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Abstract: With recent advances in single-cell RNA sequencing, enormous transcriptome datasets
have been generated. These datasets have furthered our understanding of cellular heterogeneity and
its underlying mechanisms in homogeneous populations. Single-cell RNA sequencing (scRNA-seq)
data clustering can group cells belonging to the same cell type based on patterns embedded in
gene expression. However, scRNA-seq data are high-dimensional, noisy, and sparse, owing to
the limitation of existing scRNA-seq technologies. Traditional clustering methods are not effective
and efficient for high-dimensional and sparse matrix computations. Therefore, several dimension
reduction methods have been introduced. To validate a reliable and standard research routine,
we conducted a comprehensive review and evaluation of four classical dimension reduction methods
and five clustering models. Four experiments were progressively performed on two large scRNA-seq
datasets using 20 models. Results showed that the feature selection method contributed positively to
high-dimensional and sparse scRNA-seq data. Moreover, feature-extraction methods were able to
promote clustering performance, although this was not eternally immutable. Independent component
analysis (ICA) performed well in those small compressed feature spaces, whereas principal component
analysis was steadier than all the other feature-extraction methods. In addition, ICA was not ideal
for fuzzy C-means clustering in scRNA-seq data analysis. K-means clustering was combined with
feature-extraction methods to achieve good results.

Keywords: single-cell RNA sequencing; dimensionality reduction; clustering algorithm

1. Introduction

Owing to the development of microfluidics, large numbers of cells can now be isolated [1].
Advances in RNA isolation and amplification have resulted in the application of RNA-sequencing
(RNA-seq) technology to analyze the transcriptomes of single cells [2–4]. The technology has spurred
the creation of several atlas projects, such as the Human Cell Atlas [5]. In 2017, 10X Genomics released
a dataset of 1.3 million mouse brain cells, which was the largest dataset published in the single cell
RNA-sequencing (scRNA-seq) field. Large-scale single-cell data provide new methods to address
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biological problems; however, they pose specific analytical and technical challenges, such as high
dimensionality, sparse matrix computation, and rare cell type detection [6,7]. A high-dimensional and
sparse matrix will cause the curse of dimensionality. Therefore, the computational analysis of scRNA-seq
data involves several steps, including quality control, mapping, quantification, dimensionality
reduction, clustering, finding trajectories, and identifying differentially expressed genes [4]. Among
these techniques, dimensionality reduction and clustering are two of the most important steps that
have substantial effects on downstream analysis.

As a large number of genes are assayed in single-cell RNA-seq data, distances between samples
(i.e., cells, in our case) tend to be small and not reliable for cluster identification (i.e., cell groups,
in our case) in this high-dimensional feature space [4]. This challenge is known as the curse of
dimensionality. To alleviate this problem and other undesirable properties of high-dimensional space,
dimensionality reduction models have been applied in many fields [8,9]. To obtain a data-driven,
coherent, and unbiased approach and to discover the natural groupings of a set of samples, we focused
on unsupervised dimensionality reduction methods.

For scRNA-seq transcriptome data, unsupervised clustering models have been used in several
studies to define new cell types. For example, the K-means clustering algorithm is one of the top
10 most widely used data mining algorithms [10], and it has been used in the Monocle scRNA-seq
toolkit [11]. Hierarchical clustering is another widely used clustering algorithm in scRNA-seq data
analysis, which combines each sample (a single cell, in our case) into larger clusters sequentially
or divides large clusters into smaller groups. Some scRNA-seq tools, such as BackSPIN [12] and
pcaReduce [13], extend hierarchical clustering by reducing the dimensions after each split or merge.
This iterative strategy improves the ability to identify small clusters. Community detection in a complex
network is a variant of the clustering concept [14–16]. Blondel et al. [17] tested the high accuracy of
the Louvain algorithm on ad hoc modular networks and demonstrated its excellent performance in
comparison with other community detection methods. The toolkit of single-cell analysis in Python
(SCANPY) adopted the Louvain clustering algorithm for gene expression data analysis of single
cells [18]. However, comprehensive studies to determine whether clustering, dimensionality reduction,
or the hybrid model is the most appropriate approach are lacking.

To achieve satisfactory results for scRNA-seq data, considerable challenges, such as data
scale, technical noise, and sparsity, must be overcome. In this study, we surveyed dimensionality
reduction algorithms and clustering models including filter-based feature selection (FBFS), principal
component analysis (PCA), independent component analysis (ICA), non-negative matrix factorization
(NMF), K-means, hierarchical clustering, Louvain, fuzzy C-means, and density-based spatial
clustering of applications with noise (DBSCAN). Experiments on two benchmark scRNA-seq datasets
comprehensively illustrated the effectiveness of different combinations of these dimensionality
reduction and clustering models.

