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)e state observer for dynamic links in complex dynamical networks (CDNs) is investigated by using the adaptive method
whether the networks are undirected or directed. In this paper, a complete network model is proposed, which is composed of two
coupled subsystems called nodes subsystem and links subsystem, respectively. Especially, for the links subsystem, associated with
some assumptions, the state observer with parameter adaptive law is designed. Compared to the existing results about the state
observer design of CDNs, the advantage of this method is that a estimation problem of dynamic links is solved in directed
networks for the first time. Finally, the results obtained in this paper are demonstrated by performing a numerical example.

1. Introduction

In recent past decades, the research on CDNs has become a
hot topic in many fields [1–4]. From the perspective of large
system, a complete CDN contains many nodes and links
(weights of connections between nodes), which implies that
a complete CDN is composed of the nodes subsystem and
links subsystem, and the two subsystems are usually coupled
with each other [5–7]. It is worth noting that the existing
researches mainly focus on the nodes subsystem because
some behaviors are reflected by nodes such as synchroni-
zation [8, 9], stabilization [10, 11], and consensus [12, 13].

From the above results about the synchronization, sta-
bilization, consensus, or other problems of CDNs, it is easy
to see all states in CDNs, including the states of nodes and
links, are required to be measured accurately. However, this
assumption is too hard to be satisfied in practice because of
the influence of external environment, measurement costs,
and technical constraints [14]. )us, constructing state
observers for the CDNs to estimate the unknown states is
very necessary and important. Fortunately, some scholars
have discussed the state estimation problems of CDNs and

obtained some research results, including cases with the
coupling time delays [15, 16], packet loss [17, 18], stochastic
noisy disturbance [19], and uncertain coupling strength [20].

However, the above results only consider the estimation
problems of the states in nodes subsystem, and assume that
the links between nodes are known. It implies that the
measurement and state estimation problems of links in the
CDNs are ignored. In fact, due to the limitation of mea-
surement methods, the state values of links in CDNs are
more difficult to be measured accurately in practical situ-
ation, compared to the states of nodes. Hence, only a few
papers have studied and discussed the effective measurement
problem of the links between individuals (nodes), and the
measurement method mainly depends on the physical in-
teraction between individuals [21] or the adaptive weights of
links [22]. Similar to the state values of nodes, not all state
values of links’ weights can be measured and obtained.
)erefore, it is necessary to design observers to estimate the
unmeasured state values of links. As we know, there is only
one paper to have discussed the state estimation problem of
dynamic links in CDNs [23]. Unfortunately, the method
proposed in [23] is only effective for undirected networks
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and cannot solve the estimation problem of dynamic links in
directed networks.

Inspired by the above discussions, this paper mainly
focuses on the state observer design for dynamic links in
directed networks. Specifically, a mathematical model for a
class of directed CDNs is proposed, which is described by
both the nodes subsystem and links subsystem with coupling
between the two subsystems, and we have designed a state
observer for the links subsystem by using the adaptive
method. )is means that a state estimation problem of
dynamic links in directed networks is solved for the first
time, which is also regarded as the biggest contribution of
this paper.

)e rest of this paper is organized as follows: in Section 2,
a complete CDN model is proposed, which is composed of
the nodes subsystem and links subsystem with outputs;
Section 3 introduces the design process of state observer for
the links subsystem; in Section 4, the simulation example is
presented and used to demonstrate the effectiveness of this
method; finally, the conclusions are given in Section 5.

1.1. Notations. )e n-dimensional Euclidean space is
denoted as Rn, the set of n × n real matrices is denoted as
Rn×n, the Euclidean norm of a vector or a matrix is denoted
as ‖ · ‖, and the transpose of matrix A and n-dimensional
identity matrix is denoted as AT and In, respectively.

2. Preliminaries and Model Description

If the states of nodes and links in CDNs evolve over time,
then the mathematical model of CDNs, including directed
and undirected networks, can be described by both the nodes
subsystem and links subsystem, where the two subsystems
are coupled with each other. In this paper, we only consider
the case that each node is n-dimensional continuous system
in CDNs with N nodes, then the nodes subsystem and links
subsystem can be described by vector differential equations
and matrix differential equation as follows, respectively:

_xi � Aixi + Bifi xi( 􏼁 + ci 􏽘

N

j�1
pij(t)Hj xj􏼐 􏼑,

i � 1, 2, . . . , N,

(1)

