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Abstract
Plantation‐grown trees have to cope with an increasing pressure of pest and disease 
in the context of climate change, and breeding approaches using genomics may offer 
efficient and flexible tools to face this pressure. In the present study, we targeted ge‐
netic improvement of resistance of an introduced conifer species in Canada, Norway 
spruce (Picea abies (L.) Karst.), to the native white pine weevil (Pissodes strobi Peck). 
We developed single‐ and multi‐trait genomic selection (GS) models and selection 
indices considering the relationships between weevil resistance, intrinsic wood qual‐
ity, and growth traits. Weevil resistance, acoustic velocity as a proxy for mechani‐
cal wood stiffness, and average wood density showed moderate‐to‐high heritability 
and low genotype‐by‐environment interactions. Weevil resistance was genetically 
positively correlated with tree height, height‐to‐diameter at breast height (DBH) 
ratio, and acoustic velocity. The accuracy of the different GS models tested (GBLUP, 
threshold GBLUP, Bayesian ridge regression, BayesCπ) was high and did not differ 
among each other. Multi‐trait models performed similarly as single‐trait models when 
all trees were phenotyped. However, when weevil attack data were not available for 
all trees, weevil resistance was more accurately predicted by integrating genetically 
correlated growth traits into multi‐trait GS models. A GS index that corresponded to 
the breeders’ priorities achieved near maximum gains for weevil resistance, acoustic 
velocity, and height growth, but a small decrease for DBH. The results of this study 
indicate that it is possible to breed for high‐quality, weevil‐resistant Norway spruce 
reforestation stock with high accuracy achieved from single‐trait or multi‐trait GS.
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1  | INTRODUC TION

Trees are long‐lived stationary organisms that have to withstand 
pests and diseases during their lifetime. Host–pest relationships 
may constantly coevolve over time when organisms share the same 
environment (Núñez‐Farfán, Fornoni, & Valverde, 2007; Strauss & 
Agrawal, 1999). However, exotic species may be more exposed to 
damage by pest insects native to the area where they are introduced 
(Brockerhoff, Liebhold, & Jactel, 2006) because resistance mecha‐
nisms have usually not evolved in response to the selective pres‐
sure imposed by native insects, which could potentially compromise 
the productivity of exotic tree plantations (Branco, Brockerhoff, 
Castagneyrol, Orazio, & Jactel, 2015). While studies comparing the 
relative vulnerability of native and exotic conifers to native insects 
reported mixed results (Fraser & Lawton, 1994; Langström, Lieutier, 
Hellqvist, & Vouland, 1995; Lombardero, Alonso‐Rodríguez, & 
Roca‐Posada, 2012; Roques, Auger‐Rozenberg, & Boivin, 2006; Zas, 
Moreira, & Sampedro, 2011), in the majority of cases, exotic conifers 
were more damaged than native ones.

Norway spruce (Picea abies [L.] Karst) is a conifer native to 
Scandinavia, Eastern Europe, and the mountainous regions of 
central Europe. Being the most important commercial softwood 
for lumber and pulp and paper production in Europe (Hannrup et 
al., 2004), the species was found to be also highly productive in 
Eastern North America and one of the most productive conifer in 
plantation in Quebec, Canada (Thiffault et al., 2003). However, it 
is highly susceptible to the indigenous white pine weevil (Pissodes 
strobi Peck), a wood‐boring insect found in the temperate and 
southern boreal forests across the North American continent. 
Larvae feed on leader shoots, causing dieback; eventually lateral 
branches take over, causing kink and crooked stems of attacked 

trees. Besides its principal host eastern white pine (Pinus strobus 
L.), the weevil attacks different native spruces across the North 
American continent. In Norway spruce, moderate weevil damage 
leads to significant monetary loss due to stem defects and the 
resulting losses in lumber volume and quality (Daoust & Mottet, 
2006).

The first Norway spruce plantations were established in North 
America in the 19th century and Canadian early genetic testing ef‐
forts of this species date back to the 1920s at the Petawawa National 
Research Forest (Holst, 1955). Besides the screening for best grow‐
ing and frost hardy seed sources, it was quickly recognized that 
breeding efforts needed to include weevil resistance (Holst, 1963). 
The genetic variation in weevil resistance has been documented in 
North American spruce species, including Sitka spruce (Picea stichen‐
sis [Bong.] Carr.) (Alfaro, King, & VanAkker, 2013; Alfaro, VanAkker, 
Jaquish, & King, 2004; King, 2004) and interior spruce (Picea glauca 
[Moench] Voss  ×  engelmannii Parry ex Engelm.; white spruce, 
Engelmann spruce, and their hybrids) (Alfaro et al., 2004; King, 
Yanchuk, Kiss, & Alfaro, 1997). Although Norway spruce did not co‐
evolve with the white pine weevil in its native European range, mod‐
erate‐to‐high genetic variation and heritability for resistance were 
reported for this species (Holst, 1955; Mottet, DeBlois, & Perron, 
2015). Current Canadian Norway spruce breeding programs are 
largely based on resistant selections made by the Canadian Forest 
Service in the past (Daoust & Mottet, 2006). However, selections 
were made following conventional phenotypic evaluations of mature 
trees and pedigree‐based approaches, thus requiring many years of 
testing in genetic experiments. Recent developments in quantitative 
genomics and breeding such as whole‐genome predictions may help 
shorten the evaluation stage and breeding cycles (Park, Beaulieu, & 
Bousquet, 2016).

Box 1 Genomic selection: principles and application in tree breeding

Genome‐wide prediction or genomic selection (GS; Meuwissen et al., 2001) relies on simultaneously estimating effects of many thou‐
sand markers, with some that are in linkage disequilibrium (LD) with quantitative trait loci (QTL), in order to estimate the genetic merit 
of an individual. Another GS approach relies on using genetic markers to estimate the realized genomic relationships (G) between trees 
to obtain predictions (GBLUPs) of their genetic value (VanRaden, 2008), as opposed to conventional methods relying on the registered 
pedigree to make such predictions.
Genomic selection models are built using genomic profiles and phenotypic measurements of the same trees in a breeding population 
(i.e., training population, Figure 1a). Using these models, the prediction of genetic merit can be made based on multilocus genotypes, 
thus eliminating the need to phenotype and evaluate the performance of candidates for selection (Figure 1b). When predictive models 
have been validated and are sufficiently accurate, genomic selection can outperform conventional pedigree‐based selection given that 
genomic profiles from young material (seed, seedling, or embryo) can be obtained to predict genetic values and make selections at a very 
early stage, thus increasing dramatically genetic gains per unit of time (Figure 2). This is particularly more so for spruces, which can be 
vegetatively propagated in an efficient fashion from selections made at the juvenile stage (Park et al., 2016). GS is particularly efficient for 
(sub‐)boreal conifers, where conventional breeding cycles take up to 30 years or longer, largely due to the evaluation stage that can take 
up to 25 years (Mullin et al., 2011). Hence, under the application of GS, the role of phenotyping is significantly changed and is only needed 
for model construction and validation. Also, with same genomic profiles, models can be recalibrated with little effort for different traits 
according to changing breeding priorities. Selection intensity can also be increased by screening large numbers of candidates without 
phenotyping costs, which is particularly relevant in the context of multi‐trait selection. GS is currently being incorporated into different 
spruce breeding programs in eastern Canada.
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The application of genomics to forest trees has gained interest 
to hasten breeding and better understand the genetic control of 
pest resistance as well as economically important growth and wood 
quality traits (Plomion, Bousquet, & Kole, 2011). With the common 
limitation of conventional marker association studies to predict large 
parts of quantitative genetic variation (e.g., Beaulieu et al., 2011; 
Gonzalez‐Martinez, Wheeler, Ersoz, Nelson, & Neale, 2007; Porth 
et al., 2013), efforts in tree breeding have been turning to genomic 
prediction using dense marker panels. Genomic selection (GS, Box 
1) approaches rely on estimating effects of many thousand markers 
(Meuwissen, Hayes, & Goddard, 2001) or using the realized genomic 
relationships (G) between trees to obtain predictions of genetic val‐
ues (GBLUPs; VanRaden, 2008). Both GS approaches have been 
successfully tested in proof‐of‐concept studies in forest trees to pre‐
dict growth and wood quality, for example, in Eucalyptus (Resende, 
Munoz, et al., 2012; Resende, Resende, et al., 2012), pines (Isik et al., 
2016; Resende, Munoz, et al., 2012; Resende, Resende, et al., 2012; 
Zapata‐Valenzuela, Whetten, Neale, McKeand, & Isik, 2013), and 
spruces (Beaulieu, Doerksen, Clément, MacKay, & Bousquet, 2014; 
Beaulieu, Doerksen, MacKay, Rainville, & Bousquet, 2014; Chen et 
al., 2018; Lenz et al., 2017; Ratcliffe et al., 2015).

Most of the genomic selection studies in tree species focused 
on modeling growth and wood traits, which are quantitative traits 
likely to be controlled by a large number of genes of small effects 
(Namkoong, Kang, & Brouard, 1988). Despite the fact that many 
tree breeding programs screen for biotic resistance against pests 
or disease (Mullin et al., 2011), to our knowledge, there is no study 
on the accuracy of GS for insect resistance in trees. One study 
tested different GS models to predict resistance to a pathogen 
in loblolly pine (Pinus taeda L.) (Resende, Munoz, et al., 2012; 
Resende, Resende, et al., 2012). The authors reported that fusi‐
form rust resistance was likely controlled by a few genes of large 
effects since it was best predicted with Bayesian regression mod‐
els that allowed for different variance of marker effects. Not only 
is the genetic architecture of the trait an important consideration 

in the choice of GS model, but one must also deal with the nature 
of the phenotypic data. Screening data for pest resistance is most 
often qualitative or semiquantitative, which needs appropriate 
statistical approaches that can handle non‐normality of modeling 
errors. Thus, there is an opportunity for testing different GS ap‐
proaches with weevil resistance data in Norway spruce, for exam‐
ple the Bayesian generalized linear regression models that support 
binary or ordinal data (Perez & de los Campos, 2014) or the thresh‐
old GBLUP model developed for ordinal data (Montesinos‐López 
et al., 2015).