2. Results

2.1. Datasets

The first scRNA-seq dataset (GSE60361) was based on the cerebral cortex of a mouse and released
by Zeisel et al. [12]. It included 3005 high-quality single cells containing unique molecular identifiers.
These data were obtained via scRNA-seq technology (STRT/C1) for molecular reconnaissance of the
hippocampus and somatosensory cortex of the cerebral cortex in mice. Each cell was represented by
19,972 genes.

The second dataset (GSE71585) was derived from the scRNA-seq data released by Tasic et al. [19].
It was used to construct the classification of primary visual cortex cells in adult mice (hereinafter
referred to as visual cortex data). The data included seven types of cells: astrocytes, endothelial
cells, GABA-ergic neurons, glutamatergic neurons, microglia, oligodendrocytes, and oligodendrocyte
precursors. The details of the mouse visual cortex data are shown in Table 1.
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Table 1. Cell type and number of mouse visual cortex data.

Broad Type Count

Astrocyte 43
Endothelial Cell 29

GABA-ergic Neuron 761
Glutamatergic Neuron 812

Microglia 22
Oligodendrocyte 38

Oligodendrocyte Precursor 22
Unclassified 82

Prabhakaran et al. [20] assumed that the gene expression vector xj of each cell after logarithmic
phase was consistent with a Gaussian distribution and used the Lilliefors test to validate the assumption.
Therefore, log2(x+1) was used to convert the single-cell expression data based on counts.

2.2. Measurements

The clustering accuracy (ACC) was adopted as the evaluation index. Let ci and li be the cluster
label and the label provided by the dataset, respectively. ACC is then defined as follows [21].

ACC = max
m

N∑
i=1

1
{
li = m(ci)

}
n

(1)

where N is the number of samples and m(ci) is the mapping function that maps each cluster label ci to
the equivalent label from the dataset. Typically, the class label is provided by human experts. However,
it is difficult to label single-cell RNA-seq data. GSE60361 and GSE71585 are the few labeled ones.

2.3. Visualization

t-distributed stochastic neighbor embedding (t-SNE) is a visualized nonlinear dimension reduction
algorithm proposed by Maaten et al. [22]. This algorithm is based on stochastic neighbor embedding
(SNE) and introduces t-distribution to reduce the crowding problem of SNE [23]. t-SNE uses the method
of symmetric SNE to process high-dimensional data, whereas the sample data in the low-dimensional
space adopts a symmetric t-distribution. The joint probability, qij, which is the similarity between yi
and yj in all samples in the low-dimensional space, is defined using a t-distribution of one degree
of freedom:

qi j =

(
1 + ‖yi − y j‖

)−1

∑
k, j

(
1 + ‖yk − y j‖

)−1
(2)

δC
δyi

= 4
∑

j

(pi j − qi j)(yi − y j)
(
1 + ‖yi − y j‖

)−1
(3)

where pij is the similarity of two points in a high-dimensional space. t-SNE has been widely used in
image processing, natural language processing, genomic data analysis, and speech processing [24–26].

2.4. Analyses of Mouse Cortex Data Results

Next, we analyzed the results according to the framework procedure. First, we discussed the
necessary and effectiveness of feature selection (i.e., gene selection) and feature extraction on clustering.
Subsequently, we analyzed the best combination of the dimensionality reduction and clustering
algorithms using these datasets.
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2.4.1. Effectiveness of Feature Selection

The single-cell expression data contained many missing values and noise data, which affected
the next step of the analysis (i.e., cell type identification). FBFS with variance was used to alleviate
these problems. Inspired by Prabhakaran et al. [20], we selected the groups of genes with the largest
expression variance. For the mouse cortex data, the original dimension was 19,972, and the number
of cell samples was 3005. We adopted a feature gene-selection procedure to select genes with high
variance. The variance represented the degree of differentiation the gene expression across all cells,
and a high variance indicates that the gene was more important for distinguishing cells. Therefore, we
could easily obtain the more biologically significant clusters.

With FBFS, for the mouse cortex data, four subsets were generated with the top 500, 1000, 2000, and
3000 genes. We conducted the following experiments with five clustering models; the comparison results
are shown in Figure 1. We compared all five clustering algorithms (i.e., hierarchical clustering, K-means,
fuzzy C-means, DBSCAN, and Louvain) on the four subsets with the original data (19,972 genes
with no feature extraction). The results of all five clustering models with the top 500 gene selection
were better than those without feature selection (19,972 genes). Furthermore, the Louvain algorithm
performed the best among these clustering algorithms, achieving an accuracy of 0.73 on 500 gene
sets. The accuracy was 28.22% higher than the result without gene selection. Meanwhile, with the
FBFS gene selection method, hierarchical clustering, K-means, fuzzy C-means, and DBSCAN achieved
24.34%, 31.3%, 3.22%, and 19.22% improvements in accuracy, respectively. These results showed that
clustering with gene selection yielded a better performance compared with methods without it.
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Figure 1. Effectiveness of feature selection on mouse cortex data. Hierarchical, K-means, Fuzz,
DBSCAN, and Louvain represent hierarchical clustering, K-means, fuzzy C-means, density-based
spatial clustering, and Louvain algorithms, respectively.

