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Simple Summary: Tid1 acts as a tumor suppressor in various cancer types, however, its role in
hepatocellular carcinoma (HCC) remains unclear. Here, we observed a low protein level of Tid1 in
poorly differentiated HCC cell lines. The expression of Tid1 affected the malignancy in human HCC
cell lines; meanwhile the protein level of Nrf2 was negatively regulated by Tid1. In multivariate
analysis, using immunohistochemical (IHC) assay in 210 HCC cases, we found the tumor size > 5 cm,
multiple tumors, presence of vascular invasion, low Tid1 expression in the non-tumor part, and high
Nrf2 expression in the non-tumor part, were independently associated with worse recurrence-free
survival (RFS). A scoring system by integrating the five clinical and pathological factors predicts
the RFS among HCC patients after surgical resection. In summary, Tid1 plays a prognostic role for
surgically resected HCC.

Abstract: Tid1, a mitochondrial co-chaperone protein, acts as a tumor suppressor in various cancer
types. However, the role of Tid1 in hepatocellular carcinoma (HCC) remains unclear. First, we found
that a low endogenous Tid1 protein level was observed in poorly differentiated HCC cell lines.
Further, upregulation/downregulation of Tid1 abrogated/promoted the malignancy of human
HCC cell lines, respectively. Interestingly, Tid1 negatively modulated the protein level of Nrf2.
Tissue assays from 210 surgically resected HCC patients were examined by immunohistochemistry
(IHC) analyses. The protein levels of Tid1 in the normal and tumor part of liver tissues were correlated
with the clinical outcome of the 210 HCC cases. In multivariate analysis, we discovered that tumor
size > 5 cm, multiple tumors, presence of vascular invasion, low Tid1 expression in the non-tumor
part, and high Nrf2 expression in the non-tumor part were significant factors associated with worse
recurrence-free survival (RFS). A scoring system by integrating the five clinical and pathological
factors predicts the RFS among HCC patients after surgical resection. Together, Tid1, serving as a
tumor suppressor, has a prognostic role for surgically resected HCC to predict RFS.
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1. Introduction

Hepatocellular carcinoma (HCC) comprises over 80% of cases of primary liver cancer
and is the fourth leading cause of cancer-related death worldwide, and, especially, the sec-
ond in terms of death for men [1,2]. Chronic hepatitis virus infection such as hepatitis B
virus (HBV) and hepatitis C virus (HCV) are the most common etiological risk factors for
HCC [3,4]. Surgical resection, radiofrequency ablation (RFA), and liver transplantation
are curative treatments for HCC. However, the recurrence rate is high even after curative
resection or RFA, and liver transplantation is limited by shortage of organ source [5,6].
Although antiviral treatment for HBV and HCV has been reported to be able to reduce recur-
rence, the risk of recurrence is still unpredictable [7–9]. Hence, identification of a potential
biomarker is essential for predicting the recurrence of HCC after curative treatment.

Tumorous imaginal disc 1 (Tid1) is the mammalian homolog to the Drosophila tumor
suppressor protein Tid56 [10]. The Tid1 gene, including 12 exons, encodes two alternative
splice forms, Tid1-L and Tid1-S, which are responsible in encoding two cytosolic (hTid50
and hTid48) and the other two mitochondrial (hTid43 and hTid40) proteins, respectively.
Tid1-L fully incorporates all exons and Tid1-S decoded from an in-frame deletion of 50
amino acids that correspond precisely to exon 5 [11,12]. Tid1, also called DnaJ homolog
subfamily A member 3 (DNAJA3), belongs to the heat shock protein (Hsp) 40 family and
serves as a co-chaperone and regulatory factor for the heat shock protein 70 (Hsp70) to sus-
tain embryonic-cell survival [13,14], T cell development [15], muscular development [16],
and apoptosis [17]. Tid1, acting as a tumor suppressor, interacts with EGFR/HSP70/HSP90
by DnaJ domain and causes EGFR degradation in non-small cell lung cancer (NSCLC) [18]
and in head and neck squamous cell carcinoma (HNSCC). Overexpression of Tid1 in HN-
SCC cell lines enables the inhibition of in vitro malignancy and in vivo xenotransplantation
tumorigenicity and metastasis [19]. Additionally, we reported that the HNSCC patients
with higher expression of Tid1 have better overall survival [19,20]. Most recently, we also
discovered that Tid1 can function as a tumor suppressor in gastric cancer progression [21].
It has been reported that Tid1 plays an important role to maintain mitochondrial DNA [21],
membrane potential [22], and cristae structure [23], and to modulate the intracellular reac-
tive oxygen species (ROS) [24]. The Warburg effect is a signature of carcinogenesis, in that
mitochondrial dysfunction plus higher intracellular reactive oxygen species (ROS) are
associated with it [25]. Thus, loss of Tid1 accompanied by abnormal ROS may contribute to
tumor progression in HCC. Investigation of the impact of Tid1 in HCC may reveal a new
strategy and new biomarker for treatment.

