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According to an update from the World Health Organization, approximately 50 million
people worldwide suffer from epilepsy, and nearly one-third of these individuals are
resistant to the currently available antiepileptic drugs, which has resulted in an insistent
pursuit of novel strategies for seizure treatment. Recently, methylglyoxal (MG) was
demonstrated to serve as a partial agonist of the gamma-aminobutyric acid type A
(GABAA) receptor and to play an inhibitory role in epileptic activities. However, MG
is also a substrate in the generation of advanced glycation end products (AGEs)
that function by activating the receptor of AGEs (RAGE). The AGE/RAGE axis is
responsible for the transduction of inflammatory cascades and appears to be an adverse
pathway in epilepsy. This study systematically reviewed the significance of GABAergic
MG, glyoxalase I (GLO1; responsible for enzymatic catalysis of MG cleavage) and
downstream RAGE signaling in epilepsy. This work also discussed the potential of
miRNAs that target multiple mRNAs and introduced a preliminary scheme for screening
and validating miRNA candidates with the goal of reconciling the conflicting effects of
MG for the future development of seizure treatments.
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INTRODUCTION

Glucose is themost common form of carbohydrate and acts as an essential substrate for brain energy
metabolism via glycolysis and subsequent aerobic respiration. Many intermediate metabolites
appear during the glycolysis process, particularly methylglyoxal (MG), which is converted from
dihydroxyacetone phosphate by MG synthase (Cooper and Anderson, 1970; Cooper, 1974; Tsai
and Gracy, 1976). MG has been demonstrated to be a partial agonist of the gamma-aminobutyric
acid type A receptor (GABAA) and plays an inhibitory role in epileptic activities (Distler et al.,
2013). Paradoxically, clinical observations have indicated that carbohydrate-enriched food and
drink are precipitating factors of epileptic seizures, and the antiepileptic effects of a ketogenic diet
(which comprises high fat, adequate protein and low carbohydrate contents) have been confirmed
in children with intractable epilepsy (Kossoff, 2004; Freitas et al., 2007; Luat et al., 2016). Therefore,
other substances metabolized from carbohydrates most likely overwhelm the antiepileptic role of
MG and shift the balance toward epileptic seizures.
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Remarkably, MG itself is an important substrate in the
generation of advanced glycation end products (AGEs;
Schleicher et al., 2001; Salahuddin et al., 2014). Studies have
demonstrated that AGEs are involved in neuropsychiatric and
inflammatory diseases through activation of the receptor of
AGEs (RAGE; Chuah et al., 2013; Kouidrat et al., 2013, 2015;
Fu J. et al., 2017). Epilepsy is characterized by spontaneous
synchronized discharge as well as hyperperfusion and metabolic
abnormalities of epileptogenic foci during epileptic seizures (Ho
et al., 1996; Lu et al., 2006; Bansal et al., 2016; Zhu et al., 2017).
Moreover, over the past decade, brain inflammation has been
considered a novel mechanism of epilepsy (Dedeurwaerdere
et al., 2012; Amhaoul et al., 2014, 2015; Wilcox and Vezzani,
2014). Based on this evidence, the AGE/RAGE axis appears
to be an adverse signal transduction pathway for epileptic
seizures. This study systematically reviewed the significance of
GABAergic MG, glyoxalase I (GLO1), which is responsible for
the enzymatic catalysis of MG cleavage, and downstream RAGE
signaling in epilepsy and discussed the potential of miRNAs with
the goal of establishing groundwork for future research aiming
to reconcile the conflicting effects of MG on epileptic seizures.

GABAergic MG IN EPILEPSY

The GABAA Receptor and Its Relevant
Ligands
GABA receptors are classified based on their sensitivity
to different agonists and antagonists as follows: fast-acting
ionotropic GABAA and GABAC receptors and the slower-acting
metabotropic GABAB receptor (Bormann, 2000). Among these
three subtypes, the GABAA receptor has the most predominant
distribution in the brain and has been estimated to be present
in 20% to 50% of brain synapses (Nutt and Malizia, 2001). In
the brain, neuronal discharges depend on the balance between
excitatory glutamatergic and inhibitory GABAergic activities;
thus, relative attenuation of GABAA receptor activities is often
implicated in a series of excitatory diseases, including anxiety
disorders and epilepsy (Sajdyk et al., 2008; Nuss, 2015; Shetty
and Upadhya, 2016). GABA is the most abundant inhibitory
transmitter in the central nervous system and opens Cl− channels
by binding to the GABAA receptor. Notably, benzodiazepines
(BDZs) are agonists of the receptor that not only directly open
the channel but also augment the capacity of GABA by inducing
a global conformational rearrangement of the GABAA receptor
(Nutt and Malizia, 2001; Gielen et al., 2012). Based on their
key roles in GABAergic activities, BDZs are widely prescribed
clinically to treat epileptic seizures (Ochoa and Kilgo, 2016).