2.4.2. Effectiveness of Feature Extraction

First, to illustrate the effectiveness of feature extraction intuitively, we projected the mouse
cortex data of 500 genes into a 20 dimensional feature space using the NMF feature-extraction model.
The projection results are shown in Figure 2. From Figure 2a, we inferred that the astrocyte ependymal
cells, endothelial mural cells, and microglia cells (in the red oval) were mixed together in the 500 gene
space with no feature extraction (NFE). These three types of cells were classified into three groups
using NMF feature extraction, as shown by the red oval in Figure 2b.
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Figure 2. Comparison of no feature extraction (NFE) and non-negative matrix factorization (NMF)
feature extraction. (a) The t-distributed stochastic neighbor embedding (t-SNE) graph of mouse cortex
data of 500 genes with NFE. (b) The t-SNE graph of mouse cortex data of 500 genes with NMF.
The red oval circled clustering results of the astrocyte ependymal cells, endothelial mural cells, and
microglia cells.

To quantitatively validate the effectiveness of feature extraction, each clustering algorithm was
combined with three dimensionality reduction algorithms. The number of dimensions was reduced to
20, 30, 50, 100, 200, 300, and 400. Figure 3 shows that the accuracies of all five clustering algorithms
were significantly improved with the feature-extraction methods. For example, when the dimensions
were reduced to 20 (orange bar), the combination of hierarchical clustering and NMF obtained a 34.69%
higher accuracy than hierarchical clustering with NFE; the K-means-and-ICA-based combination model
achieved a 58.18% higher accuracy than the K-means with NFE; the fuzzy C-means-and-NMF-based
combination obtained a 10.60% higher accuracy than the NFE-based model; when the dimensions were
reduced to 50 (red bar), the accuracy of the DBSCAN-and-PCA-based combination was 28.30% higher
than that of DBSCAN with NFE; and the accuracy of the Louvain and ICA-based combination was
25.11% higher than that of Louvain with NFE. Based on all of the results described above, we concluded
that a higher accuracy can be obtained using feature extraction.
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Figure 3. Comparison results of the five clustering methods with feature extraction on the mouse
cortex data with 500 genes. From left to right, the blue, orange, green, red, brown, violet, khaki,
pink, and gray bars indicate the results of five clustering models in the original feature space, 20
dimensional, 30 dimensional, 50 dimensional, 100 dimensional, 200 dimensional, 300 dimensional, and
400 dimensional feature spaces, respectively. ICA and PCA represent independent component analysis
and principal component analysis algorithm.



Int. J. Mol. Sci. 2020, 21, 2181 6 of 21

Meanwhile, it was discovered that the selection of different feature-extraction models was crucial.
For example, when the mouse cortex data with 500 genes was reduced to 50 dimensions by ICA,
the highest clustering accuracy was achieved (accuracy = 0.93). This was achieved using Louvain
clustering. Additionally, the second highest clustering result was 0.87, which was obtained using
K-means in 20 dimensions.

Next, we assessed whether feature-extraction methods always benefit scRNA-seq data. To validate
the benefit of feature extraction, we compared the clustering results for different scales of feature space
and different extraction strategies. As shown in Figure 4, ICA extracted the features from 500 genes
to 20 features (Figure 4a), 30 features (Figure 4b), 50 features (Figure 4c), 100 features (Figure 4d),
200 features (Figure 4e), 300 features (Figure 4f), and 400 features (Figure 4g), respectively. From
Figure 4a–c, it is clear that all seven types of cells could be distinguished; however, in the following
four subfigures (Figure 4d–g), different cells were mixed and difficult to separate. This means that in
these four generated feature spaces, satisfactory results were difficult to achieve.

In Figure 4h (300 features extracted from 19,972 genes by NMF), the results exhibited disordered
groups. This was similar to the ICA results with 300 features (Figure 4f). This means that NMF
and ICA could not always achieve good results, especially for larger feature spaces. However,
the PCA graphs did not show apparent disorder for either the feature-selected data (Figure 4i) or
the original data (Figure 4j). This indicates that the PCA strategy was more robust than the other
feature-extraction methods.
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than those of the other four clustering models, respectively. Moreover, with feature selection, the 
clustering accuracy yielded a 5.48% increase from 0.73 to 0.77. This coincided with the 
aforementioned conclusion regarding feature selection. 