Nuclear erythroid 2-related factor 2 (Nrf2), is a CNC-bZIP cytosolic transcription
factor that can act against oxidative stress [26]. Oxidative stress is also a key etiological risk
factor for HCC [27]. The transient activation of Nrf2 offers protection during hepatocytes
that are exposed to chemical carcinogens [28], but in contrast, persistent activation of
Nrf2 can drive the oncogenic process [29,30]. In HCC, sustained Nrf2 activation leads to
cellular proliferation and resistance against drugs [31,32]. We recently show that ROS-
independent ER stress can mediate the Nrf2 activation to promote cancer stemness [33].
These studies provide evidence that Nrf2 as an oncogene in HCC may be used as a potential
prognosis marker.

It is reasonable that Tid1, a tumor suppressor, regulates the mitochondrial function
on ROS homeostasis. During tumorigenesis, downregulation of Tid1 can cause abnormal
ROS, which can be counteracted by the antioxidant transcriptional factor, Nrf2. In this line
of research, we aimed to investigate the role of Tid1 and Nrf2 in the outcomes of HCC after
surgery by in vitro study and samples from HCC patients.

2. Results
2.1. Tid1 Functions as a Tumor Suppressor in HCC Cell Lines In Vitro

We first analyzed the expression level of Tid1 protein from datasets of the Oncomine
database platform derived from 19 normal control and 38 HCC cases. As expected, that Tid1
may act as a tumor suppressor in HCC, we discovered that the Tid1 protein level was
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significantly reduced in HCC compared to normal liver tissues (Figure 1A). In order to
evaluate the tumor suppressor role of Tid1 in HCC, we further examined the endogenous
Tid1 protein expression in human HCC cell lines. Using immunoblot analyses, we found
that a low level of endogenous Tid1 protein was observed in poorly differentiated HCC cells
such as Mahlavu and SK hep1 with the exception of Hep3B, which is a well-differentiated
cell line (Figure 1B). It has been reported that Hep3B cell may harbor the HBV in which
the HBX protein has been reported to regulate the protein level of Tid1 [30]. Inversely,
we found that high expression of Tid1 was observed in moderated or well-differentiated
HCC cells (Huh7 and HepG2) (Figure 1B).
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Figure 1. Endogenous Tid1 protein level in normal liver, hepatocellular carcinoma (HCC) tissues, HCC cell lines; and ectopic
overexpression or downregulation of Tid1 mediating the malignancy of HCC cells in vitro. (A) Comparison of Tid1 protein
level in normal livers and HCC was analyzed from Oncomine database. The selection criteria are descripted in Material and
Methods section. (B) Expression of endogenous Tid1 protein of five HCC cell lines (Mahlavu, Huh7, Hep3B, HepG2, and SK
hep1) were examined by immunoblot assay using an antibody against Tid1. (C) The immunoblot analysis showed that
overexpression of Tid1 (Tid1-L-wt-HA or Tid1-S-wt-HA) abrogated the Nrf2 protein in the transfected SK hep1 cells (u.p.
unprocessed, p. processed). (D) The immunoblot analysis showed the depletion of Tid1 by shRNAi in both HepG2 cells;
the Nrf2 protein level was analyzed. The signal of β-actin or GAPDH was used as loading control. The colony formation
ability of the (E) SK hep1 or (F) HepG2 cells under distinct condition was collected, as shown in the representative images.
The bar graphs show the amount of colonies. The data are the mean ± SD from three independent experiments and analyzed
by Student’s t-test (***, p < 0.001). Detailed information about the western blotting can be found at Supplementary File.