_P � Θ1P + PΘT2 + G(x),

Y1 � ΥP, Y2 � ΥPT
,

⎧⎨

⎩ (2)

where xi � [xi1, xi2, . . . , xin]T ∈ Rn is the state vector of node
i; the constant matrices Ai ∈ Rn×n and Bi ∈ Rn×m; the vector
functions fi(xi) � [fi1(xi), fi2(xi), . . . , fim(xi)]

T and
Hj(xj) � [Hj1(xj), Hj2(xj), . . . , Hjn(xj)]

T; ci > 0 is a
known constant, which denotes the common connection
strength of node i in the network; the constant matrices
Θ1 ∈ RN×N and Θ2 ∈ RN×N; the coupling matrix
G(x) ∈ RN×N, and x � [xT

1 , xT
2 , . . . , xT

N]T ∈ Λ⊆RNn, where Λ
is a bounded and closed set in RNn; the output matrix
Υ ∈ RN1×N is given; and the links matrix
P � P(t) � (pij(t))N×N, where the state variable pij(t)

denotes the weight of link from node j to node i. Especially,
pji � pij for undirected networks, and at least, one pair i, j

such that pji ≠pij for directed networks. In addition, if i � j,
then pij denotes the link strength of node i itself.

For the CDNs composed of subsystems (1) and (2), the
following instructions are given:

(1) )e background of dynamic links is given as follows.
For example, the biological neural networks consist
of neurons (nodes) and synapse (links), and Gamma
oscillations in neurons may cause the synaptic fa-
cilitation, which is regarded as a dynamic behavior of
the links [5, 6, 24]. Similarly, the web winding sys-
tems can be regarded to be composed of motors
(nodes) and the web (links), and the regulation
values of web tensions vary with the speed of the
motors, which is also regarded as a dynamic behavior
of links [25]. In the above examples, the state values
of links need to be measured by some sensors.

(2) )e existing research results show that the nodes in
networks can emerge synchronization or stabiliza-
tion phenomenon with the help of the links, which
mean that the nodes are the main body of syn-
chronization and stabilization [8–11]. In contrast,
the links as another part of networks can also emerge
some characteristic phenomena in many real net-
works, such as the structural balance in social net-
works [5, 6, 26]. It is worth noting that the paper [26]
has researched on structural balance by using the
Riccati matrix differential equation, and the reason is
that this type of equation is more easily to emerge the
phenomenon of structural balance. In view of this,
we choose linear Riccati matrix differential equation
to describe the links subsystem. Clearly, the model of
CDNs, composed of both nodes subsystem (1) and
links subsystem (2), can help us to understand and
explain the dynamic behaviors of networks in a
better way.

(3) )e subsystem (2) is used to describe dynamic
change of links’ weights in the CDNs, and in general,
the CDNs are directed. However, if Θ1 � Θ2 and
G(x) � (G(x))T, then we can obtain P � PT, while
the initial value of the state in subsystem (2) satisfies
P(0) � (P(0))T. Hence, the subsystems (1) and (2)
can be used to describe both undirected and directed
networks (the undirected networks can be regarded
as a special case of directed networks). To the best of
my knowledge, there is only one paper to have solved
the state estimation problem of links subsystem [23].
However, this method is only effective for undirected
networks, but not for directed networks. )is drives
us to study estimation problems of dynamic links in
directed networks.

(4) It is difficult to accurately measure all states of the
links between individuals (nodes) in practical ap-
plications, which imply that only partial states in (2)
can be measured accurately and made available
(N1 <N). It is worth noting that the precise
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measurement of the partial states is bidirectional;
that is, if pij(t) is measurable, then pji(t) must also
be measurable. )at is why the two outputs Y1 and
Y2 appear in (2).

Now, some useful definitions and operators involved in
this paper will be introduced as follows.

Definition 1 (see [27]). )e application vec: Rk×l⟶ Rkl is
defined by

vec(H) � h11, . . . , h1l, h21, . . . , h2l, . . . , hk1, . . . , hkl􏼂 􏼃
T
,

(3)

where the matrix H � (hij)k×l is called the vectorization
operator.