MG Acts as a Partial Agonist of the GABAA
Receptor
Distler et al. (2012) observed that the administration of 100 µM
MG to hippocampal neurons (HNs) evoked inward Cl− currents
by activating the GABAA receptor and that approximately
one-third of the magnitude of the inward currents was evoked by
100µMGABA inHNs. Conversely, the magnitude evoked by the
co-application of GABA and MG was approximately two-thirds

the magnitude of the inward currents evoked by GABA alone.
Based on these in vitro findings, we speculate that the roles of
GABA and MG in GABAergic activities are competitive instead
of additive, implying that both compounds act on the same
binding site on the GABAA receptor. Indeed, the Cl− currents
evoked by the application of MG to HNs are blocked by the
GABAA-specific antagonist SR-95531; thus, MG is considered
a partial agonist of the GABAA receptor (Distler et al., 2012).
Similar to GABA, the MG-evoked Cl− inward currents in HNs
are also augmented by the co-application of BDZs (Distler et al.,
2012).

As mentioned above, MG is a partial agonist of the
GABAA receptor and competitively hampers the GABA-evoked
Cl− inward currents that play a key role in increasing the
threshold of neuronal discharge. Interestingly, the MG and
GABA distributions in the brain do not completely overlap but
are complementary to some extent in vivo. Previous studies have
shown that the GABA concentration in the synaptic cleft peak
was in the millimolar range (Farrant and Nusser, 2005) but was
extremely low in the extrasynaptic space (less than micromolar;
Vithlani et al., 2011). In contrast, MG can be secreted into
the extracellular space, and a concentration of 5 µM has been
measured in the mouse brain (Distler et al., 2012). Compared
with the millimolar concentration of GABA in the synaptic
cleft, the micromolar concentration of MG exerts a negligible
competitively inhibitory effect on the GABAA receptor, but
MG is likely dominant in the extrasynaptic space, where the
GABA concentrations are in the sub-micromolar range. Thus,
MG might be relevant in inhibiting neuronal discharge through
extrasynaptic GABAA receptors. Importantly, the concentration
required to achieved the 50% maximal effect (EC50) of MG in
HNs is 9.5 ± 0.9 µM, whereas the physiological concentration
of MG in the rodent brain is 5 µm (Distler et al., 2012);
thus, a twofold up-regulation of MG is on the linear segment
of the concentration response curve in which a small change
in concentration elicits profound effects upon postsynaptic
discharge.

More than 30 years ago, GABA and its analogs, such as
vigabatrin, were developed to treat epileptic seizures (Gram et al.,
1985; Loiseau et al., 1986). However, the use of therapies as
seizure treatments is relatively restricted due to many challenges.
Principally, GABA binds to all GABA receptors, including
the GABAB and GABAC receptors, and this binding elicits
a series of additional side effects involved in the activation
of the GABAB and GABAC receptors. Moreover, GABA is
a fundamental inhibitory neurotransmitter that is necessary
for the physiological balance of brain activities; thus, crude
and direct interventions for GABA signaling usually result in
neuropsychiatric complications, such as impaired concentration,
mental decline and depression. GABA has been prescribed
at high doses in clinical practice to overcome the blood-
brain barrier and increase the amount of GABA in the brain,
but long-term administration results in down-regulation of
the GABAA receptor and consequent loss of the anti-seizure
effects of this treatment. In contrast to GABA, MG does not
activate neuronal GABAB receptors, and an effect of MG on
the GABAC receptor has not been reported (McMurray et al.,
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2014). In cooperation with the function of GABA at synaptic
GABAA receptors, small changes in MG at doses above 10 µM
efficiently strengthen the inhibitory tone (Distler et al., 2012);
therefore, MG is a promising compound for modulating the
GABAA receptor and related excitatory diseases.