In practice, breeders generally need to consider multiple traits si‐
multaneously in their selections for improved genetic stock. Besides 
reducing insect attack, improving growth and wood volume are major 
goals for Norway spruce, as it is for several plantation‐grown coni‐
fers (Mullin et al., 2011). However, reduction of wood quality was 
observed in the past under selection for accelerated growth (Chen 
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et al., 2014; Lenz, Cloutier, MacKay, & Beaulieu, 2010). Therefore, 
important wood traits for mechanical applications such as wood 
stiffness should be considered when performing selections (Lenz, 
Auty, Achim, Beaulieu, & Mackay, 2013). Mottet et al. (2015) con‐
cluded that selection for weevil resistance would not reduce height 
growth, but could affect diameter and therefore volume. However, 
the genetic relationships between weevil resistance and intrinsic 
wood properties such as wood density and stiffness have never 
been investigated. Thus, there is a need to understand the genetic 
correlations between weevil resistance, wood quality, and growth 
traits and to look at the possibility to combine them in a multi‐trait 
genomic selection framework.

Multivariate genomic selection models can improve the accu‐
racy of predictions by taking advantage of the genetic correlations 
between traits (Calus & Veerkamp, 2011). This ability is especially 
advantageous for prediction of traits that are costly or difficult to 
measure by conventional means on a large number of candidate 
trees, such as weevil resistance or wood quality, by using available 
correlated indicator traits. Simulation studies showed that multi‐trait 
models can increase the accuracy of a target trait of low heritabil‐
ity when it is modeled together with genetically correlated indica‐
tor traits harboring high heritability (Guo et al., 2014; Jia & Jannink, 
2012). In addition, the benefits of multi‐trait GS are increased for 
target traits with scarce phenotypic records when they are coupled 
with intensively phenotyped indicator traits (Guo et al., 2014; Jia & 
Jannink, 2012; Schulthess et al., 2016). Few studies have applied 
multi‐trait genomic selection methods to real plant breeding data‐
sets (e.g., Bao, Kurle, Anderson, & Young, 2015; Fernandes, Dias, 
Ferreira, & Brown, 2018; Schulthess et al., 2016). In tree species, 
the accuracy of multi‐trait versus single‐trait GS models was only 

tested on a few traits using bivariate models in loblolly pine (Cheng, 
Kizilkaya, Zeng, Garrick, & Fernando, 2018; Jia & Jannink, 2012) and 
in Eucalyptus (Cappa et al., 2018), and these studies did not inves‐
tigate the effects of missing phenotypic data. Given the observed 
positive genetic correlations between weevil resistance and height 
growth (Mottet et al., 2015), and the possible correlations with wood 
quality traits, multi‐trait GS models could improve the accuracy of 
predictions for traits that are difficult and expensive to assess on a 
large number of trees.

Once accurate genomic‐estimated breeding values for each trait 
have been obtained from either single‐trait or multi‐trait models, it 
is possible to combine them into a selection index (SI; Hazel, 1943) 
and to rank individuals based on their overall performance across all 
traits. This strategy is especially useful in the presence of negative 
genetic correlations in order to select material that achieve a good 
balance in their performance for all traits of interest. In addition, GS 
is especially well suited to allow identifying correlation breakers in 
sufficient number, given the higher selection intensities that can 
be achieved by screening larger numbers of candidates than with 
conventional methods (Park et al., 2016). Hence, multi‐trait genomic 
selection models and index selection are two different tools that can 
be combined to improve accuracies of breeding values and optimize 
genetic gains, respectively, in a multi‐trait breeding program.

Here, we present a comprehensive genetic study of weevil resis‐
tance in Norway spruce and its relationships with growth and wood 
quality traits in the context of establishing a multi‐trait genomic 
selection breeding program. Our objectives were to (a) better un‐
derstand the genetic relationships between weevil attack and other 
growth and wood traits, in particular intrinsic wood quality traits; (b) 
evaluate the performance of different single‐trait genomic selection 
models, especially for weevil resistance; (c) test the performance 
of multi‐trait genomic selection models for predicting a target trait 
(weevil resistance or wood quality) when coupled with genetically 
correlated indicator traits (e.g., height growth); and (d) develop multi‐
trait genomic selection indices for the production of high‐quality and 
weevil‐resistant seedling stock in Norway spruce.

2  | MATERIAL AND METHODS

2.1 | Genetic material and phenotyping

The data analyzed in this study are a subset of a larger breeding popu‐
lation derived from a partial diallel mating design (see Mottet et al., 
2015 for more details). We focused our phenotyping and genotyping 
efforts on the trees planted on two sites affected by white pine weevil 
in Quebec, that is, Saint‐Modeste (47.85°N; 69.38°W; elevation: 140 m; 
abbreviated STM) and Grandes‐Piles (46.68°N; 72.68°W; elevation: 
150 m; abbreviated GPI), respectively, located in the balsam fir–yellow 
birch and the sugar maple–yellow birch bioclimatic domains (Figure 3). 
Both tests were set up in year 2000. The Grandes‐Piles plantation was 
heavily affected by weevils with ~70% of the trees attacked at least 
once by age 16, while the Saint‐Modeste plantation was moderately 
affected (~47% of the trees attacked by age 16). To develop genomic 

F I G U R E  3   Location of the test sites Saint‐Modeste (STM) and 
Grandes‐Piles (GPI) in the province of Québec, Canada
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selection models for weevil resistance, we selected 40 full‐sib families 
(35 parents), 20 of which were rated resistant and 20 rated susceptible 
based on weevil attack surveys at ages 10 and 15 on these two sites. 
A total of 726 trees (14 to 20 per family, mean = 17.85) were sampled. 
Each parent was crossed on average 2.3 times (Figure S1). The two tri‐
als were established according to a randomized complete block design, 
each with five blocks and three‐tree row plots for each family (tree 
spacing: 2.5 m × 2 m). Because of tree mortality, not all families were 
represented in every block (i.e., incomplete block design).

Tree height (Height15) and diameter at breast height (DBH15) 
were measured at age 15. The height‐to‐diameter ratio (Height15/
DBH15) was calculated as a proxy of stem taper. Three wood quality 
traits related to mechanical properties were assessed: average wood 
density and cellulose microfibril angle were determined from wood 
increment cores using X‐ray densitometry and diffractometry at age 
15 (Density15 and MFA15) as described in Lenz et al. (2017); acoustic 
velocity was measured at age 16 (Velocity16) with the ST300 Hitman 
tool. Acoustic velocity is a proxy for wood stiffness or modulus of 
elasticity measured at standing trees (Chen et al., 2015; Desponts, 
Perron, & DeBlois, 2017; Lenz et al., 2013).

For each of two surveys at ages 10 and 15, the presence/absence 
of weevil damage in the current year (coded 0/1) and in previous 
years (coded 0/1) were recorded. Current year damage was detected 
by inspecting the terminal shoot for emergence holes or death of the 
leader shoot. Weevil damage in previous years was visible by forks, 
curves, bayonets, or multiple stems. We calculated the cumulative 
number of attacks (CWA) as: 

where WAcurrent10 and WAcurrent15 are the presence/absence of at‐
tack at age 10 and 15, respectively; WAprevious10 is the presence/ab‐
sence of attack prior to age 10; and WA11–14 is the presence/absence 
of attack between ages 11 and 14. The variable WA11–14, which was 
calculated to avoid double‐counting previous attacks, was equal to 1 
(presence) if there was an attack prior to age 15, but no attack at age 

10 or prior to age 10. The resulting CWA variable is ordinal (ordered 
categories of 0, 1, 2, and 3 weevil attacks). Table 1 and Figure S2 
provide the summary statistics and violin plots, respectively, for the 
traits assessed in this study. Figure S3 shows the spatial distribution 
of CWA values in the test sites.

2.2 | SNP genotyping

The 726 trees were genotyped using an Infinium iSelect SNP 
array (Illumina), which was assembled from a catalog of high‐con‐
fidence gene SNPs obtained from exome capture and sequenc‐
ing (Azaiez et al., 2018). The genotyping reproducibility rate was 
high (99.94%), as estimated from two positive controls replicated 
on each genotyping plate. From 5,660 successfully manufactured 
SNPs representing as many distinct gene loci well distributed over 
the 12 spruce linkage groups (Pavy et al., 2017), we retained a 
total of 3,914 SNPs with call rate ≥90% (average call rate of 
99.6%), minor allele frequency (MAF) ≥0.005, and a fixation index 
|FIS| < 0.50. SNPs were well distributed across MAF classes with 
86% of the SNPs with MAF ≥0.05 (Figure S4). Missing genotypes 
(only 0.4% of genotypes) were imputed using a k‐nearest neigh‐
bor method based on linkage disequilibrium (LD‐kNNi) with the 
software LinkImpute (Money et al., 2015). The software estimated 
an accuracy of 0.83 for imputed genotypes by randomly masking 
genotypes.