Definition 2 (see [27]). If there are two matrices H ∈ Rk×l

and Z ∈ Rc×d, then the Kronecker product of H and Z is
denoted as H⊗Z ∈ Rkc×ld and defined as follows:

H⊗Z �

h11Z h12Z · · · h1lZ

h21Z h22Z · · · h2lZ

· · · ·

· · · ·

hk1Z hk2Z · · · hklZ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

By using Definitions 1 and 2, the following basic
properties about Kronecker product and operator vec(·) can
be obtained and shown as follows [27]:

(1) (H⊗ S)(X⊗W) � (HX)⊗ (SW)

(2) (H⊗W)T � HT ⊗WT

(3) (S⊗X)− 1 � S− 1 ⊗X− 1

(4) vec(HSW) � (H⊗WT)vec(S)

(5) vec(HS + SW) � (H⊗ I + I⊗WT)vec(S)

S and X are the matrices with compatible dimensions, and I

represents the identity matrix with compatible dimensions.
Especially, it is assumed that both S and X are invertible in
property (3).

According to Definitions 1 and 2 and their corre-
sponding properties, the Riccati differential equation (2) can
be rewritten as

vec( _P) � Avec(P) + vec(G(x)),

vec Y1( 􏼁 � C1vec(P), vec Y2( 􏼁 � C1vec P
T

􏼐 􏼑,

⎧⎨

⎩ (5)

where A � Θ1 ⊗ IN + IN ⊗Θ2 and C1 � Υ⊗ IN.

Assumption 1. For the links subsystem (2), the double
matrices (Θ1,Υ) and (Θ2,Υ) are completely stable.

If Assumption 1 is true, then we can obtain matrices
K1 ∈ RN×N1 andK2 ∈ RN×N1 , which canmakeΘ1 + K1Υ and
Θ2 + K2Υ to be Hurwitz stable, respectively. )us, as long as
any matrices Q1 > 0 and Q2 > 0 are given, there must be
positive definite matrices M1 ∈ RN×N and M2 ∈ RN×N that
satisfy the following two Lyapunov equations, respectively:

Θ1 + K1Υ( 􏼁
T
M1 + M1 Θ1 + K1Υ( 􏼁 � −Q1, (6)

Θ2 + K2Υ( 􏼁
T
M2 + M2 Θ2 + K2Υ( 􏼁 � −Q2. (7)

Lemma 1. If Assumption 1 is true, then the following Lya-
punov equations

Θ1 ⊗ IN + 􏽥K1C1( 􏼁
T 􏽥M + 􏽥M Θ1 ⊗ IN + 􏽥K1C1( 􏼁 � − 􏽥Q1,

IN ⊗Θ2 + 􏽥K2C2( 􏼁
T 􏽥M + 􏽥M IN ⊗Θ2 + 􏽥K2C2( 􏼁 � − 􏽥Q2,

(8)

hold, where 􏽥M � M1 ⊗M2, 􏽥Q1 � Q1 ⊗M2, 􏽥Q2 � M1 ⊗Q2,
􏽥K1 � K1 ⊗ IN, 􏽥K2 � IN ⊗K2, and C2 � IN ⊗Υ. Clearly,
􏽥M> 0, 􏽥Q1 > 0, and 􏽥Q2 > 0.

Proof. If Assumption 1 holds, then the following
equations can be obtain from (6) and (7):

Θ1 + K1Υ( 􏼁
T
M1􏽨 􏽩⊗IN + M1 Θ1 + K1Υ( 􏼁􏼂 􏼃⊗IN � −Q1⊗IN,

(9)

IN⊗ Θ2 + K2Υ( 􏼁
T
M2􏽨 􏽩 + IN⊗ M2 Θ2 + K2Υ( 􏼁􏼂 􏼃 � −IN⊗Q2.

(10)

Using the properties of Kronecker product, (9) and (10)
can be rewritten as

Θ1 ⊗ IN + K1 ⊗ IN( 􏼁 Υ⊗ IN( 􏼁􏼂 􏼃
T

M1 ⊗ IN( 􏼁

+ M1 ⊗( IN􏼁 Θ1 ⊗ IN + K1 ⊗ IN( 􏼁 Υ⊗ IN( 􏼁􏼂 􏼃 � −Q1 ⊗ IN,

IN ⊗Θ2 + IN ⊗K2( 􏼁 IN ⊗Υ( 􏼁􏼂 􏼃
T

IN ⊗M2( 􏼁

+ IN ⊗( M2􏼁 IN ⊗Θ2 + IN ⊗K2( 􏼁 IN ⊗Υ( 􏼁􏼂 􏼃 � −IN ⊗Q2.