Figure 4. Comparison of different feature spaces and different extraction strategies on the mouse cortex
data. (a) 20 dimensional feature space (20D) from 500 genes using ICA model. (b) 30 dimensional feature
space (30D) from 500 genes using ICA model. (c) 50 dimensional feature space (50D) from 500 genes
using the ICA method. (d) 100 dimensional feature space (100D) from 500 genes using the ICA model.
(e) 200 dimensional feature space (200D) from 500 genes using the ICA model. (f) 300 dimensional
feature space (300D) from 500 genes using the ICA model. (g) 400 dimensional feature space (400D)
from 500 genes using the ICA model. (h) 300 dimensional feature space (300D) from 19,972 genes
using the NMF model. (i) 400 dimensional feature space (400D) from 500 genes using the PCA model.
(j) 500 dimensional feature space (500D) from 19,972 genes using the PCA model.

2.4.3. Which Clustering Algorithm Is Better?

To investigate the effectiveness of clustering models without feature-extraction models, we directly
performed clustering on the original data and feature-selection data for 500 genes. The results are
illustrated in Figure 5. We discovered that without any feature-extraction method, Louvain clustering
achieved the best results on the original and feature-selected data. On the original data, Louvain
reached an accuracy of 0.73, which was 46.18%, 76.24%, 34.00%, and 67.40% higher than those of
hierarchical clustering, K-means, fuzzy C-means, and DBSCAN, respectively. For the 500 genes,
Louvain achieved an accuracy of 0.77, which was 23.43%, 40.95%, 36.30%, and 47.42% higher than
those of the other four clustering models, respectively. Moreover, with feature selection, the clustering
accuracy yielded a 5.48% increase from 0.73 to 0.77. This coincided with the aforementioned conclusion
regarding feature selection.

In addition, the parameter k of K-means was set as the number of cell types. The k of k-nearest
neighbor algorithm (kNN) used in the Louvain model was set based on {20, 50, 60, 70, 80, 100, 120,
150}. When k = 70 in 500 gene subset and k = 20 in original dataset, Louvain obtained the best results,
as shown in Figure 5. Additionally, all of the Louvain results presented in Figure 3 were achieved
when k = 80.
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Figure 5. Comparison of the five clustering models with NFE on the mouse cortex data. The results of
19,972 genes are from the original data without dimensionality reduction. The results of 500 genes are
from the mouse cortex data of 500 genes with feature selection.

2.4.4. Which Combination Is Better?

We combined three feature-extraction models (i.e., ICA, NMF, and PCA) with five clustering models
(hierarchical clustering, K-means, fuzzy C-means, DBSCAN, and Louvain), and 15 combinations were
generated. The baselines were direct clustering results without combination. In Figure 6, the heatmap
of accuracy improvement for the combinations in the mouse cortex with the 500 gene set is shown.
Over half of the clustering results in red demonstrated a positive effect being achieved, whereas the
negative results are shown in black. The accuracy of ICA + K-means increased from 0.55 to 0.87 and
achieved the highest increase of 58.18%, as shown by the brightest red color in Figure 6. However,
when dimensions were greater than 200, the accuracy of K-means + ICA became worse than the
baseline and is represented by darker color.
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From the results shown in Figure 5, we inferred that Louvain is the best clustering method for this
dataset. As shown in Figure 6, the combination of Louvain and ICA achieved red promotion when
the feature space was less than 100 dimensions. This result means that ICA further improved the
Louvain clustering accuracy in small feature spaces. The combination of Louvain + ICA achieved the
highest accuracy (ca. 0.93, 0.92, and 0.91) on this dataset. However, when the number of dimensions
increased, the Louvain and ICA combination results worsened. For example, on dimensions of 200,
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300, and 400, Louvain + NMF achieved red promotion (24.45%, 24.15%, and 15.09% higher than the
baseline), whereas Louvain + ICA showed a dark decline (31.77%, 68.25%, and 79.40% lower than the
baseline). In these feature spaces, the former combination achieved better results, which were 50.06%,
85.01%, and 119.56% higher than those of the latter. From the t-SNE graphs of Figure 4e–g, it is clear
that the cells in these new projected feature spaces were mixed together. Therefore, Louvain + ICA
could not perform well on these feature spaces. Furthermore, the combinations did not always benefit
scRNA-seq data clustering.