2.3 | Relationship matrices and pedigree verification

All analyses were performed in the R v.3.3.1 environment (R Core 
Team, 2016). A pedigree‐based relationship matrix (A) and its inverse 
were first computed based on the registered pedigree information 
using the function “asreml.Ainverse” of the R package ASReml‐R 
v.3.0 (Butler, Cullis, Gilmour, & Gogel, 2007). For use in genomic 
selection (GS) models, the realized genomic relationship matrix (G, 
Figure S5) was computed from the marker data with the “A.mat” 

(1)CWA=WAprevious10+WAcurrent10+WA11−14+WAcurrent15

TA B L E  1   Phenotypic means, standard deviations (SD), and coefficients of variation (CV) for each site and across sites for the 714 trees 
retained for analyses

Traita Units

GPIb (n = 388) STMb (n = 326) Across sites (n = 714)

Mean SD CV (%) Mean SD CV (%) Mean SD CV (%)

Velocity16 km/s 3.71 0.33 8.96 3.69 0.31 8.54 3.70 0.32 8.77

Density15 kg/m3 344.78 24.77 7.19 395.45 29.30 7.41 367.91 36.91 10.03

MFA15 degrees 10.98 4.59 41.81 13.22 6.47 48.96 12.01 5.64 46.98

DBH15 mm 148.05 20.08 13.56 106.73 20.49 19.19 129.19 28.89 22.36

Height15 cm 908.09 128.12 14.11 788.90 111.64 14.15 853.67 134.61 15.77

Height15/DBH15 — 62.08 10.01 16.13 75.46 11.61 15.39 68.19 12.67 18.57

CWA Number of attacks 0.99 0.80 80.79 0.63 0.76 121.65 0.83 0.81 97.46

aMeasured traits in descending order are acoustic velocity at age 16 as a proxy for wood stiffness, average wood density at age 15, microfibril angle 
at age 15, diameter at breast height at age 15, tree height at age 15, the height‐to‐diameter ratio at age 15, and the cumulative number of weevil 
attacks. 
bExperimental sites Grandes‐Piles (GPI) and Saint‐Modeste (STM). 
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function of the R package rrBLUP (Endelman & Jannink, 2012) with 
the default options, which was equivalent to the formula described 
by VanRaden (2008). A comparison of the A and G matrices revealed 
11 “misclassified” trees that presumably did not belong to their ex‐
pected cross. In addition, one tree was deemed an outlier because it 
had abnormally high average wood density (Density15), after check‐
ing model residuals (see Equation (2) below). After removing misclas‐
sified and outlier trees, 714 trees genotyped on 3,914 SNPs were 
used in subsequent analyses. The resulting A and G matrices were 
highly correlated with a Pearson r = 0.94 (Figure S6). Large values 
of G within each class of A are mostly due to two inbred families 
(Figure S7).

2.4 | Heritability and genotype‐by‐environment 
interactions

First, variance components, heritability, and breeding values were 
estimated using the conventional pedigree‐based (ABLUP) or the 
genomic‐based (GBLUP) individual‐tree mixed models (the so‐called 
“animal model”) in ASReml‐R v.3.0:

where y is the phenotype; μ is the overall mean; s is the fixed site effect; 
b(s) is the random effect of block within site, with b (s)∼N(0,�2

b
Ib); a is 

the random additive genetic effect, with a∼N
(
0,�2

a
A
)
; sa is the random 

interaction of site with additive genetic effects, with sa∼N(0,𝜎2
sa
Is⊗A); 

and e is the residual term, assuming homogeneity across sites with 
e∼N(0,�2

e
Ie). For the ABLUP method, the matrix A is the pedigree‐

based relationship matrix, which was replaced by the realized ge‐
nomic relationship matrix G for the GBLUP method (a∼N

(
0,�2

a
G
)
 

and sa∼N(0,𝜎2
sa
Is⊗G)). The X and Z matrices are incidence matri‐

ces of their corresponding effects, and Ix is an identity matrix of its 
proper dimension. The symbol ⊗ refers to the Kronecker product. To 
test the hypothesis of greater than zero variance for each effect (H0: 
σ2 = 0; H1: σ2 > 0), we performed a likelihood‐ratio test with one de‐
gree of freedom between the full model in Equation (2) and a reduced 
model without the effect to be tested. The dominance effect was not 
included in models because it was not significant for all traits under 
study (Table S1), and, according to BIC, the fit of models including 
dominance was similar or worse than the models including the additive 
effect only (Table S2). We compared model (1) with a model fitting a 
different residual variance for each site and found that the latter model 
was slightly better for three out of the seven traits studied (Table S3). 
However, the breeding values between both approaches were highly 
correlated for all traits, with r > 0.99. Thus, we opted for the simpler 
model in Equation (2) to keep ABLUP and GBLUP models comparable 
with marker‐based genomic selection models. Finally, inspection of the 
residuals from Equation (2) versus the distance in X and Y in the trials 
showed no detectable spatial patterns (not shown).

Narrow‐sense individual heritability was estimated as:

The size of genotype‐by‐environment interaction (GxE), or type‐B 
correlation (r̂B), was estimated as:

Standard errors of heritability and type‐B correlation estimates 
were obtained using the delta method (pin function from the R pack‐
age nadiv; Wolak, 2012).

2.5 | Correlations between weevil resistance, wood 
quality, and growth traits

To estimate single‐site phenotypic and genetic correlations between 
traits, bivariate models were run for all pairs of traits in ASReml. 
Bivariate models were run for each site separately because of con‐
vergence problems of the multi‐site model due to large GxE for some 
traits (e.g., DBH15, see Results). The following model was fitted:

where yi and yj are the stacked vectors of phenotypic observations for 
trait i and trait j, respectively; t is the vector of fixed effects of traits 
(i.e., the grand mean for each trait); b(t) is the random effect of block 
nested within trait, with b (t)∼N

(
0,Ib⊗VB

)
; a(t) is the random addi‐

tive effect within trait, with a (t)∼N
(
0,A⊗VA

)
; and e is the residual 

error, with e∼N
(
0,Ie⊗VR

)
. The matrix A (ABLUP) was replaced by the 

realized genomic relationship matrix (G) for the GBLUP method. The 
matrices VB, VA, and VR are 2 x 2 variance–covariance matrices defined 
by the correlation of effects between traits (rb, ra, and re, respectively) 
and unique variances for each trait (i.e., CORGH in ASReml). To facil‐
itate convergence, we provided starting values for the variance com‐
ponents in VB, VA, and VR matrices that were taken from the results 
of the single‐trait models (Equation (2), Table S4). For rb, ra, and re, the 
starting value was set to 0 (no correlation). The genetic correlation 
between traits was directly provided by the estimated parameter r̂a 
and the phenotypic correlation was calculated as:

where COV(i,j)p is the phenotypic covariance between traits, and 
𝜎̂2
pi

, 𝜎̂2
bi

, 𝜎̂2
ai

, and 𝜎̂2
ei
 are the estimated phenotypic, block, additive, and 

residual variance of trait i (same for trait j), respectively. The signif‐
icance of the genetic correlation (H0: ra = 0; H1: ra ≠ 0) was tested by 
performing a likelihood‐ratio test with one degree of freedom be‐
tween the full model in Equation (5) and a reduced model assuming 
ra = 0 (i.e., a diagonal VA matrix). The significance of the phenotypic 
correlation (H0: rp = 0; H1: rp ≠ 0) was tested by performing a like‐
lihood‐ratio test with three degrees of freedom between the full 
model in Equation (5) and a reduced model assuming no correlation 
between traits (rb = 0, ra = 0, and re = 0). The single‐site heritability 
of trait i was given by:

(2)y=�+Xs+Z1b (s)+Z2a+Z3sa+e

(3)ĥ2
ind

= 𝜎̂2
a
∕
(
𝜎̂2
a
+ 𝜎̂2

sa
+ 𝜎̂2

e

)

(4)r̂B= 𝜎̂2
a
∕
(
𝜎̂2
a
+ 𝜎̂2

sa

)

(5)
⎡
⎢⎢⎣
yi

yj

⎤
⎥⎥⎦
=Xt+Z1b (t)+Z2a(t)+e

(6)r̂P=
COV(i,j)p√

𝜎̂2
pi
𝜎̂2
pj
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r̂b

√
𝜎̂2
bi
𝜎̂2
bj
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√
𝜎̂2
ai
𝜎̂2
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+ r̂e

√
𝜎̂2
ei
𝜎̂2
ej√(
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) (
𝜎̂2
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+ 𝜎̂2

aj
+ 𝜎̂2

ej

)
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2.6 | Single‐trait genomic selection models

We evaluated four single‐trait GS methods: GBLUP, Bayesian ridge 
regression (BRR), BayesCπ, and, in addition for CWA, threshold 
GBLUP (TGBLUP) developed for ordinal traits. GBLUP was imple‐
mented as described in Equation (2) in ASReml. The G matrix de‐
scribes the realized genomic relationships between trees, which 
better account for within‐family Mendelian sampling, as well as 
deeper (unknown) pedigree relationships. GBLUP relies on the “in‐
finitesimal” model of quantitative genetics, assuming that the ge‐
netic control of complex traits is equally distributed across many 
(infinite) loci with small effects (Falconer & Mackay, 1996). The 
GBLUP model assumed that residuals are normally distributed for 
all traits. For the trait CWA, we tested the threshold GBLUP model 
(TGBLUP) for ordinal data, as described by Montesinos‐López et al. 
(2015). To implement TGBLUP, the same model as in Equation (2) 
was fitted, but the response type was set to “ordinal” (probit link 
function) in the BGLR R package v.1.0.5 (de los Campos, & Pérez‐
Rodríguez, 2016). Conventional‐estimated breeding values (EBVs) 
of individual trees for the ABLUP method or the genomic‐estimated 
breeding values (GEBVs) for the GBLUP and TGBLUP methods were 
obtained from the best linear unbiased predictions (BLUPs) of the 
random additive effect (a).