(11)

Thus, we can get

Θ1⊗IN + 􏽥K1C1􏼂 􏼃
T

M1⊗IN( 􏼁 + M1⊗IN( 􏼁 Θ1⊗IN + 􏽥K1C1􏼂 􏼃

� −Q1⊗IN,

(12)

IN⊗Θ2 + 􏽥K2C2􏼂 􏼃
T

IN⊗M2( 􏼁 + IN⊗M2( 􏼁 IN⊗Θ2 + 􏽥K2C2􏼂 􏼃

� −IN⊗Q2.

(13)

If we multiply both sides of the equalities (12) and (13) by
(IN ⊗M2) and (M1 ⊗ IN) from right, respectively, then we
get that

Θ1 ⊗ IN + 􏽥K1C1􏼂 􏼃
T

M1 ⊗ IN( 􏼁 IN ⊗M2( 􏼁

+ M1 ⊗ IN( 􏼁 Θ1 ⊗ IN + 􏽥K1C1􏼂 􏼃 IN ⊗M2( 􏼁

� − Q1 ⊗ IN( 􏼁 IN ⊗M2( 􏼁,

(14)

IN ⊗Θ2 + 􏽥K2C2􏼂 􏼃
T

IN ⊗M2( 􏼁 M1 ⊗ IN( 􏼁

+ IN ⊗M2( 􏼁 IN ⊗Θ2 + 􏽥K2C2􏼂 􏼃 M1 ⊗ IN( 􏼁

� − IN ⊗Q2( 􏼁 M1 ⊗ IN( 􏼁.

(15)
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It is noticed that (M1 ⊗ IN)(IN ⊗M2) � M1 ⊗M2 �

(INM1)⊗ (M2IN) � (IN ⊗M2)(M1 ⊗ IN). )erefore, the
equalities (14) and (15) can be rewritten as follows:

Θ1⊗IN + 􏽥K1C1􏼂 􏼃
T

M1⊗M2( 􏼁 + M1⊗M2( 􏼁 Θ1⊗IN + 􏽥K1C1􏼂 􏼃

� −Q1⊗M2,

IN⊗Θ2 + 􏽥K2C2􏼂 􏼃
T

M1⊗M2( 􏼁 + M1⊗M2( 􏼁 IN⊗Θ2 + 􏽥K2C2􏼂 􏼃

� −M1⊗Q2.

(16)

Thus, Lemma 1 is completely proved.

Assumption 2. For subsystem (2), in which the coupling
matrix G(x) satisfies that G(x) � M−1

1 Υ
TΨ(x)M−1

2 , where
Ψ(x) � (ψij)N1×N andψij � xT

i xj.
If Assumption 2 holds, then we can get that

‖Ψ(x)‖ �
���������������

􏽐
N1
i�1 􏽐

N
j�1 (xT

i xj)
2

􏽱
≤

�������������������

􏽐
N1
i�1 􏽐

N
j�1 (‖xi‖ · ‖xj‖)2

􏽱
≤ -

�����������������
􏽐

N
i�1 ‖xi‖

2 􏽐
N
j�1 ‖xj‖

2
􏽱

� ‖x‖2. Meanwhile, we note that Λ is
a bounded and closed set in RNn, and x ∈ Λ. )us, there
exists a positive constant L to satisfy the inequality ‖x‖2 ≤ L.

General speaking, L is unknown. However, we can use
the adaptive method to estimate it. In this paper, we use
􏽢L � 􏽢L(t) to denote the estimated value of L. Hence, the
estimation error is denoted as 􏽥L � 􏽢L − L.

3. Main Results

Definition 3. Designing a matrix differential system
_􏽢P � F(􏽢P, Y1, Y2,

􏽢L), if the state 􏽢P satisfies
limt⟶+∞(P − 􏽢P) � 0, then the matrix differential system
_􏽢P � F(􏽢P, Y1, Y2,

􏽢L) can be regarded as a state observer of the
links subsystem (2).

If Assumptions 1 and 2 hold, the state observer of the
links subsystem (2) can be designed and presented as
follows:

_􏽢P � Θ1 + K1Υ( 􏼁􏽢P + 􏽢P Θ2 + K2Υ( 􏼁
T

+ Γ 􏽢P, Y1, Y2,
􏽢L􏼐 􏼑 − K1Y1 − Y

T
2K

T
2 ,

(17)

with the following adaptive law

_􏽢L �
1
ρ

vec Y1( 􏼁 − C1vec(􏽢P)
����

����, (18)

where 􏽢P denotes the estimated value of the state P in (2); the

robust term Γ(􏽢P, Y1, Y2,
􏽢L) �
Ω,Υ􏽢P≠Y1
0,Υ􏽢P � Y1

􏼨 , where

Ω � 􏽢L((M−1
1 Υ

T(Y1 − Υ􏽢P)M−1
2 )/(‖Y1 − Υ􏽢P‖)), ρ is a given

positive constant, and the matrices K1, K2, M1, and M2 can
be obtained by solving the Lyapunov equations (6) and (7),
respectively.