Although Louvain + ICA achieved the best clustering result and K-means + ICA achieved the
highest red promotion, the combinations of fuzzy C-means + ICA and DBSCAN + ICA did not perform
as well as the former two combinations. As shown in Figure 6, DBSCAN + ICA indicated a dark
decline. This means that this combination yielded worse results in all seven extracted feature spaces
relative to the baseline of DBSCAN. The accuracy-improvement pattern of Hierarchical + ICA was
similar to that of K-means + ICA, which achieved red promotion with less than 200 dimensions.

Compared with the high fluctuation of the ICA-based combinations, we discovered that the
other eight combinations of hierarchical + PCA, K-means + PCA, DBSCAN + PCA, Louvain + PCA,
hierarchical+ NMF, K-means + NMF, fuzzy C-means + NMF, and Louvain + NMF all achieved
red promotion (Figure 6). Fuzzy C-means + PCA underwent a dark decline at the beginning
(e.g., 20 dimensions and 30 dimensions), whereas DBSCAN + NMF was dark in the middle (50 and
100 dimensions). Considering the robustness of the combinations, PCA + NMF did not fluctuate
significantly with dimension changes, and the performance was relatively stable.

2.5. Analyses of Mouse Visual Cortex Data Results

To determine the universality of the aforementioned discoveries, we performed experiments on
mouse visual cortex data. After comparing the mouse cortex data, we presented the similarities and
differences between the results.

2.5.1. Consistency Results

For the mouse cortex data, gene selection helped to achieve better performances. With FBFS, for the
visual mouse cortex data, four subsets with the top 500, 1000, 2000, and 3000 genes were generated.
We compared five clustering models on 500 gene feature selection data with no feature-extraction data
(24,057 genes). As shown in Figure 7, most of the results (four in five, except K-means) with gene
selection were better than those without gene selection. The four algorithms, hierarchical clustering,
fuzzy C-means, DBSCAN, and Louvain, achieved 16.96%, 61.83%, 23.80%, and 13.79% improvements
in accuracy, respectively.

Similarly to the mouse cortex data, Figure 8 illustrates the effectiveness of feature extraction, as
shown in Figure 2. We projected the mouse visual cortex data of 500 genes into a 50 dimensional
feature space using the PCA feature-extraction model. From Figure 8a, we inferred that the astrocytes,
oligodendrocyte precursor cells, endothelial cells, and microglia (in the red oval) were mixed together
in the 500 gene space. With PCA feature extraction, these three types of cells could be categorized into
four groups, as shown in the red oval in Figure 8b.

Moreover, regarding the effectiveness of feature extraction, from Figure 9, we investigated whether
the accuracies of three clustering algorithms (hierarchical clustering, K-means, and DBSCAN) can
be improved with the feature-extraction models. For example, when the dimensions were reduced
to 300 (pink bar), the hierarchical-clustering-and-NMF-based combination obtained a 25.15% higher
accuracy than hierarchical clustering with NFE; the K-means-and-NMF-based combination achieved
a 46.77% higher accuracy than K-means with NFE. When the dimensions were reduced to 100 (the
violet bar), the accuracy of the DBSCAN-and-PCA-based combination was 9.71% higher than that of
DBSCAN with NFE. The fuzzy C-means and Louvain models with feature-extraction model achieved
the same accuracy as that of the model with NFE. Based on these results for the mouse visual cortex
data with 500 genes, we concluded that feature extraction enabled the clustering models to achieve
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better performance in most cases (three out of five achieved better performance, whereas the other two
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Similarly to the results from the mouse cortex data, feature extraction did not always improve
the clustering performance. As shown in Figure 10, we compared the results of different feature
spaces and different feature-extraction models on the mouse visual cortex data. NMF extracted
the feature space from 500 genes to 20 features (Figure 10a), 30 features (Figure 10b), 50 features
(Figure 10c), 100 features (Figure 10d), 200 features (Figure 10e), 300 features (Figure 10f), and 400
features (Figure 10g). From Figure 10a–e, all six types of cell could be distinguished. However, in the
following two subfigures (Figure 10f,g), these cells were mixed and difficult to classify. Therefore,
in the two feature spaces, the clustering algorithms could not achieve satisfactory results. For the
ICA model, Figure 10h (300 features extracted from 24,057 genes by ICA) showed a disordered group;
however, PCA did not show apparent disorder in either the feature-selected data (Figure 10i) or the
original data (Figure 10j). Similarly to the results from the former data, PCA performed better than the
other feature-extraction methods.
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Figure 9. Comparison of the five clustering models with feature extraction on the mouse visual cortex
data with 500 genes. From left to right, the blue, orange, green, red, brown, pink, gray, and khaki bars
indicate the results of five clustering models in the original feature space and the 20 dimensional, 30
dimensional, 50 dimensional, 100 dimensional, 200 dimensional, 300 dimensional, and 400 dimensional
feature spaces, respectively.