Antiepileptic Effect of MG
To investigate whether MG prevents or attenuates epileptic
seizures, MG was administered before the addition of picrotoxin,
which is a GABAA receptor antagonist that can induce seizures
in mice (Fisher, 1989; Distler et al., 2013). The MG pretreatment
attenuated the generalized convulsions induced by picrotoxin in
a dose-dependent manner. Specifically, MG treatment delayed
seizure onset, reduced the seizure duration and decreased the
percentage of animals that experienced generalized convulsions
from the behavioral perspective. Moreover, the antiepileptic
effects of MG were examined in a mechanistically distinct
epilepsy model established using pilocarpine, which is a
muscarinic cholinergic agonist (Curia et al., 2008; Distler et al.,
2013). Consistent with the effects observed in the picrotoxin
induction model, MG pretreatment delayed acute seizure onset,
decreased the seizure duration and reduced the highest seizure
stage in a dose-dependent manner. In addition, the role of MG
in ongoing seizures was explored by administering MG after
pilocarpine administration, and the results showed that animals
administered MG spent less time in partial status epilepticus
(continuous tremor/clonic seizures of the body and tail while
retaining posture; Winawer et al., 2011; Distler et al., 2013).
These findings strongly support the potential of MG as a seizure
treatment.

GLO1 ENZYME ACTIVITY IN EPILEPSY

GLO1 in the Glyoxalase System
The glyoxalase system is responsible for clearing MG in humans
and mainly functions as follows. MG combines with the thiol
group of reduced glutathione (GSH) to generate the reversible
product D-lactoylglutathione. The GLO1 enzyme catalyzes the
irreversible transformation of D-lactoylglutathione into S-D-
lactoylglutathione, which is further metabolized into nontoxic
D-lactate, and GSH is recycled by glyoxalase II (Thornalley,
1990). GLO1 acts as the rate-limiting enzyme in the glyoxalase
system and is thus considered a key target to regulate the
MG concentration and the pathological accumulation of its
downstream AGEs. In other words, based on its enzymatic
catalysis of MG, GLO1 likely plays an important role in MG-
and AGE-related diseases, and the interest in the potential of
GLO1 modulation as a seizure treatment has increased recently
(Distler and Palmer, 2012).

Modulation of GLO1 in Epileptic Seizures
According to previous studies, S-substituted glutathione is a
pharmacologic inhibitor of GLO1, and its presence can increase
the MG concentration in the brain by approximately 20% (Vince
et al., 1971; Thornalley et al., 1996; Distler et al., 2013). Based
on this observation, S-substituted glutathione was administered
before pilocarpine administration to examine the role of GLO1 in

epileptic seizures. Mice pretreated with S-substituted glutathione
had a shorter seizure duration than mice pretreated with
vehicle (Distler et al., 2013). Moreover, recombinant inbred
strains of C57BL/6J and DBA/2J mice (BXD) that inherited a
genomic duplication of GLO1 showed an approximately twofold
increase in GLO1 expression and an association with increased
susceptibility to epileptic seizures at high atmospheric pressure
(McCall and Frierson, 1981; Plomin et al., 1991; Distler et al.,
2013). Notably, transgenic mice overexpressing GLO1 were
also employed to identify the direct effect of GLO1; these
mice presented a reduced MG concentration in the brain and
increased seizure severity (Distler et al., 2013). In addition,
GLO1 polymorphisms are significantly related to epilepsy. In
particular, the variation at rs1049346 is potentially useful for
assessing the risk of late-onset and drug-resistant epilepsy (Tao
et al., 2016). These findings suggest that inhibiting the enzymatic
activity of GLO1 and then reducing the clearance of GABAergic
MG might be a novel approach for improving epileptic seizures.