BRR and BayesCπ are from a different class of models, in which 
marker effects are estimated and used to predict breeding values 
based on tree genotypes. We fitted the following Bayesian model in 
the BGLR package:

where y is the phenotype; μ is the overall mean; s is the fixed site 
effect (i.e., modeled with a flat prior); b(s) is the random effect 
of block within site, with b (s)∼N(0,�2

b
Ib); am is the random addi‐

tive effect of markers; and e is the residual term, with e∼N(0,�2
e
Ie).  

Note that compared with ABLUP and GBLUP models, the geno‐
type‐by‐environment interaction (GxE) component was not fitted 
in BRR and BayesCπ models, thus assuming that marker effects 
were stable across environments. To account for different distri‐
butions of marker effects, the prior for am changes depending on 
the method (see Appendix S1 for a full description). Briefly, the 
method BRR is a Bayesian version of ridge regression, in which 
marker effects are normally distributed (i.e., Gaussian prior) and 
have identical variance (am∼N(0,�2

m
Im)). In BRR, all markers have a 

nonzero effect, and so this method is appropriate for traits con‐
trolled by a large number of genes with small effects. In contrast, 
the method BayesCπ takes into account that only a proportion π 
of markers have an effect, while a proportion (1  −  π) of marker 
effects are shrunk toward zero (Habier, Fernando, Kizilkaya, & 
Garrick, 2011). For the BRR and BayesCπ methods, the response 

type was set to “ordinal” (probit link function) for the trait CWA, 

and to “gaussian” for all other traits. BGLR was run for 50,000 
iterations and a thinning interval of 20, with the first 15,000 iter‐
ations discarded as a burn‐in. Genomic‐estimated breeding values 
(GEBVs) were obtained by summing over the effects of all mark‐
ers, with GEBVi=

∑m

j=1
Z’ijâj, where âj is the estimated effect of the 

jth marker, and Z′
ij
 is an indicator of the genotype of individual i at 

the jth marker.

2.7 | Multi‐trait genomic selection models

Genomic selection models that incorporated the information of 
multiple correlated traits into a single analysis were evaluated using 
GBLUP multivariate models in ASReml. To facilitate the convergence 
of multivariate models, the modeling was done in two steps. First, 
phenotypes were adjusted for block and site effects (y*) by taking 
the residuals (e) of a model that included a fixed site effect (s) and a 
random block within site effect (b(s)): y=�+Xs+Zb (s)+e. After ad‐
justing phenotypes, the portion of GxE due to rank changes in dif‐
ferent sites remains, but the “level‐of‐expression GxE” (i.e., spread of 
breeding values across environments) is controlled for (Li, Suontama, 
Burdon, & Dungey, 2017). Second, a multivariate model with p traits 
was fitted:

where y*
i are the stacked vectors of adjusted phenotypes from 

trait i to trait p; t is the vector of fixed effects of traits (i.e., the 
grand mean for each trait); a(t) is the random additive effect 
within trait, with a (t)∼N

(
0,G⊗VA

)
; and e is the residual error, with 

e∼N
(
0,Ie⊗VR

)
. The matrices VA, and VR are p × p variance–cova‐

riance matrices, defined by correlations between all pairs of traits 
and unique variances for each trait. GxE (as rank‐changes inter‐
action) was not fitted to simplify the model and facilitate conver‐
gence. We provided starting values for the variance components 
in VA and VR matrices that were taken from the results of the sin‐
gle‐trait models. We obtained GEBVs of individual trees for each 
trait separately from the BLUPs of the random additive effect (a) 
within trait.

We evaluated the performance of multi‐trait GS models for 
predicting a target trait, when coupled with genetically cor‐
related indicator traits. We chose three target traits, the cumu‐
lative number of weevil attacks (CWA), average wood density at 
age 15 (Density15), and microfibril angle at age 15 (MFA15), for 
which measurements are difficult or costly to obtain for a large 
number of candidate trees. For each target trait, four multi‐trait 
GS model was tested: (a) a two‐trait model including one of the 
target traits and Height15 as an indicator trait; (b) a two‐trait 
model with one of the target traits and Height15/DBH15 ratio; (c) 
a two‐trait model with one of the target traits and Velocity16; 

(7)ĥ2
ind ss

= 𝜎̂2
ai
∕
(
𝜎̂2
ai
+ 𝜎̂2

ei

)

(8)y=�+Xs+Z1b (s)+Z2am+e

(9)

⎡
⎢⎢⎢⎢⎣

y* i

…

y*p

⎤
⎥⎥⎥⎥⎦
=Xt+Za(t)+e
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and (d) a three‐trait model with one of the target traits, Height15/
DBH15 ratio, and Velocity16. To simulate a situation where the 
target trait was only measured for a smaller subset of the trees, 
the percentage of missing data in the training set (see below) was 
varied from 0% to 90% by randomly adding missing values to the 
phenotypes of the target trait. We repeated this process 100 
times for each trait and level of random missing values in cross‐
validation (see below).

2.8 | Cross‐validation and estimation of accuracy

The prediction accuracy of ABLUP, GBLUP (single and multi‐trait), 
TGBLUP, BRR, and BayesCπ models’ predictions was tested using a 
tenfold cross‐validation (CV) scheme combining data across sites as 
in Beaulieu, Doerksen, Clément, et al. (2014) and Lenz et al. (2017). 
The full set of individual trees was randomly split into tenfold, each 
containing ~10% of the trees from each family. For each round of 
CV, ninefold (~642 trees or 90%) was used in model training, which 
was used to predict the breeding values for the remaining fold (~71 
validation trees or 10%). This tenfold CV was repeated ten times, for 
a total of 100 models for each trait.

The predictive ability (PA) of the models was evaluated as the 
Pearson correlation coefficient between the predicted breed‐
ing values of the validation trees and the adjusted phenotypes 
(y*) for block and site effects. The predictive accuracy (PACC) 
of models was estimated from PA as PACC=PA∕

√
ĥ2
ind

(Dekkers, 
2007; Legarra, Robert‐Granie, Manfredi, & Elsen, 2008). For all 
the methods tested (ABLUP, GBLUP, TGBLUP, BRR, BayesCπ, and 
multi‐trait GBLUP), we used the ĥ2

ind
 estimated from the GBLUP 

model (Equations 2 and 3) as our best estimate of heritability for 
the calculation of predictive accuracy (PACC). PA and PACC were 
calculated within each fold to avoid including a fold effect, then 
averaged across folds and repetitions to obtain standard errors 
(Isik, Holland, & Maltecca, 2017).

For multi‐trait models, the prediction ability (PA) and prediction 
accuracy (PACC) of multi‐trait GBLUP models were compared with 
the equivalent single‐trait GBLUP models using adjusted pheno‐
types as a response variable (see Appendix S2).

2.9 | Genetic gains and multi‐trait selection indices

Expected genetic gains from single‐trait selection were calculated 
as the mean estimated breeding value of the top 5% trees for each 
trait separately, as estimated from the single‐trait ABLUP (EBVs) or 
GBLUP (GEBVs) analysis (Equation 2). These estimated gains repre‐
sented the maximum possible gain for each trait. To estimate genetic 
gains in a multi‐trait selection context, we combined four traits of 
economic interest into a SI as follows:

where Height15EBV, CWA6.15EBV, Velocity16EBV, and Density15EBV are 
the BLUP estimated breeding values from the single‐trait ABLUP or 
GBLUP analysis (Equation 2) for the corresponding trait; and wi are the 
relative weight given to each trait, with the restrictions:

0≤wi≤1 for all traits, and
w1+w2+w3+w4=1.

We assigned a negative sign to CWA since a decrease in the value of 
this trait (fewer weevil attacks) represents an improvement. Breeding 
values for each trait were scaled to a variance of one (already centered) 
prior to SI calculations. DBH15 is an economically important trait, but 
was excluded from the SI scenarios because its heritability was not sig‐
nificantly different from zero (see results). The four weight coefficients 
were varied between 0 and 1 by intervals of 0.05, resulting in 1,771 
different selection indices. For each SI, trees were ranked according to 
decreasing values of the index (I) and the top 5% trees were selected 
to calculate the expected genetic gain. For each trait, the relative ge‐
netic gain (%) was calculated as the ratio of the expected gain to the 
maximum possible gain from single‐trait selection. We present, a first 
SI scenario (SI‐1) that corresponded to the priorities for the Norway 
spruce breeding program in Québec, which put more emphasis on 
weevil resistance (w2 = 0.6), followed by growth, represented here by 
height growth (w1 = 0.3), and acoustic velocity (w3 = 0.1). We chose to 
present two further SIs that maximized the total relative gain of the 

(10)
SI=w1Height15EBV−w2CWA6.15EBV+w3Velocity16EBV+w4Density15EBV

Traitc

ABLUP GBLUP

ĥ2
ind

r̂B ĥ2
ind

r̂B

Velocity16 0.37 (0.12)** 0.79 (0.15) 0.29 (0.08)*** 0.76 (0.16)

Density15 0.25 (0.11)* 0.65 (0.2)* 0.26 (0.08)** 0.76 (0.17)

MFA15 0.08 (0.06) 0.47 (0.32)* 0.06 (0.05) 0.43 (0.32)**

DBH15 0.00 (0.00) 0.00 (0.00)*** 0.00 (0.00) 0.00 (0.00)**

Height15 0.47 (0.16)** 0.65 (0.15)*** 0.22 (0.08)** 0.52 (0.17)***

Height15/DBH15 0.40 (0.14)** 0.68 (0.16)** 0.20 (0.08)* 0.56 (0.20)**

CWA 0.47 (0.12)*** 0.97 (0.08) 0.27 (0.07)*** 0.86 (0.15)

aThe model fitted is described in Equation (2). 
bLevel of statistical significance: *p < 0.05; **p < 0.01; ***p < 0.001. 
cSee Table 1 for full description of traits. 