2.5.2. Different Results

In contrast to Figure 1, in Figure 7, fuzzy C-means instead of the Louvain model performed the
best on the 500 gene subset, achieving an accuracy of 0.95. As shown in Figure 11, unlike in Figure 5,
without the feature-extraction model, fuzzy C-means achieved the best results on the feature-selected
data, whereas Louvain performed the best on the original data. On the original data, Louvain achieved
an accuracy of 0.69, which was 12.80%, 42.58%, 18.02%, and 40.87% higher than those achieved with
hierarchical clustering, K-means, fuzzy C-means, and DBSCAN, respectively. On 500 gene feature
selected data, fuzzy C-means achieved an accuracy of 0.95, which was 62.98%, 117.73%, 56.02%, and
2.49% higher than those of the other four clustering models, respectively. However, as shown in
Figure 5, Louvain was the best clustering model without feature extraction on the mouse cortex data.

The heatmap of accuracy improvement on the visual mouse cortex data (Figure 12) illustrates that
the combinations of feature-extraction and clustering models did not perform as well as on the mouse
cortex data. As shown in Figure 12, 24.82% of the clustering results (in red) achieved a positive effect,
whereas the negative results are shown in black. The accuracy of NMF + K-means increased from
0.45 to 0.66, achieving the highest increase of 46.67%, represented by the brightest red in Figure 12.
However, when the number of dimensions was larger than 300, the accuracy of K-means + NMF
became worse than that of the baseline, and is represented by a darker color. On the mouse cortex data,
K-means + ICA achieved the highest promotion (see Figure 6).

As shown in Figure 12, the results of fuzzy C-means + ICA declined, as represented by darker
colors. This means that this combination performed worse in all seven extracted feature spaces than
the fuzzy C-means baseline. However, this combination achieved red promotion in the 20 feature
space shown in Figure 6. Compared with the eight combinations that achieved red promotion in all
feature spaces in Figure 6, Figure 12 only shows three combination (i.e., hierarchical + PCA, K-means +

PCA, and DBSCAN + ICA).
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Figure 10. Comparison of different feature spaces and different extraction strategies on the mouse
visual cortex data. (a) 20 dimensional feature space (20D) from 500 genes using the NMF model. (b) 30
dimensional feature space (30D) from 500 genes using the NMF model. (c) 50 dimensional feature space
(50D) from 500 genes using the NMF model. (d) 100 dimensional feature space (100D) from 500 genes
using the NMF model. (e) 200 dimensional feature space (200D) from 500 genes using the NMF model.
(f) 300 dimensional feature space (300D) from 500 genes using the NMF model. (g) 400 dimensional
feature space (400D) from 500 genes using the NMF model. (h) 300 dimensional feature space (300D)
from 24,057 genes using the ICA model. (i) 400 dimensional feature space (400D) from 500 genes using
the PCA model. (j) 500 dimensional feature space (500D) from 24,057 genes using the PCA model.
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3. Discussion

Based on mouse cortex and mouse visual cortex data, four conclusions were drawn from our
experiments. First, in addressing the problem of high-dimensional and sparse matrix computation,
feature selection contributed positively to scRNA-seq data analyses. This is because feature selection
is one of the simplest but most effective methods to reduce the effect of the curse of dimensionality.
When the feature space was limited to the selected features, the gene-expression matrix became dense,
which eased clustering.

Second, feature extraction enhanced the clustering performance on the scRNA-seq data; however,
this was not eternally immutable. For the three typically used feature-extraction models, ICA performed
the best on the mouse cortex data, whereas PCA was steadier. ICA achieved good results in small
feature spaces, but its performance deteriorated when the number of features increased. This was
because some of the expressed genes were dependent for the scRNA-seq data. Many genes exhibited
strong relatedness with each other and were expressed together for biological functions. Therefore,
we could project them into independent components.
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Third, for the five clustering models, Louvain performed better than the other four clustering
algorithms on the first dataset. For the second dataset, Louvain ranked second, whereas fuzzy C-means
clustering performed the best.

Fourth, when using K-means clustering, feature-extraction models should be adopted to achieve
good results. This is because in high-dimensional and sparse feature spaces, K-means clustering falls
into local optimization more easily. ICA is not suitable for fuzzy C-means clustering because of the
poor performance of this combination on our two scRNA-seq datasets.

4. Materials and Methods

4.1. Dimensionality Reduction Models

Dimensionality reduction refers to reduction in the number of features, and its approaches can
be categorized into feature selection and feature extraction [23,27]. Feature selection models can be
classified into three main categories: wrappers, filters, and embedded methods [28,29]. Because filtered
features can achieve a more general result and are not tuned to a specific type of predictive model, we
focused on the FBFS model. Moreover, FBFS is typically less computationally intensive than wrappers
and can be constructed with prior knowledge; however, this knowledge is difficult to obtain. We
selected the groups of features (i.e., genes, in our experiments) with the largest expression variance
and ranked them for further analysis.