Tid1 maintains and regulates the normal mitochondrial function and ROS home-
ostasis [21,24]. During tumorigenesis, downregulation of Tid1 can cause abnormal ROS,
which can be counteracted by the antioxidant transcriptional factor, Nrf2. Interestingly,
we observed that the protein level of endogenous Nrf2 was negatively associated with
the protein level of Tid1, except in the Hep3B cells (Figure 1B). To further characterize the
anticancerous role of Tid1 in HCC, we overexpressed human hTid1-L and -S isoform in SK
hep1 cells, respectively. As expected, SK hep1 cells with Tid1 overexpression showed the
downregulation of Nrf2 protein (Figure 1C). In opposite, when we depleted the endogenous
Tid1 protein by small hairpin RNA interference (shRNAi) in HepG2 cells, we observed the
upregulation of Nrf2 protein (Figure 1D). Additionally, the colony-forming ability of the
Tid1 overexpressing cells was repressed (Figure 1E), and of the Tid1 depleted cells was
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enhanced (Figure 1F), respectively. Together, these results indicated that Tid1 regulated the
in vitro malignancy of human HCC cells and played an inhibitory role on Nrf2.

2.2. Expression Correlation between the Tid1 and Nrf2 Transcripts

Next, to verify the correlation of mRNA expression between DNAJA3 (encodes Tid1)
and NFE2L2 (encodes Nrf2) genes, we downloaded the published liver cancer cohort
from the Oncomine database and performed Expression Correlation analysis. As shown
in Figure 2A, surprisingly, expression of DNAJA3 and NFE2L2 mRNA was positively
correlated in both normal and cancer tissues in cohort GSE15420, and the correlation
coefficient R reached 0.48 with a p value of 1.7 × 10−13 in normal tissues, and in cancer
tissues, the R reached to 0.22 with a p value of 0.0015. However, there was no significant
correlation between the comparison of cancer tissue to normal tissue or normal tissue
to cancer tissue. By analysis of the liver cancer cohort GSE17967, a negative correlation
between Tid1 and Nrf2 in HCC cancer tissue but not in cirrhosis tissues (Figure 2B) was
observed. Together, these inconsistent results shown in Figures 1A and 2A,B suggest
a reciprocal regulation between Tid1 and Nrf2, mediated mainly in translation or post-
translation rather than in transcription in HCC.
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Figure 2. Expression correlation between the NDAJA3 (Tid1) and NFE2L2 (Nrf2) transcripts in normal liver, cirrhosis,
and HCC. Expression correlation analysis between DNAJA3 and NFE2L2 genes in liver cancer cohort (GSE15420 (A) and
GSE17967 (B)). HCC indicates liver cancer tissue, Normal indicates non-cancer tissue, and Cirrhosis indicates tissue with
cirrhosis but no liver cancer. R indicates correlation coefficient, p indicates significance, and n indicates sample capacity.

2.3. Clinicopathological Features and Protein Level of Tid1 and Nrf2 of HBV-HCC and HCV-HCC

The clinicopathological characteristics of the 210 HCC subjects with liver tissue sam-
ples from the Taiwan Liver Cancer Network are summarized in Table 1. The mean age of
diagnosis was 59 years, 74% of the subjects were male, and 41% had cirrhosis, with 105 cases
of HBV infection and 105 cases of HCV infection, while 2 cases were dual HBV and HCV
infection. Mean of tumor size was 6 cm, and 33% of subjects had multinodular tumors.
Most tissues were diagnosed with moderately differentiation (70%).
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Table 1. Clinical characteristics of the 210 patients with hepatocellular carcinoma (HCC).

Variables HCC Patients (n = 210)

Age, years, mean ± SD 59.23 ± 13.12
Male sex, n (%) 156 (74.3)
Drinking, n (%) 67 (31.9)
Dual HBV and HCV infection, n (%) 2 (1.0)
Alpha-fetoprotein, ng/mL, mean ± SD 14,833.18 ± 64,194.02
Tumor size, cm, mean ± SD 6.15 ± 4.10
Tumor number, n (%)
n = 1/n > 1/Diffuse or infiltrative 141/68/1 (67.1/32.4/0.5)
Cirrhosis, n (%) 86 (41.0)
Differentiation, n (%)
Well/Moderately/Poorly 14/147/49 (6.7/70.0/23.3)
BCLC stage, n (%)
A/B/C-D 73/17/120 (34.8/8.1/57.1)
TNM stage, n (%)
T1/T2/T3 73/24/113 (34.8/11.4/53.8)

HCC, hepatocellular carcinoma; HBV, hepatitis B virus; HCV, hepatitis C virus; SD, standard deviation; BCLC,
Barcelona Clinic Liver Cancer.