TA B L E  2   Individual narrow‐sense 
heritability (ĥ2

ind
) and type‐B genetic 

correlation (r̂B) estimates (standard errors 
in parentheses) using the single‐trait 
ABLUP and GBLUP methods for the 
across‐site analysesa. For heritability 
estimates, the significance of the additive 
variance component is shown (see Table 
S4). For type‐B genetic correlations, the 
significance of the site × additive variance 
component is shownb. A significant 
site × additive variance indicates 
significant genotype‐by‐environment 
interaction (i.e., smaller values of r̂B)
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following traits: Height15, CWA, and Velocity16 (SI‐2) and in the other 
case Height15, CWA, Velocity16, and Density15 (SI‐3).

3  | RESULTS

3.1 | Heritability and genotype‐by‐environment 
interaction

In the across‐site analyses, heritability ranged from 0 to 0.47 using 
the ABLUP method and from 0 to 0.29 using GBLUP (Table 2). 
Details of estimated variance components are in Table S4. We found 
moderate‐to‐high heritability (ABLUP: ĥ2

ind
  =  0.25–0.47; GBLUP: 

ĥ2
ind

 = 0.20–0.29) for the cumulative number of weevil attacks (CWA), 
wood quality traits (Velocity16; Density15), height growth (Height15), 
and height‐to‐DBH ratio (Height15/DBH15), whereas microfibril 
angle (MFA15) was under low additive genetic control (the additive 
variance was not significantly different from zero). For DBH15, the 
estimated heritability was null and the type‐B correlation was zero 
(r̂B = 0) due to large genotype × environment interaction (GxE). Using 

the GBLUP method, weevil resistance (CWA), acoustic velocity 
(Velocity16), and average wood density (Density15) had the highest 
heritabilities (ĥ2

ind
 = 0.26–0.29). The lowest GxE estimates were also 

found for these traits (r̂B = 0.76–0.86 using GBLUP), indicating lit‐
tle rank changes of families between sites. GxE was moderate for 
Height15 and Height15/DBH15 (r̂B = 0.52–0.56 using GBLUP) and was 
higher for MFA15 and DBH15 (r̂B < 0.43 using GBLUP).

3.2 | Correlations between weevil resistance, 
growth, and wood quality traits

Phenotypic and genetic correlations between traits using the 
GBLUP method are presented for each site separately, in Table 3 
for GPI, the most severely affected site by weevil attacks, and in 
Table 4 for STM, the site that was moderately affected. Results 
using ABLUP were similar (GPI: Table S5; STM: Table S6), and so 
we present below only the results using GBLUP. Weevil resistance 
was significantly correlated with growth and wood quality traits. 
On both sites, we found a moderate negative genetic correlation 

TA B L E  3   Site GPI: phenotypic (r̂p, above diagonal) and genetic correlations (r̂a, below diagonal) between traits calculated with the GBLUP 
methoda. Diagonal elements indicate the single‐site narrow‐sense heritability (ĥ2

ind ss
) for each trait. Standard errors of estimates are in 

parentheses. Genetic and phenotypic correlations were tested for significance. For ĥ2
ind ss

, the significance of the additive variance component 
is shownb

Traitc Velocity16 Density15 MFA15 DBH15 Height15 Height15/DBH15 CWA

Velocity16 0.38 (0.09)*** 0.32 (0.06)*** −0.10 (0.05) −0.16 (0.06)** 0.28 (0.06)*** 0.41 (0.05)*** −0.19 (0.06)*

Density15 0.61 (0.14)*** 0.49 (0.10)*** −0.04 (0.05) −0.46 (0.05)*** −0.07 (0.07) 0.39 (0.05)*** −0.12 (0.06)

MFA15 −0.16 (0.38) −0.11 (0.40) 0.06 (0.05) 0.02 (0.05) 0.01 (0.05) −0.03 (0.05) 0.04 (0.05)†

DBH15 −0.02 (0.28) −0.38 (0.23) −0.52 (0.48) 0.18 (0.09)* 0.40 (0.05)*** −0.56 (0.04)*** 0.11 (0.06)

Height15 0.6 (0.17)** 0.00 (0.18) 0.29 (0.34) 0.33 (0.22) 0.54 (0.09)*** 0.52 (0.05)*** −0.48 (0.05)***

Height15/DBH15 0.62 (0.14)*** 0.36 (0.16)* 0.37 (0.34) −0.35 (0.21) 0.74 (0.12)*** 0.44 (0.09)*** −0.54 (0.04)***

CWA −0.52 (0.18)* −0.20 (0.19) −0.14 (0.38)† 0.49 (0.25) −0.69 (0.12)*** −0.99 (0.04)*** 0.44 (0.09)***

aThe model fitted is described in Equation (5). 
bLevel of statistical significance: *p < 0.05; **p < 0.01; ***p < 0.001; †Convergence failed. 
cSee Table 1 for full description of traits. 

TA B L E  4   Site STM: phenotypic (r̂p, above diagonal) and genetic correlations (r̂a, below diagonal) between traits calculated with the GBLUP 
methoda. Diagonal elements indicate the single‐site narrow‐sense heritability (ĥ2

ind ss
) for each trait. Standard errors of estimates are in 

parentheses. Genetic and phenotypic correlations were tested for significance. For ĥ2
ind ss

, the significance of the additive variance component 
is shownb

Traitc Velocity16 Density15 MFA15 DBH15 Height15 Height15/DBH15 CWA

Velocity16 0.47 (0.11)*** 0.26 (0.07)*** −0.32 (0.05)*** −0.18 (0.08)* 0.23 (0.07)* 0.41 (0.07)*** −0.22 (0.07)**

Density15 0.16 (0.27) 0.21 (0.09)*** 0.14 (0.06) −0.43 (0.06)*** −0.16 (0.07)** 0.40 (0.06)*** −0.22 (0.06)***

MFA15 −0.78 (0.16)** 0.18 (0.32) 0.19 (0.08)*** −0.07(0.06) −0.14 (0.06) −0.01 (0.06) −0.02 (0.06)

DBH15 −0.29 (0.32) 0.08 (0.38) 0.71 (0.32)* 0.14 (0.08)** 0.62 (0.04)*** −0.69 (0.04)*** 0.25 (0.06)***

Height15 0.62 (0.22)* 0.15 (0.36) −0.16 (0.33) 0.05 (0.44) 0.21 (0.10)** 0.11 (0.07) −0.23 (0.06)**

Height15/DBH15 0.58 (0.19)* 0.02 (0.28) −0.65 (0.23)* −0.69 (0.19)* 0.71 (0.24)* 0.34 (0.10)*** −0.52 (0.05)***

CWA −0.57 (0.21)* −0.06 (0.30) 0.25 (0.29) 0.55 (0.27) −0.60 (0.25) −0.79 (0.12)*** 0.29 (0.10)***

aThe model fitted is described in Equation (5). 
bLevel of statistical significance: *p < 0.05; **p < 0.01; ***p < 0.001. 
cSee Table 1 for full description of traits. 
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(GPI: r̂a = −0.52; STM: r̂a = −0.57) between the cumulative number 
of weevil attacks (CWA) and acoustic velocity (Velocity16), and a 
strong negative genetic correlation between CWA and Height15/
DBH15 (GPI: r̂a  =  −0.99; STM: r̂a  =  −0.79). There was a negative 
genetic correlation between CWA and Height15 on both sites (GPI: 
r̂a = −0.69; STM: r̂a = −0.60), although this genetic correlation was 
only significant on the most severely affected site GPI by weevil 
attacks. Conversely, there was a positive, but not significant, ge‐
netic correlation between CWA and DBH15 (GPI: r̂a = 0.49; STM: 
r̂a  =  0.55). Overall, these results indicated that weevil‐resistant 
genotypes were taller, with larger height‐to‐DBH ratio and higher 
wood stiffness as measured by acoustic velocity.

Significant genetic correlations between wood quality 
and growth traits were found for both sites. Acoustic velocity 
(Velocity16) was strongly positively correlated with Height15 and 
Height15/DBH15 for both sites (r̂a > 0.58). Average wood density 
(Density15) was also weakly positively correlated with Height15/
DBH15 (r̂a = 0.36) for site GPI, but this genetic correlation was not 
significant for site STM. MFA was strongly positively correlated 
with DBH15 (r̂a  =  0.71) and negatively correlated with Height15/

DBH15 (r̂a = −0.65) for site STM, but these correlations were not 
significant for site GPI.

3.3 | Accuracy of single‐trait genomic 
selection models

The four tested single‐trait genomic selection (GS) methods (GBLUP, 
TGBLUP, BRR, BayesCπ) and the conventional pedigree‐based 
method (ABLUP) resulted in similar predictive abilities and predictive 
accuracies. The PA, which was defined as the correlation between 
the predicted breeding values for the validation trees and the phe‐
notypic values, ranged from 0.10 for DBH15 to 0.46 for Velocity16 
(Figure 4). Low heritability traits (MFA15, DBH15) had the smallest PA, 
while PA for all other traits was above 0.35. After standardizing PA 
with the square root of heritability, the estimated predictive accuracy 
(PACC) was obtained and it was high for all traits (PACC > 0.69). PACC 
was very high (0.97) for Height15/DBH15 and above 0.80 for CWA, 
Velocity16, Height15, and MFA15. However for MFA15, the standard 
error of the estimated PACC was high, which is likely due to a low 
heritability estimate with large standard error. PACC for DBH15 was 
not estimated because of the null heritability observed for this trait.