PCA is a linear feature-extraction algorithm that is widely used in biological research [30]. The
main idea of PCA is to project the feature space from high to low dimensions and reconstruct the
k-dimensional orthogonal features from the original n-dimensional feature space. PCA is an important
tool for analyzing high-dimensional gene expression data and has been used with scRNA-seq data [31].

ICA [32] can be used to obtain hidden factors from multidimensional data. The goal of ICA is to
decompose a multivariate signal into independent non-Gaussian components such that the components
are statistically independent, or as independent as possible. ICA assumes observation X as a linear
mixture of independent components S. Let A denote the inverse matrix of the weight matrix W, and
the columns of A represent the basis feature vectors of observation X.

S = W × X, X = A × S (4)

ICA has been widely used in blind source separation, image processing, speech recognition,
biological information, and other fields [33–36].

NMF [37] is a matrix decomposition algorithm and can be described as follows. Given a
non-negative matrix V ∈ RN×M and constant rank k, NMF finds a non-negative n × k matrix W and
another non-negative k × m matrix H. Additionally, W × H approximates to V, V ≈W × H, where k is
significantly less than M and N. NMF is applicable to many fields, such as image feature recognition [38],
speech recognition [39], biomedical engineering [40,41], and document clustering [21,42].

4.2. Clustering Models

Most clustering models can be classified into five different categories: hierarchical clustering,
squared error-based clustering, graph theory-based clustering, fuzzy clustering, and density-based
spatial clustering algorithms. We selected one from each category and investigated these classical and
widely used clustering algorithms.

Hierarchical clustering [13] is a structured clustering algorithm that segregates data into different
levels to achieve a tree structure based on the similarity between data points of different categories. In this
tree, the original data point is the leaf of the tree, and the top of the tree is the root node. Generally, two
types of strategies exist for hierarchical clustering: agglomerative (bottom-up approach) and divisive
(top-down approach). We selected the former in our experiment because of its wider application.

The K-means algorithm is a simple and fast squared error-based clustering method that has been
applied in many fields [43,44]. Its basic idea is as follows. Given a set of data, (x1, x2, . . . , xn), each of
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these points is a real vector in d dimensions, and the purpose of K-means is to group n points into
k(≤ n) clusters, s = (s1, s2, . . . , sk) to yield the minimum variances in each cluster. Generally, with the
Euclidean distance, the goal is to obtain

argmin
S

k∑
i=1

∑
x∈Si

‖x− µi‖
2
= argmin

s

k∑
i=1

|Si|Var(Si) (5)

where µi is the mean of the points in si. K-means is a greedy algorithm to minimize the squared
deviation of the data points in the same cluster:

argmin
S

k∑
i=1

1
2|Si|

∑
x,y∈Si

‖x− y‖
2

(6)

Fuzzy C-means is a classical fuzzy clustering algorithm proposed by Dunn and Bezdek [45]. It
minimizes the objective function to obtain the membership degree of each sample to each cluster center.
The objective function is shown in Equation (7).

Jm =
N∑

i=1

c∑
j=1

um
ij ‖xi − c j‖

2, 1 ≤ m < ∞ (7)

This objective function is minimized through the update iteration of the following two equations.

ui j =
1

c∑
k=1

(
‖xi−c j‖

‖x j−ck‖

) 2
m−1

(8)

c j =

N∑
i=1

um
ij xi

N∑
i=1

um
ij

(9)

DBSCAN is a density-based clustering algorithm that can be used to solve the clustering problem
of irregular shapes. It uses the high-density connectivity of the clusters and seeks a high-density
area that is separated by a low-density area. DBSCAN can discover clusters of arbitrary shapes.
For each sample in a cluster, the number of objects must exceed the given minimum number in its
domain of a given radius. Ester et al. [46] evaluated the effectiveness and efficiency of DBSCAN
using synthetic data and real data from the SEQUOIA 2000 benchmark, and proved that DBSCAN
performed more effectively at discovering clusters of arbitrary shapes than the CLARANS(Clustering
Large Applications based on Randomized Search) algorithm.