According to (3) and (4), we can deduce from (17) that

vec( _􏽢P) � A + 􏽥K1C1 + 􏽥K2C2( 􏼁vec(􏽢P)

+ vec Γ 􏽢P, Y1, Y2,
􏽢L􏼐 􏼑􏼐 􏼑 − 􏽥K1vec Y1( 􏼁

− 􏽥K2vec Y
T
2􏼐 􏼑.

(19)

Clearly, ‖Y1 − Υ􏽢P‖ � ‖YT
1 − 􏽢P

TΥT‖ � ‖vec(Y1 − Υ􏽢P)‖ �

‖vec(YT
1 − 􏽢P

TΥT)‖; thus, we get vec(Ω) � 􏽢L(( 􏽥M
− 1

CT
1

[vec(Y1) − C1vec(􏽢P)])/(‖vec(Y1) − C1vec(􏽢P)‖)).
In this paper, the estimation error is denoted by

E � P − 􏽢P. By using (3), (4), and properties about Kronecker
product and vec(·) operator, we can get the following error
system:

vec( _E) � A + 􏽥K1C1 + 􏽥K2C2( 􏼁vec(E) + 􏽥M
− 1

C
T
1 vec(Ψ(x))

− vec Γ 􏽢P, Y1, Y2,
􏽢L􏼐 􏼑􏼐 􏼑 .

(20)

Theorem 1. If Assumptions 1 and 2 are true, then the matrix
differential system (17) with the parameter adaptive law (18)
is the state observer of the links subsystem (2).

Proof. Consider the following Lyapunov function:

V �
1
2
vec(E)

T 􏽥Mvec(E) +
1
2
ρ􏽥L

2
. (21)

Calculating the orbit derivative of V along (20) gives that

_V � vec(E)
T 􏽥Mvec( _E) + ρ􏽥L _􏽢L

� vec(E)
T 􏽥M A + 􏽥K1C1 + 􏽥K2C2( 􏼁vec(E)􏼈 + 􏽥M

− 1
C
T
1 vec(Ψ(x)) − vec Γ 􏽢P, Y1, Y2,

􏽢L􏼐 􏼑􏼐 􏼑􏽯 + ρ􏽥L
_􏽢L

� vec(E)
T 􏽥M Θ1 ⊗ IN + 􏽥K1C1( 􏼁vec(E) + vec(E)

T 􏽥M IN ⊗Θ2 + 􏽥K2C2( 􏼁vec(E)

+ vec(E)
T
C
T
1 vec(Ψ(x)) + ρ􏽥L _􏽢L −

􏽢L
vec(E)

T
C
T
1 C1vec(E)􏼂 􏼃

C1vec(E)
����

����
, C1vec(􏽢P)≠ vec Y1( 􏼁

0, C1vec(􏽢P) � vec Y1( 􏼁

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4 Computational Intelligence and Neuroscience



≤
1
2
vec(E)

T Θ1 ⊗ IN + 􏽥K1C1( 􏼁
T 􏽥M􏼔 + 􏽥M Θ1 ⊗ IN + 􏽥K1C1( 􏼁􏼃vec(E)

+
1
2
vec(E)

T
IN ⊗Θ2 + 􏽥K2C2( 􏼁

T 􏽥M􏼔 + 􏽥M IN ⊗Θ2 + 􏽥K2C2( 􏼁􏼃vec(E)

+ vec(E)
T
C
T
1

����
����‖vec(Ψ(x))‖ + ρ􏽥L _􏽢L −

􏽢L vec(E)
T
C
T
1

����
����, C1vec(􏽢P)≠ vec Y1( 􏼁

0, C1vec(􏽢P) � vec Y1( 􏼁

⎧⎪⎨

⎪⎩

≤ −
1
2
vec(E)

T 􏽥Q1 + 􏽥Q2􏼐 􏼑vec(E) + L vec(E)
T
C
T
1

����
���� + ρ􏽥L _􏽢L

−

􏽢L vec(E)
T
C
T
1

����
����, C1vec(􏽢P)≠ vec Y1( 􏼁

0, C1vec(􏽢P) � vec Y1( 􏼁

⎧⎪⎨

⎪⎩

� −
1
2
vec(E)