For the cumulative number of weevil attacks (CWA), the three 
methods that considered ordinal data, namely TGBLUP, BRR, and 
BayesCπ, had PA and PACC similar to those of GBLUP, which as‐
sumed normality of residuals (Figure 4). In addition, genomic‐esti‐
mated breeding values obtained from TGBLUP and GBLUP were 
highly correlated (Pearson r = 0.997), and the heritability estimates 
were within the same range (GBLUP: ĥ2

ind
  =  0.27 (0.07); TGBLUP: 

ĥ2
ind

 = 0.30 (0.08)). Thus, the assumption of the normality of residuals 
in GBLUP (Figure S8) did not appear to affect heritability estimates 
and the performance of the model in our dataset.

3.4 | Accuracy of multi‐trait genomic 
selection models

Multi‐trait GBLUP models were used to predict the breeding values 
of a target trait (CWA, Density15, or MFA15), when combined with 
genetically correlated indicator traits (Height15, Velocity16, Height15/
DBH15 ratio). The cumulative number of weevil attacks (CWA), av‐
erage wood density at age 15 (Density15), and microfibril angle at 
age 15 (MFA15) were chosen as target traits because they are rather 
cumbersome and expensive to assess on a large number of trees, 
whereas indicator traits are easier to track for the majority of trees 
in a breeding population. The multi‐trait models were compared with 
the single‐trait GBLUP models. As expected, when the percentage 
of missing phenotypic data increased from 0% to 90% for the target 
traits CWA, Dens15, and MFA15, the predictive accuracy (PACC) of 
the single‐trait models (dashed gray line in Figure 5) sharply dropped 
from 0.83 to 0.59, from 0.71 to 0.43, and from 0.91 to 0.55, respec‐
tively. Similar trends were found for the PA (Figure S9).

The PACC of multi‐trait models was not improved over single‐
trait models when all of the phenotypic data for the target trait were 
included for model training (0% missing data) (Figure 5; standard 

F I G U R E  4   (a) Predictive ability (PA) and (b) predictive accuracy 
(PACC) of the single‐trait genomic selection models (GBLUP, BRR, 
BayesCπ) and the conventional pedigree‐based model (ABLUP) 
tested in this study. For the cumulative number of weevil attacks 
(CWA), three models accounted for ordinal data type, namely 
the threshold GBLUP model (TGBLUP), BRR, and BayesCπ, while 
ABLUP and GBLUP assumed that errors were normally distributed. 
Error bars indicate the standard errors of the estimates. The PACC 
of models for the trait DBH15 was not calculated because the 
estimated heritability was null. See Table 1 for full description of 
traits

(a)

(b)
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errors are given in Table S7). However, for the target trait CWA with 
40% or more missing data, the accuracy of multi‐trait models was 
improved as compared with that of the single‐trait model (Figure 5a). 
PACC was the highest when CWA was coupled with the highly ge‐
netically correlated Height15/DBH15 ratio (r̂a  =  −0.89, average of 
single‐site estimates) as an indicator trait (blue line in Figure 5a). 
For this two‐trait model, PACC was maintained high (0.74) and de‐
creased only marginally when 90% of CWA data was missing, as 
compared with the full dataset. The two‐trait model with Height15 

as an indicator trait (r̂a = −0.65, red line) outperformed the single‐
trait model only when CWA had 80% or more missing data. When 
CWA was coupled with the moderately correlated trait Velocity16 
(r̂a = −0.55, green line), PACC was similar to that of the single‐trait 
model. The three‐trait model including traits CWA, the Height15/
DBH15 ratio, and Velocity16 (purple line) outperformed the single‐
trait model for 40% or more missing data, but its PACC was slightly 
lower than that of the two‐trait model considering CWA and the 
Height15/DBH15 ratio (blue line).

F I G U R E  5   Predictive accuracy (PACC) 
of GBLUP multi‐trait genomic selection 
models for predicting the target traits: (a) 
the cumulative number of weevil attacks 
(CWA); (b) Density15; and (c) MFA15. 
The different colored lines represent 
different multi‐trait models with different 
indicator traits. The dashed gray line 
is the single‐trait GBLUP model. The 
percentage of missing phenotypic data 
for the target trait in the training sets 
was varied from 0% to 90% (x‐axis), while 
100% of the training data was retained 
for the indicator traits. See Table 1 for full 
description of traits

(b) (c)(a) 15 15

M

TA B L E  5   Genetic gains for each traita when selecting the top 5% trees in three selection index scenarios (SIs) using the ABLUP and 
GBLUP methods. Gains are expressed as a percentage of the phenotypic mean. A positive percentage indicates an improvement in the value 
of the trait. DBH15 was not considered because of the null heritability and associated null genetic gains

Selection indexb
Velocity16
(%)

Density15
(%)

MFA15
c

(%)
Height15
(%)

Height15/DBH15
(%)

CWAc

(%)

ABLUP

SI−1: emphasis on weevil resistance
(w1 = 0.3; w2 = 0.6; w3 = 0.1; w4 = 0)

4.27 0.08 1.70 12.13 10.97 67.97

SI−2: maximize Height15, CWA, Velocity16
(w1 = 0.25; w2 = 0.4; w3 = 0.35; w4 = 0)

6.32 0.14 4.91 12.36 11.09 56.89

SI−3: maximize Height15, CWA, Velocity16, 
Density15

(w1 = 0.2; w2 = 0.3; w3 = 0.25; w4 = 0.25)

5.77 1.87 0.25 11.51 11.10 53.77

GBLUP

SI−1: emphasis on weevil resistance
(w1 = 0.3; w2 = 0.6; w3 = 0.1; w4 = 0)

5.30 0.62 3.61 7.82 9.74 54.57

SI−2: maximize Height15, CWA, Velocity16
(w1 = 0.3; w2 = 0.35; w3 = 0.35; w4 = 0)

6.17 0.51 5.62 8.10 10.30 50.33

SI−3: maximize Height15, CWA, Velocity16, 
Density15

(w1 = 0.25; w2 = 0.25; w3 = 0.25;  w4 = 0.25)

5.60 2.60 2.09 7.93 10.18 45.84

aSee Table 1 for full descriptions of traits. 
bIndex selection formula (Equation 10): SI=w1Height15EBV−w2CWA6.15EBV+w3Velocity16EBV+w4Density15EBV , where Height15EBV,CWA6.15EBV, Velocity16EBV
, and Density15EBV are the BLUP estimated breeding values from the single‐trait ABLUP (EBVs) or GBLUP (GEBVs) analysis for the corresponding trait 
(Equation 2). 
cFor MFA and CWA, an improvement (positive percentage) is associated with a decreasing value of the trait (i.e., a reduction of the microfibril angle 
and a reduction of the cumulative number of weevil attacks, respectively). 
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For the target traits Density15 and MFA15 (Figure 5b,c), multi‐
trait models did not improve PACC over single‐trait GBLUP, even 
when the target trait had large amount of missing data. For MFA15, 
some of the multi‐trait models showed even a lower PACC than the 
single‐trait models.

3.5 | Genetic gains and multi‐trait selection indices

The expected genetic gains, expressed as a percentage of the 
phenotypic mean when selecting the top 5% trees for each trait 
separately (single‐trait selection), are given in Table S8. For the cu‐
mulative number of weevil attacks (CWA), a positive gain represents 
a reduction of the number of attacks (i.e., higher resistance). CWA 
could be improved by as much as 78% (ABLUP) or 66% (GBLUP), 
while other traits showed much smaller gains in the 4%–20% range. 
The large observed gains for CWA are likely due to a moderate‐to‐
high heritability of CWA, a large coefficient of phenotypic variation 
(Table 1), and the non‐normal distribution of the trait.

The expected gains from the multi‐trait selection indices (SIs) are 
shown in Table 5. Results from ABLUP and GBLUP were similar, and 
so, we present only the GBLUP results below. The first selection index 
scenario (SI‐1) presents the planned breeding focus and put most em‐
phasis on weevil resistance (w2 = 0.6), followed by Height15 (w1 = 0.3), 
and by Velocity16 (w3 = 0.1). This scenario achieved the largest gains in 
terms of reduction of cumulative weevil attacks (CWAs) (83% of max‐
imum possible gains from single‐trait selection in Table S8), while still 
yielding desirable gains for Height15 (86% of maximum) and Velocity16 
(74% of maximum). The SI‐2 scenario that simultaneously maximized 
the genetic gain in Height15, Velocity16, and CWA reached as much 
as 89%, 87%, and 76% of the maximum possible gains for each trait, 
respectively. In this scenario, MFA15 was also improved by 5.6% (62% 
of maximum). For SI‐1 and SI‐2, the gain in Density15 was marginal. 
For SI‐3, Density15 was added as an important trait to maximize along 
with Height15, Velocity16, and CWA. This SI scenario slightly improved 
gains in Density15 by 2.6% (51% of maximum), but at the cost of 
smaller improvements for Height15, Velocity16, CWA, and MFA15. In 
all three SIs, stem taper, as estimated by the Height15/DBH15 ratio, 
was improved (i.e., lower stem taper) by ~10%.

4  | DISCUSSION

4.1 | Genetic control of weevil resistance and its 
relationships to growth and wood quality traits

Tree breeding uses the existing natural intraspecific variation to 
identify superior genotypes with desirable attributes. In this con‐
text, the heritability of natural resistance to pests may be seen as an 
indicator for the evolutionary potential of the species (Charmantier 
& Garant, 2005; Geber & Griffen, 2003). In a recently introduced 
species such as Norway spruce to North America, natural selec‐
tion for resistance to native pests may have acted only for one or 
two generations at best. Nevertheless, we showed that resistance 
to white pine weevil attack was under moderate‐to‐high genetic 

control. Individual heritability estimates (ABLUP) were slightly 
higher than in an earlier study by Mottet et al. (2015), who combined 
data from more families and tests than this study, but values were 
in the same range than those observed in the native interior spruce 
(King et al., 1997) and slightly higher than those in the native Sitka 
spruce (King, 2004). In its native range, Norway spruce suffers dam‐
ages from another weevil species, the large pine weevil (Hylobius abi‐
etis), mostly at the seedling stage after clearfelling operations (Day & 
Leather, 1997). Although both weevil species do not attack trees at 
the same developmental stage, both feed on the bark and phloem, so 
it is likely that resistance mechanisms to different weevils are partly 
related. Zas et al. (2017) found moderate family heritability and low 
GxE for resistance to the pine weevil in Norway spruce. Norway 
spruce has also faced outbreaks of bark beetles, such as Ips imitinus 
and Ips typographus, after major storms such as those that occurred 
in Central Europe in the 1990s (Wermelinger, 2004). Resin canal 
traits relevant for constitutive resistance against bark beetles were 
found to be under strong genetic control (Rosner & Hannrup, 2004). 
Thus, it is likely that genetic variation at resistance genes for the 
North American white pine weevil was already available at the time 
of introduction of Norway spruce in North America, as the result of 
natural selection against insect pests in Europe, with opportunities 
for rapid change in allele frequencies at resistance loci.