2.4. Tid1 Expression in Non-Tumor and Tumor Part of TNM-T Stage Specific HCC

To determine the correlation between tumor stage and the protein levels of Tid1
in HCC patients, we performed IHC staining on sections of the 210 HCC liver tissues.
Tid1 protein was significantly downregulated in tumor tissues, compared to the non-tumor
part (Table 2). Further, high expression of Tid1 in non-tumor tissues was significantly
associated with T stage (p = 0.002), especially, in HBV-associated HCC (p = 0.017) and
marginal association in HCV-associated HCC (p = 0.093) (Table 3). The data indicated that
as the tumor progressed, the expression of tumor suppression gene, Tid1, in the non-tumor
part was enhanced. While Tid1 expression in tumor part had a trend to correlate with tumor
stage, and reduction of Tid1 expression was significantly correlated with tumor T stage
in HCV-associated HCC (p = 0.019) (Table 4). Consistent with the findings of Figure 1B,
the Tid1 expression profile had substantial correlation with HCC malignancy.

Table 2. TID1 expression (H score) in tumor and non-tumor tissues of paired HCC patients divided
by TNM-T stage.

T Stage T1 + T2 T3

H Score Tumor Non-
Tumor p Value Tumor Non-

Tumor p Value

HCC (all) * 10 (0–165) 55 (0–285) <0.001 20 (0–185) 85 (0–255) <0.001

HBV-HCC ** 0 (0–165) 57.5
(0–285) <0.001 0 (0–185) 97.5

(0–255) <0.001

HCV-HCC *** 30 (0–130) 55 (0–185) 0.028 55 (0–145) 70 (13–160) 0.004
H score presented as median (range); * missing paired samples n = 9; ** missing paired samples n = 1; *** missing
paired samples n = 8.

2.5. Tid1 Expression in Non-Tumor Liver Tissues of Cirrhotic and Non-Cirrhotic State of HCC

We further compared the expression of Tid1 protein between patients with or without
cirrhosis in non-tumorous liver tissues. The protein level of Tid1 in cirrhotic samples was
significantly lower than that in non-cirrhotic samples, both in HBV-HCC and HCV-HCC
(Table 5), as cirrhosis is an important risk factor of HCC. This finding implies that Tid1
expression is also highly associated with HCC development.
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Table 3. Tid1 expression in non-tumor part of liver tissues.

TNM-T Stage/HCC
Differentiation

Low
H Score ≤ 75, n (%)

High
H Score > 75, n (%) p Value

HCC, n = 210
TNM-T stage 0.002
T1 and T2, n = 93 63 (56.3) 30 (33.3)
T3, n = 109 49 (43.8) 60 (66.7)
Differentiation 0.395
Well/Moderate, n = 157 90 (80.4) 67 (74.4)
Poorly, n = 45 22 (19.6) 23 (25.6)
HBV-HCC, n = 105
TNM-T stage 0.017
T1 and T2, n = 42 26 (53.1) 16 (29.1)
T3, n = 62 23 (46.9) 39 (70.9)
Differentiation 0.426
Well/Moderate, n = 87 43 (87.8) 44 (80.0)
Poorly, n = 17 6 (12.2) 11 (20.0)
HCV-HCC, n = 105
TNM-T stage 0.093
T1 and T2, n = 51 37 (58.7) 14 (40.0)
T3, n = 47 26 (41.3) 21 (60.0)
Differentiation 0.361
Well/Moderate, n = 70 47 (74.6) 23 (65.7)
Poorly, n = 28 16 (25.4) 12 (34.3)

Table 4. Tid1 expression in liver tumors.

TNM-T Stage/HCC
Differentiation

Low
H Score ≤ 47.25

High
H Score > 47.25 p Value

HCC, n = 210
TNM-T stage 0.096
T1 and T2, n = 95 72 (50.0) 23 (37.1)
T3, n = 111 72 (50.0) 39 (62.9)
Differentiation 0.109
Good/Moderate, n = 158 115 (79.9) 43 (69.4)
Poorly, n = 48 29 (20.1) 19 (30.6)
HBV-HCC, n = 105
TNM-T stage 0.197
T1 and T2, n = 42 40 (42.6) 2 (20.0)
T3, n = 62 54 (57.4) 8 (80.0)
Differentiation 0.361
Good/Moderate, n = 87 77 (81.9) 10 (100.0)
Poorly, n = 17 17 (18.1) 0
HCV-HCC, n = 105
TNM-T stage 0.019
T1 and T2, n = 53 32 (64.0) 21 (40.4)
T3, n = 49 18 (36.0) 31 (59.6)
Differentiation 0.200
Good/Moderate, n = 71 38 (76.0) 33 (63.5)
Poorly, n = 31 12 (24.0) 19 (36.5)
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Table 5. Tid1 expression in non-tumor liver tissue of cirrhotic and non-cirrhotic status of HCC.