DOWNSTREAM RAGE IN EPILEPSY

RAGE in the AGE/RAGE Axis
In addition to acting as a partial agonist of the GABAA receptor,
MG rapidly initiates protein glycation via a nucleophilic addition
reaction with the free amino group of proteins as well as
phospholipids and nucleic acids. This reaction is reversible,
but its Schiff base product can also be rearranged to form
ketoamine or Amadori products over several days. The Amadori
products generate irreversible cross-linkages between adjacent
proteins through a series of dehydrations and rearrangements
to form AGEs (Schleicher et al., 2001; Salahuddin et al., 2014).
In human tissues, AGEs primarily function by activating their
membrane receptor RAGE (Chuah et al., 2013; Kouidrat et al.,
2013, 2015; Fu J. et al., 2017). AGEs are classified into at least
six distinct types based on their origins, including glucose, other
carbohydrates, such as glyceraldehyde, and α-dicarbonyls, such
asMG, glycolaldehyde, glyoxal, and 3-deoxyglucosone (Takeuchi
et al., 2004). Due to the heterogenicity of their origins, AGEs are a
poor target for phenotypic and mechanic research, and RAGE is
naturally regarded as the focus of the AGE/RAGE axis to explore
the pathological significance of AGEs in human diseases.

RAGE in Inflammatory Diseases
RAGE is a transmembrane protein member of the
immunoglobulin superfamily (Schmidt and Stern, 2000)
that comprises three immunoglobulin-like domains in the
extracellular N-terminal segment, one transmembrane region
and a short cytoplasmic C-terminal region; thus, its significance
in inflammatory diseases is easily assumed. In fact, RAGE
has been demonstrated to mediate a cascade of inflammatory
signals, and its interactions with extracellular ligands, such
as AGEs, induce the nuclear translocation of nuclear factor
kappa B (NF-κB), which promotes the expression of cytokines,
chemokines, and adhesion molecules (Chuah et al., 2013).
Moreover, RAGE cooperatively signals with Toll-like receptors
(TLRs), which function as essential mediators to trigger
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inflammatory cascades (Mazarati et al., 2011; Chen et al., 2015).
In addition, RAGE has been implicated in a wide range of
inflammatory diseases, including diabetic complications and
atherosclerosis and is critical for the inflammatory response in
brain diseases (Ramasamy et al., 2005; Chuah et al., 2013; Singh
et al., 2014).

Inflammatory Mechanism in Epilepsy
Epilepsy is a heterogeneous group of neurological disorders
that shares a common manifestation. Excessively abnormal
synchronous discharge and alterations of neuronal activities
are the primary focuses of epilepsy research. As a result,
abnormalities related to ion channels, neurotransmitters and
synaptic remodeling were historically considered the most
important mechanisms of epilepsy, but this neurocentric
emphasis did not completely address issues implicated with
the initiation and aggregation of epileptic seizures. In recent
decades, brain inflammation was found to be related to
drug-resistant epilepsy due to diverse pathological etiologies
(Vezzani et al., 2011). Proinflammatory mediators, reactive
astrocytosis and activated microglia were observed in the
resected hippocampi of patients with temporal lobe epilepsy,
but none of these pathologies were present in specimens
obtained from healthy control tissues (Crespel et al., 2002).
Moreover, lipopolysaccharide, which is a classic inducer of
inflammation, lowered the seizure threshold and increased

spike-and-wave discharges in a rat model of absence seizures
(Kovács et al., 2006). Furthermore, seizure induction can
trigger the rapid induction of inflammatory mediators in brain
regions prone to the onset and propagation of seizure activity.
Importantly, anti-inflammatory and immune therapies, such as
adrenocorticotropic hormone, corticosteroids, plasmapheresis
and intravenous immunoglobulin have been successfully used to
treat epilepsy with varying levels of success (Vezzani et al., 2011).
This evidence suggests a positive feedback mechanism between
epilepsy and inflammation.

Inflammatory Involvement of RAGE in
Epilepsy
Many lines of evidence highly support the inflammatory
involvement of RAGE in epileptic seizures. Rasmussen
encephalitis (RE) is a rare brain disorder characterized by
unihemispheric inflammation, progressive neurological deficits
and intractable focal epilepsy. Interestingly, increasing levels
of RAGE expression were observed in surgically resected
epileptic cortical specimens from patients with RE (Luan et al.,
2016), implying the involvement of RAGE in inflammatory
RE. High-mobility group box 1 (HMGB1), which is another
endogenous ligand of RAGE, contributes to the overexpression
of P-glycoprotein (P-gp) in mouse epileptic brain tissues
by activating TLR4/RAGE receptors and the downstream
transcription factor NF-κB in brain microvascular endothelial

