajewski and colleagues approach genus level analyses
with 16s rRNA sequencing, Zitvogel and colleagues utilize shot-
gun sequencing of larger DNA strands, incorporating assess-
ments at the family, genus, and species level. Advantages in
gene prediction, accurate bacterial species detection, and thor-
ough diversity measurements in shotgun sequencing DNA
have been recognized over 16s rRNA sequencing.39 Further-
more, there are variations in the techniques of 16s ribosomal
RNA sequencing and many proposed algorithms for clustering
of genetic sequences into operational taxonomic units (OTUs)
to measure the diverse profile of the microbiome, some of
which are found to have a negative impact on downstream
analyses.40-48 Zitvogel and colleagues proceeded to demonstrate
the functional relationship between microbiota and antitumor
T-cell immunity by performing a series of FMT tests on mice
using the patient stool samples. One involved administering
the stool from 8 NSCLC patients, including both responders
and non-responders, in the form of oral gavages to mice inocu-
lated with MCA-205 sarcoma cells. Even though the test
yielded positive results, it is unclear why the authors used sar-
coma rather than NSCLC mice models, given that the hosts
had NSCLC. Comparable to what was discovered in their 2015
publication, the authors measured an increase in stool richness,
at the metagenomics species level, of the NSCLC and RCC
patients after two months since their first injection of anti-PD-
1 Ab. Moreover, a response to anti-PD-1 Ab has been shown to
be associated with significantly higher alpha diversity of gut
microbiota38 and interestingly, increased levels of CTLA-4hi

PD-1hi CD8C T-cells.25 Corresponding proportions are thus
suggestive of a situational positive feedback mechanism where
TILs or other systemic lymphocytes signal the proliferation of
certain bacteria or possibly enrich the ecosystem in the gut to
establish a more tolerable living environment for the gut
microbiome.

Finally, we described the 2017 publication by Wargo and
colleagues, which argues that the gut microbiome is so closely
associated with the immunomodulatory system that certain
microbiota profiles can essentially indicate what kind of
response patients have to immunotherapy. Through comparing
fecal samples from 112 MM patients taking anti-PD-1 Ab ther-
apies, Wargo and colleagues found that responders had a sig-
nificantly higher abundance of commensals of the Clostridales
order and the Bacteroidales order, belonging to the Firmicutes
phylum and Bacteroidetes phylum respectively.38 Even though
there was a clear difference in the cancer types studied between
this publication and the 2017 publication by Zitvogel and col-
leagues, there were key similarities between the microbial pro-
files associated with response. Therefore, the species of
commensal bacteria found essential for response may have little
to do with the type of cancer which anti-PD-1 Ab targets. If this
is the case, then what characterizes the profile of gut microbiota
that assists in eliciting response to immune checkpoint inhib-
itors? After this preliminary question is answered, investigators
might have a better understanding of how the gut microbiota
can be manipulated for therapeutic benefit. As discussed previ-
ously, Wargo and colleagues also measured a high incidence of

alpha diversity in the gut microbiome of anti-PD-1 Ab res-
ponders. As much of the current research regarding specific
microbiome species or profiles with response from immunosti-
mulants is contradictory, the level of bacterial diversity could
play a more critical role than a specific species or enterotype.
However, Frankel et al. in 2017 detected the opposite to Wargo
and colleagues, where there were no significant differences in
gut microbial diversity between responders and non-respond-
ers of immunostimulants.49 This raises the question of how the
baseline diversity of both research groups of non-responders
and responders from each publication compared, especially
while incorporating patient demographics. Moreover, it would
be reasonable to measure the average baseline differences of an
individual’s profile of gut microbiota relatively amongst differ-
ent sexes, ages, health conditions, lifestyle, and environment to
develop a more standard measurement for future FMT
investigations.

Clearly, the identification of molecular mechanisms that
facilitate microbial communication with immunomodulatory
cells is critical to further our understanding of how to func-
tionally characterize and measure the role of commensal bac-
terial communities in mediating immunotherapy success. Our
review of literature that has been published, while encourag-
ing, reveal several inconsistencies in the results of recent
research publications. Thus, it is established that the relation-
ship between commensal gut bacteria and the immune system
has only begun to be appreciated and remains poorly under-
stood. Prospective research studies directed at understanding
both the functional properties of different gut microbiome
species and the mechanisms by which certain commensal
communities interact with the immune system will allow us
to better characterize, measure, and ultimately manipulate the
human gut microbiome to improve patient response to
immune checkpoint inhibitors.
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