The Louvain method for community detection is a heuristic method based on modularity
optimization [17]. It belongs to graph-theory-based clustering, and its advantages are its high accuracy
and efficiency. It is considered as one of the best algorithms in community discovery [47]. The Louvain
method is a multistep technique based on the local optimization of the Newman–Girvan modularity
for each node. The modularity function is used to compute the compactness of the community and
achieve the optimization objective of the algorithm. This maximizes the modularity Q of the entire
sample set. Q is calculated as follows:

Q =
1

2m

n∑
i, j=0

[
Ai j −

kik j

2m

]
δ(ci, c j) (10)
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where m is the number of edges in the network; ki and kj represent the sum of all edge weights pointing
to nodes i and j, respectively; Aij represents the edge weight between nodes i and j; ci represents the
community where node i is located, and each community is a cluster; and δ(ci,cj) is obtained using
Equation (11).

δ(ci, c j) =

{
1 ci = c j
0 otherwise

(11)

This method offers a compromise between the accuracy of the estimate of modularity maximum
and the computational complexity, which is linear with the number of links in the graph.

4.3. Comparative Framework

Dimensionality reduction and clustering are important in scRNA-seq data analysis. We propose a
framework that combines four dimension-reduction models and five clustering models. Comparison
results are provided below based on these combinations for two scRNA-seq datasets to illustrate the
effectiveness of these models. The framework is shown in Figure 13.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 17 of 22 
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Our proposed framework contains four modules. The first module is data acquisition and
preprocessing. The second module is the dimensionality reduction module, including FBFS, PCA,
NMF, and ICA for highly dimensional scRNA-seq data. Subsequently, for the clustering module,
we adopted hierarchical clustering, K-means, fuzzy C-means, DBSCAN, and Louvain. The last module
is the visualization and evaluation. We performed a quantitative analysis of the data results and
a visual analysis using t-SNE. The analysis included the performance of each clustering algorithm
on the scRNA-seq data and the effect of dimensionality reduction on clustering. The details of the
20 combinations are listed in Table 2.

To introduce the Louvain algorithm into scRNA-seq data analysis, a nearest neighbor graph was
constructed using the kNN. For each cell sample, the Euclidean distance was used to compute the
similarity between the current cell and other cells. The nearest k samples were used to construct the
adjacency graph A. For sample i, Aij = 1 if sample j is one of the k samples closest to sample i; otherwise,
Aij = 0. When building a single-cell neighbor graph, the number of neighbors must be selected, which
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will affect the number and size of the final cluster. Therefore, selecting a suitable k is crucial, and is
discussed in the results section.

Table 2. Combinations of dimensionality reduction and clustering models.

Combination Numbers Combination Mode Field

1 K-Means mouse retinal cells [48]
peripheral blood mononuclear cell [49]

2 Hierarchical Clustering

intestinal cell types [50]
adult brain cell [51]

embryonic mouse lung [52]
human preimplantation embryos and embryonic stem cells [53]

3 Louvain progenitor-like cells [54]
peripheral blood mononuclear cell [18]

4 Fuzzy C-Means rare intestinal cell type in mice [55]
Genotype-tissue Expression (GTEx) human tissue dataset [56]

5 DBSCAN 1 B-cell Lymphoma [57]

6 PCA 2 + K-Means
intestinal cell types [50]
Lung epithelial cells [58]

7 PCA + Hierarchical Clustering
human and mouse early embryo [59]

distal lung epithelium [60]
breast-cancer-associated endothelial cells [61]

8 PCA + Louvain retinal bipolar neurons [62]

9 PCA + Fuzzy C-Means rare intestinal cell type in mice [55]

10 PCA + DBSCAN mouse retinal cells [63]

11 NMF 3 + K-Means renal cell carcinoma, liver cancer, lung cancer [64]

12 NMF + Hierarchical Clustering mouse strain [65]

13 NMF + Louvain unreported model

14 NMF + Fuzzy C-Means unreported model

15 NMF + DBSCAN unreported model

16 ICA 4 + K-Means
individual cell [66]

adult hippocampal quiescent neural stem cell [67]

17 ICA + Hierarchical Clustering Physcomitrella leaf cell [68]

18 ICA + Louvain human aging lung [69]

19 ICA + Fuzzy C-Means unreported model

20 ICA + DBSCAN unreported model
1 DBSCAN represents density-based spatial clustering of applications with noise. 2 PCA represents principal
component analysis. 3 NMF represents non-negative matrix factorization. 4 ICA represents independent
component analysis.

5. Conclusions

Dimensionality reduction and clustering are important in scRNA-seq data analysis. A comparative
framework is proposed which combines four dimension-reduction models and five clustering models.
Four experiments were progressively performed on two large scRNA-seq datasets using these
combinations. Four conclusions are drawn from the results. In summary, feature selection is crucial for
achieving better clustering results. When the result is unsatisfactory, feature-extraction methods can
be introduced, especially for K-means, hierarchical clustering, and DBSCAN. Louvain clustering can
obtain satisfactory results in most cases.
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