In our study, both CWA and tree height at age 15 were under 
significant genetic control and the genetic correlation between 
these traits was negative, but significant only for the site that suf‐
fered the most frequent weevil attacks (GPI). These results are not 
surprising given that height growth is mechanistically stunted in 
consequence of attack, while the tree continues to grow in DBH 
and volume. Indeed, with increasing age, a higher height/DBH 
ratio and thus a lower stem taper was observed in more weevil‐
resistant trees (Holst, 1955; Mottet et al., 2015; this study). King 
et al. (1997) also reported negative genetic correlations between 
CWA and tree height for interior spruce in British Columbia, both 
before and after the occurrence of weevil attacks. They concluded 
that inherently faster growing families have higher level of genetic 
resistance. In Norway spruce, Mottet et al. (2015) found negligi‐
ble genetic correlations between weevil attacks and tree height 
measured before the majority of weevil attacks (age 5) and con‐
cluded that genetic improvement for resistance to white pine 
weevil would not adversely affect growth. On the other hand, the 
strong positive genetic correlation between resistance to weevil 
attacks and height at age 15 found on site GPI in this study may 
indicate that they are controlled by common genes, which was 
also suggested by an earlier QTL study in interior spruce (Porth 
et al., 2012). In addition, resistance mechanisms to European bark 
beetles such as resin canal traits were found to be positively ge‐
netically correlated with both height growth and DBH (Rosner 
& Hannrup, 2004). Overall, our results suggest that accelerated 
breeding of resistant seed stock through genomic selection tools 
will result in taller trees, either because the leaders of resistant 
trees will be less affected by attacks, or because alleles underlying 
growth genes will be simultaneously favored.



88  |     LENZ et al.

The genetic control of variation in wood quality traits, such as av‐
erage wood density and acoustic velocity as a proxy for wood stiff‐
ness, was in the same range as that for weevil resistance. Compared 
to recent wood quality studies of Norway spruce from Scandinavia 
(Chen et al., 2014, 2015), our heritability estimates were lower for 
average wood density, but higher for acoustic velocity. Heritability 
estimates for MFA were low compared with those reported in previ‐
ous studies (Chen et al., 2014; Lenz et al., 2010), which is most likely 
related to the measuring approach used in the present study where 
only the last ring was assessed. The moderate heritability and the 
resulting sizeable genetic gain observed here for acoustic velocity 
make it a promising quick‐assessment trait for improving wood stiff‐
ness and product quality (Lenz et al., 2013). In addition, wood stiff‐
ness can be improved together with weevil resistance since acoustic 
velocity was negatively genetically correlated with the cumulative 
number of weevil attacks. Moreover, weevil resistance and wood 
traits showed low genotype‐by‐environment interactions, which 
should facilitate reforesting selected planting stock across larger 
breeding zones. Average wood density did not appear to be the best 
trait for overall improvement of Norway spruce in the tested condi‐
tions given its negative correlations with growth traits and slightly 
higher genotype‐by‐environment interaction. Overall, given their 
positive genetic correlations and moderate‐to‐high heritability, wee‐
vil resistance, acoustic velocity, and height growth appear as excel‐
lent candidate traits for simultaneous genetic improvement.

4.2 | Genomic selection models for accurate and 
hastened selection of best genotypes

Genomic selection can significantly shorten breeding cycles through 
the prediction of breeding values of nonphenotyped material using 
their genomic profiles and allows screening more candidates for in‐
crease selection intensity or multi‐trait selection. Compared with 
the conventional pedigree‐based approach (ABLUP), genomic selec‐
tion models using GBLUP, BRR, or BayesCπ had comparable PA and 
accuracy, confirming early proof‐of‐concept studies in other conifers 
and spruces (Beaulieu, Doerksen, Clément, et al., 2014; Beaulieu, 
Doerksen, MacKay, et al., 2014; Gamal El‐Dien et al., 2015; Lenz et 
al., 2017; Ratcliffe et al., 2015). In BRR and BayesCπ, we did not fit 
genotype‐by‐environment interactions as opposed to ABLUP and 
GBLUP methods, but this did not affect PA nor predictive accuracy.

Predictive ability was related to heritability and was lowest for 
the low heritability traits MFA15 and DBH15. This is because the pro‐
portion of phenotypic variation that can be explained by additive 
genetic effects is smaller for these traits. Comparisons of predictive 
accuracy of breeding values across studies are difficult because of 
the absence of a standard way of determination. For similar growth 
and wood quality traits, predictive accuracy was slightly higher than 
previously observed for native Norway spruce (Chen et al., 2018) or 
for white spruce (Beaulieu, Doerksen, Clément, et al., 2014; Beaulieu, 
Doerksen, MacKay, et al., 2014; Gamal El‐Dien et al., 2015; Ratcliffe 
et al., 2015), and it was lower and more variable than that observed 
for black spruce (Picea mariana [Mill.] B.S.P.) (Lenz et al., 2017). In 

contrast to those previous GS studies, we assumed herein that true 
breeding values were unknown and calculated the predictive accu‐
racy by dividing the PA by the square root of heritability (Dekkers, 
2007; Legarra et al., 2008). Hence, predictive accuracy should not 
be correlated with heritability, but depends on other characteristics 
of the dataset, such as the accuracy of phenotypic measurements, 
the effective population size, and the genetic architecture of traits 
(Grattapaglia & Resende, 2011). However, the precision of the pres‐
ent estimates of predictive accuracy may be affected by the preci‐
sion of heritability estimates.

In theory, GS should perform better than pedigree‐based mod‐
els because it allows correcting pedigree errors and capturing 
the within‐family variation resulting from Mendelian segregation 
(Grattapaglia et al., 2018). Thus, in a forward selection scenario with 
nonphenotyped young material, the selection of the best individu‐
als within families becomes possible with GS. In the present con‐
text of small size of the breeding population, we conclude that the 
estimated genomic predictions for resistance to weevil attack, tree 
height, height/DBH ratio, and wood quality traits allow for accurate 
and hastened selection of best candidates based on their genomic 
profiles.

4.3 | Evidence for polygenic control of weevil 
resistance in spruces

To our knowledge, the present study is the first one applying 
genomic selection to breed for insect resistance in conifers. We 
therefore had particular interest in testing different algorithms that 
considered the ordinal distribution of this trait and that reflected 
different distributions of marker effects. First, we found no advan‐
tages of using methods that accounted for ordinal data (threshold 
GBLUP, BRR, and BayesCπ), as compared with approaches that as‐
sumed normality of residuals (ABLUPs and GBLUPs). Second, the 
BayesCπ algorithm, which assumed that only a portion of genes had 
an effect, did not lead to improvement of PA or accuracy compared 
with methods assuming that all genes had small effects (GBLUPs, 
BRR). In BayesCπ, the estimated proportion of markers having an 
effect (� ≅ 0.50) for weevil resistance was in the same range as that 
for other traits (Table S9). In contrast, Resende, Munoz, et al. (2012) 
and Resende, Resende, et al. (2012) obtained a higher predictive ac‐
curacy using BayesCπ for fusiform rust resistance in loblolly pine, 
which suggested the presence of large effect genes. Our findings 
can be explained by two possible phenomena: (a) weevil resistance 
is effectively controlled by many genes of small effects, with no de‐
tectable major gene effects; or (b) none of the sampled SNPs was in 
close linkage with genes having effects for resistance. It is difficult to 
discriminate between both hypotheses, especially since GS models 
with the current genome coverage and small size of the breeding 
population should mostly retrace relatedness between trees from 
long‐range linkage disequilibrium (e.g., Beaulieu, Doerksen, MacKay, 
et al., 2014; Lenz et al., 2017) and could thus provide high predictive 
accuracies following both sets of conditions. However, polygenic 
control of weevil resistance seems plausible since earlier reports 
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associated resistance to weevil attack with different constitutive 
and induced mechanisms. Physical defense barriers to weevil were 
described through sclereids and stone cells in the bark of sitka and 
hybrid spruces (King, Alfaro, Lopez, & Van Akker, 2011; Whitehill et 
al., 2016). In addition, chemical defense strategies are also at play 
through the presence of abundant constitutive resin ducts (King et 
al., 2011; Rosner & Hannrup, 2004) and the additional formation of 
traumatic resin ducts (Poulin, Lavallee, Mauffette, & Rioux, 2006), 
together with increase in terpenoid metabolite production (Robert 
et al., 2010) following insect feeding. Porth et al. (2012) identified 
many candidate genes for weevil resistance in interior spruce, in‐
cluding some master regulatory genes. Moreover, transcriptome 
studies in Sitka spruce revealed several thousand differentially ex‐
pressed genes between resistant and sensible genotypes, as well as 
following weevil wounding and feeding (Ralph et al., 2006; Whitehill 
et al., 2019). Hence, weevil resistance in Norway spruce is most 
likely polygenic given the complex nature of physical and chemical 
defense mechanisms, but whether some larger gene effects exist re‐
mains to be elucidated.