T 􏽥Q1 + 􏽥Q2􏼐 􏼑vec(E) + ρ􏽥L _􏽢L + 􏽢L vec(E)
T
C
T
1

����
���� − 􏽥L vec Y1( 􏼁 − C1vec(􏽢P)

����
����

−

􏽢L vec(E)
T
C
T
1

����
����, C1vec(􏽢P)≠ vec Y1( 􏼁

0, C1vec(􏽢P) � vec Y1( 􏼁

⎧⎪⎨

⎪⎩

� −
1
2
vec(E)

T 􏽥Q1 + 􏽥Q2􏼐 􏼑vec(E) + 􏽥L ρ _􏽢L − vec Y1( 􏼁 − C1vec(􏽢P)
����

����􏼒 􏼓

� −
1
2
vec(E)

T 􏽥Q1 + 􏽥Q2􏼐 􏼑vec(E). (22)

From inequality (22), we can obtain that the estimation
error matrix E is bounded and E⟶t→ +∞0. )us, )eorem 1 is
completely proved.

4. Simulation Example

In this paper, we consider a continuous analog Hopfield
network with 10 neurons (N � 10) [23, 28], which is
composed of nodes subsystem and links subsystem, where
the nodes subsystem is described as follows:

_xi � Aixi + Bifi xi( 􏼁 + ci 􏽘

10

j�1
pijHj xj􏼐 􏼑, i � 1, 2, . . . , 10,

(23)

where Ai � Bi � −i, fi(xi) � −5 cos t, ci � i, and
Hj(xj) � (1 − e− xj )/(1 + e−xj ).

Meanwhile, we assume that the changes in the links’
weights pij(t) satisfy the Riccati differential equation (2). If
we choose N1 � 5 and ρ � 100 and randomly select matrices
Θ1 ∈ R10×10, Θ2 ∈ R10×10, and Υ ∈ R5×10 satisfying
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–20
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40

60

t (s)

x 
(t)

Figure 1: State trajectories of subsystem (1).
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Assumption 1, then the matrices K1, M1 and K2, M2 can be
obtained by solving the Lyapunov equations (6) and (7),
respectively. )us, we can get the coupling matrix G(x) �

M−1
1 Υ

TΨ(x)M−1
2 in (2) satisfying Assumption 2.

Finally, randomly select the initial values of states
xi(0), 􏽢L(0), and pij(0), i, j � 1, 2, . . . , 10 in the range
(−5, 5), and the numerical results are shown in Figures 1–5:

(i) From Figures 2–4, we can see that the estimation
error converges asymptotically to zero. According to
Definition 3, we know that the Riccati dynamical
equation (17) with the adaptive law (18) is a state
observer of the subsystem (2), and the state observer
is effective.

(ii) Compared to the results in [23], our advantage is that
the result about the state observer of the subsystem
(2) is true whatever the network is directed or un-
directed. Meanwhile, it is worth noting that, due to
the effect of the parameter adaptive law (18), the state
observer (17) does not contain the states of the
nodes. )is shows that the state observer is less
affected by the dynamic changes in the nodes and
thus improves the robustness of the state observer.

5. Conclusions

In this paper, a complete model of CDNs is proposed, which
is composed of two coupled subsystems, called nodes
subsystem and links subsystem, respectively. Contrary to the
existing results on the state estimation problem of nodes
subsystem, we mainly focus on the state estimation of the
links subsystem with outputs and have designed a state
observer with the parameter adaptive law to estimate the
state of the links subsystem in this paper. In particular, this
method solves the estimation problem of dynamic links in
directed networks for the first time. Meanwhile, it implies
that we can use the state estimation information of the links
to directly design a controller for the links subsystem; thus,
some control problems may be solved effectively. )erefore,
the design method of state observer for dynamic links
proposed in this paper can enrich the achievements about
the state estimation of CDNs.

Data Availability

In this paper, we submitted data mainly related to theoretical
proof and numerical simulation, in which the part of nu-
merical simulation is realized by Matlab software; if
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Figure 4: State trajectories of estimation error system (20).
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Figure 3: State trajectories of state observer (17).
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Figure 5: State trajectories of parameter adaptive system (18).
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necessary, we can provide simulation source program and
relevant data at any time.
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