FIGURE 1 | Contradictory effects of methylglyoxal (MG) for seizure treatment. In the brain, MG inhibits epileptic seizures by activating extrasynaptic
gamma-aminobutyric acid type A (GABAA) receptors. The inflammatory effects of downstream advanced glycation end products (AGEs) are mediated by their
receptor receptor of AGEs (RAGE), which can induce epileptic seizures. As illustrated above, miRNAs are molecules with the potential to reconcile the conflicting
effects of MG and alleviate epileptic seizures by synergistically targeting both glyoxalase I (GLO1) to increase the GABAergic effects of MG and RAGE to inhibit the
inflammatory effects of AGEs.
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cells (Chen et al., 2015). Because P-gp is encoded by a gene
involved in multidrug resistance and NF-κB plays a key role in
the inflammatory response, RAGE has been proposed as a critical
molecule responsible for inflammation and drug resistance in
epilepsy. In addition, HMGB1 was ubiquitously expressed in
glial and neuronal cells in control and pathological cortex
specimens, but RAGE expression was only observed in cortical
dysplasia where epileptic seizures manifested (Zurolo et al.,
2011). Compared with its ligand HMGB1, RAGE activity likely
plays a pivotal role in the transduction of inflammatory signals.
Recently, a dominant inheritance model of the G82S locus in
RAGE was observed to be protective against drug-resistant
epilepsy (Guo et al., 2016), providing genetic support for the
involvement of RAGE in epileptic seizures.

DUAL REGULATION BY miRNAs IN
EPILEPSY

Conflicting Effects of MG
As mentioned above, epileptic seizures were theoretically
alleviated in animal epilepsy models in which GLO1 activity
was reduced, resulting in insufficient clearage of MG. However,
AGEs simultaneously accumulate in response to excessive
MG concentrations, and this accumulation activates RAGE
and results in inflammatory cascades that aggravate epileptic
seizures. Due to the adverse effects of AGEs, the prospect of
modulating the glyoxalase system for achieving seizure control
has historically been undervalued. Notably, AGEs function by
binding to RAGE, and combined inhibition of GLO1 and
RAGE might be an approach to reconcile the conflicting effects
of MG on epileptic activities by synergistically increasing the
GABAergic effects of MG while simultaneously inhibiting the
inflammatory effects of AGEs (Figure 1).

miRNAs With Multiple Targets
Non-coding RNAs were once classified as transcriptional noise,
but these molecules have attracted increasing attention due
to their regulatory effects on protein-coding genes. Among
non-coding RNAs, miRNAs are a specific class of small
non-coding molecules that negatively regulate gene expression
by complementarily binding to sequences in the 3′ untranslated
regions (UTRs) of target messenger RNAs (mRNAs) in
eukaryotes; these interactions result in either direct cleavage of
the mRNA or translational inhibition. Based on the base-pairing
principle, each miRNA usually regulates more than one mRNA
that possesses a complementary sequence in its 3′ UTR.

Thus, miRNAs are regarded as promising candidates to regulate
multiple targets at the post-transcriptional level.

To date, dual regulation of miRNAs has been demonstrated
in many pathological conditions, such as ovarian injury and
apoptosis (Du et al., 2017; Fu X. et al., 2017; Chang et al., 2018),
which raised a profound question as to whether miRNAs could
improve epilepsy by targeting both GLO1 and RAGE.

Potential miRNAs Targeting Both GLO1
and RAGE
As mentioned above, miRNAs function at the
post-transcriptional level and have been demonstrated to
be a promising approach for fine-tuning the excessive expression
of their target genes in several biological processes (Rahkonen
et al., 2016; Roy, 2016; Su et al., 2016). In addition, intranasal
delivery of miRNA mimics and inhibitors, which can bypass
the blood-brain barrier to deliver drugs into the brain, has been
used recently to treat several neurological diseases (Ma et al.,
2016; Lee et al., 2017; Tao et al., 2017). However, miRNAs have
not been reported to target both GLO1 and RAGE, and their
roles in epilepsy remain unknown. Regardless, bioinformatics
analyses can be used to screen miRNA candidates targeting
both GLO1 and RAGE. If any candidate is confirmed using
a dual-luciferase report gene system, the potential of using
miRNAs for seizure treatment warrants investigation through
future experiments.

CONCLUSION

This study systematically reviewed the significance of MG,
GLO1 and RAGE in epilepsy, discussed the potential of miRNAs
and introduced a preliminary scheme to screen and validate
miRNA candidates with the goal of reconciling the conflicting
effects of MG for the future development for seizure treatments.
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