4.4 | Multi‐trait GS as a tool to improve accuracy of 
scarcely phenotyped traits

The joint modeling of multiple traits can benefit from genetic cor‐
relations between traits and increase predictive accuracy (Calus & 
Veerkamp, 2011; Guo et al., 2014; Jia & Jannink, 2012). In Eucalyptus, 
Cappa et al. (2018) reported modest improvements in the predic‐
tive accuracy of breeding values from multi‐trait over single‐trait 
GS models (~2%–4%) when a low heritability target trait (tree 
height) was coupled with a highly genetically correlated trait (DBH, 
ra = 0.92). Other empirical plant or tree breeding studies found little 
benefits of using multi‐trait GS to predict nonphenotyped selection 
candidates when 100% of the individuals in the training set were 
phenotyped (Bao et al., 2015; Cheng et al., 2018; Fernandes et al., 
2018; Jia & Jannink, 2012; Schulthess et al., 2016). Similarly, we 
found that multi‐trait GBLUP did not outperform single‐trait mod‐
els when all individuals in the training set were phenotyped for the 
target trait. Thus, in cases when phenotypic information is balanced 
across traits, single‐trait modeling is the recommended method 
given that they harbor reduced model complexity (Schulthess et al., 
2016).

Multi‐trait GS models present an interesting strategy to cope 
with traits that have large amount of missing values because they are 
difficult or costly to measure, such as traits related to resistance to 
biotic and abiotic factors, or wood quality traits. We found that when 
we included a highly genetically correlated growth trait (Height15/
DBH15 ratio or Height15) as an indicator trait, the multi‐trait mod‐
els predicted resistance to weevil attacks more accurately when 
there was a large amount of missing data for this trait. However, the 
advantage of multi‐trait over single‐trait GS disappeared as the ge‐
netic correlation between weevil resistance and the indicator trait 
decreased to r̂a = −0.55 when using Velocity16 as the indicator trait. 
Similarly, there was no advantage of using multi‐trait models to 

predict the target traits Density15 or MFA15, which was likely due 
to weak or inconsistent genetic correlations across sites between 
the target and indicator traits. Previous studies similarly found that 
multi‐trait models performed best when the genetic correlation be‐
tween traits was high (ra > 0.5; Calus & Veerkamp, 2011; Guo et al., 
2014; Montesinos‐López et al., 2016). Thus, our results and those of 
previous studies suggest that, in the case of a target trait with mod‐
erate heritability such as weevil resistance, multi‐trait GS models are 
only advantageous when a highly genetically correlated indicator 
trait is available.

In a breeding context, our results open up possibilities to consider 
material tested on sites where no record of weevil attacks have been 
taken. Accurate phenotyping of weevil resistance requires numer‐
ous visits at each trial and at different plantation ages. Furthermore, 
an appropriate level of attack at each site, ideally more than 50% of 
attacked trees, is desirable to properly evaluate genetic resistance. 
These constraints imply that resistance to weevil attacks is often 
recorded only for a part of available test sites and material. In such 
cases, multi‐trait GS models can be used to more accurately predict 
weevil resistance for the trees in nonphenotyped sites when an in‐
dicator trait has been measured in all sites (Montesinos‐López et al., 
2016). Furthermore, the low genotype‐by‐environment interaction 
of resistance to weevil attacks found in this study and in Mottet et 
al. (2015) would ensure relatively high accuracies of predictions be‐
tween sites (Beaulieu, Doerksen, MacKay, et al., 2014; Lenz et al., 
2017).

Due to convergence issues for the three‐trait models, we did 
not account for genotype‐by‐environment interactions (GxE) in 
our multi‐trait models. We adjusted the phenotypes for site and 
block effects, but this standardization does not control for GxE 
due to rank changes between sites. Nevertheless, this seemed 
to be a reasonable model simplification in the present case, 
given that we found the same predictive accuracy for single‐
trait GBLUP models that accounted for GxE (Equation 2) com‐
pared with GBLUP models that used the adjusted phenotype as 
a response variable and did not account for GxE (Equation 11 in 
Appendix S2, Table S10).

Models with more than two traits have only been tested in a 
handful of studies (Bao et al., 2015; Schulthess et al., 2016; Tsuruta, 
Misztal, Aguilar, & Lawlor, 2011). In particular, Schulthess et al. (2016) 
did not find any benefit of using three‐trait over two‐trait models 
when the aim was to predict only one target trait. However, they 
found that the three‐trait model was better to predict two scarcely 
phenotyped target traits, when a third correlated trait was fully 
available. In this study, the three‐trait model with indicator traits 
Height15/DBH15 ratio and Velocity16 did not outperform our best 
two‐trait model using only Height15/DBH15 ratio as an indicator trait 
to predict resistance to weevil attacks. This is because Velocity16 
was much less correlated with weevil resistance (r̂a  =  −0.55) than 
was the Height15/DBH15 ratio (r̂a  =  −0.89), and thus, Velocity16 
added little information to the predictions. Because of the rapidly 
increasing complexity of models as the number of correlated traits 
increases, computer resource limitations and convergence problems 
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due to collinearity can arise (Schulthess et al., 2016). In this study, 
convergence problems precluded us to fit simultaneously more than 
three traits. Multi‐trait Bayesian models are expected to be more 
efficient than multi‐trait GBLUP when the number of traits increases 
(Calus & Veerkamp, 2011). Overall, the benefits of adding more traits 
seems limited, but this needs to be further tested with different GS 
models and with traits combinations of different levels of heritability 
and genetic correlations.

4.5 | Index selection provided positive gains for 
most focus traits

Index selection is a commonly used tool in tree improvement to se‐
lect individuals that combine superior genetic value for several traits 
of interest to the breeder. This strategy usually results in lower ge‐
netic gain for each trait compared with single‐trait selection, because 
correlations among traits are not perfect and are often negative. Our 
scenario SI‐1 reflected the priorities of the Norway spruce breed‐
ers of the province of Québec. Besides the current focus on weevil 
resistance and growth, wood quality traits will be included in the 
next generation selection criteria for this plantation‐grown species 
to avoid a reduction in mechanical properties of lumber extracted 
from faster growing trees. However, determining economic weights 
for each trait is challenging. Economic studies have been conducted 
for different conifer breeding programs (e.g., Aubry, Adams, & Fahey, 
1998; Ivković, Wu, McRae, & Powell, 2006; Petrinovic, Gélinas, & 
Beaulieu, 2009), but the resulting economic weights are not trans‐
ferable to other species and regions since they depend much on the 
wood production and transformation systems. Because of these 
difficulties, economic weights have not been established yet for 
Norway spruce in the Canadian breeding and forestry contexts, and 
the relative weights that we have chosen for the SI‐1 scenario are 
currently the most likely to be implemented in the short term but are 
still of an indicative nature.

In this study, favorable correlations between weevil resistance, 
height growth, and acoustic velocity resulted in only minor trade‐
offs among those traits in the tested selection indices. However, the 
improvement for DBH or the closely related volume (not estimated 
in this study) appears more challenging. The low genetic control 
and the important genotype‐by‐environment interaction observed 
for DBH (see also Mottet et al., 2015) make it difficult to predict 
the effect of selecting for weevil resistance on this trait. However, 
the possible loss in lumber volume would likely be compensated by 
less log defects due to increased resistance of plantations to weevil 
attacks (Daoust & Mottet, 2006). Thus, improving for weevil resis‐
tance would undoubtedly benefit Norway spruce as an exotic plan‐
tation species in eastern Canada.

5  | CONCLUSIONS

In this study, we investigated the genetic control of weevil resistance 
and its relationship with wood and growth traits in Norway spruce as 

an exotic plantation species. We further integrated these traits into a 
multi‐trait genomic selection (GS) framework. We found that in such 
a realistic context, it was possible to improve significantly for wee‐
vil resistance using GS, given that weevil resistance was moderately 
to highly heritable and that it was positively genetically correlated 
with the height/DBH ratio and wood stiffness (acoustic velocity). By 
taking advantage of these existing genetic relationships, we showed 
that multi‐trait genomic selection models could improve the accu‐
racy of the prediction for a scarcely phenotyped target trait (weevil 
resistance) by using the information from a readily available indicator 
trait. Finally, by combining multiple correlated traits into a selection 
index, we obtained the best compromise for all traits of interest that 
corresponded to the priorities of the breeders. Thus, this integrated 
approach showed how genomic selection can be used to breed si‐
multaneously for taller, stiffer, and more weevil‐resistant Norway 
spruces. We conclude that single/multi‐trait GS models and index 
selection are efficient selection tools that can be integrated into op‐
erational breeding programs to accelerate the realization of genetic 
gains for most traits of interest.

Another advantage of integrating genomic selection to a breed‐
ing program is that, once the breeding population has been geno‐
typed, models can easily be recalibrated for additional traits, such 
as pest resistance or resilience to episodic climate extremes such as 
droughts. Such traits may be costly and difficult to measure in forest 
trees (e.g., Housset et al., 2018) and the use of correlated indicator 
traits in multi‐trait models would reduce phenotyping costs. Mass 
phenotyping using remote sensing technologies could also help iden‐
tify indicator traits that are correlated with economically important 
ones (Dungey et al., 2018). The increase of information from multiple 
correlated traits will provide opportunities to test novel multi‐trait 
models and to improve genomic selection accuracies. Finally, given 
that large numbers of candidate trees can be genotyped at the very 
juvenile stage, multi‐trait GS will result in highly significant reduc‐
tions in testing time for such long‐lived species, while allowing to 
increase selection intensity compared to more conventional selec‐
tion approaches.
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