H Score, Median
(Range) Cirrhosis Non-Cirrhosis p Value

HCC * 60 (0–210) 80 (0–285) <0.001
HBV-HCC ** 60 (0–210) (n = 41) 85 (0–285) (n = 63) 0.016
HCV-HCC *** 58 (0–108) (n = 43) 70 (5–185) (n = 55) 0.006

H score presented as median (range); * missing samples, Cirrhosis/Non-Cirrhosis, n = 2/6; ** missing samples,
Cirrhosis/Non-Cirrhosis, n = 0/1; *** missing samples, Cirrhosis/Non-Cirrhosis, n = 2/5.

2.6. Tid1 as a Prognostic Factor for Recurrence-Free Survival in HCC

To further examine whether Tid1 could serve as a prognostic biomarker to predict the
recurrence of HCC after surgical resection, distinct univariate and multivariate analyses
were conducted (Figure 3 and Table 6). As analyzed, patients with high AFP (≥400 ng/mL,
hazard ratio (HR):1.556, p = 0.019), multiple tumor number (tumor number >1, HR:2.111,
p < 0.001), presence of microvascular vascular invasion (HR:1.798, p = 0.001), advanced T
stage (T2 or T3, HR: 2.085 and 2.582, p = 0.010 and p < 0.001, respectively), advanced staging
(stage III and IV versus stage I and II, HR:2.574, p < 0.001), low expression level of Tid1
in the non-tumorous part (p = 0.054), and high Nrf2 expression in the non-tumorous
part (p = 0.050) had an unfavorable recurrence-free survival (RFS) in univariate analysis.
In multivariate analysis, tumor size, tumor number, presence of microvascular vascular
invasion, Nrf2 expressions in the non-tumorous part (HR=1.527, 95% CI = 1.023–2.280,
p = 0.038), and Tid1 expression in the non-tumorous part (HR = 0.500, 95% CI = 0.330-0.756,
p = 0.001) were independent factors associated with recurrence.
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Table 6. Univariate and multivariate analyses of factors associated with recurrence-free survival in 210 HCC patients.

Characteristics
Univariate Multivariate I Multivariate II

HR 95% CI P HR 95% CI P HR 95% CI P

Age (years) >50 vs.
≤50 1.080 0.726–

1.607 0.703 NA NA

Sex Male vs.
Female 0.902 0.601–

1.353 0.617 NA NA

Alpha-
fetoprotein
(ng/mL)

≥400 vs.
<400 1.556 1.074–

2.255 0.019 NS NS

Liver
Cirrhosis

Presence
vs.

Absence
1.285 0.905–

1.825 0.161 NS NS

Underlying
Hepatitis

HCV vs.
HBV 1.128 0.795–

1.600 0.499 NA NA

Tumor size
(cm)

>5 vs.
≤5 1.573 1.109–

2.230 0.011 1.618 1.074–
2.439 0.021 NA

Tumor
number

>1 vs.
≤1 2.111 1.474–

3.024 <0.001 1.606 1.071–
2.408 0.022 NA

Vascular
invasion

Presence
vs.

Absence
1.798 1.268–

2.552 0.001 1.658 1.104–
2.490 0.015 NA

TNM-T stage T1 1.000 - NA 1.000 -

T2 2.085 1.196–
3.635 0.010 NS

T3 2.582 1.700–
3.922 <0.001 2.508 1.593–

3.949 <0.001

TREND <0.001 <0.001
Pathology

stage
3–4 vs.

1–2 2.574 1.788–
3.704 <0.001 NA NA

Differentiation Good 1.000 - NA NA

Moderate 1.549 0.717–
3.348 0.265

Poor 1.539 0.677–
3.499 0.303

TREND 0.534
IHC

expression, H
score
Tid1,

non-tumor
part

>75 vs.
≤75 0.699 0.486–

1.007 0.054 0.500 0.330–
0.756 0.001 0.510 0.337–

0.771 0.001

Tid1, tumor
part

>47.25
vs.

≤47.25
1.397 0.960–

2.033 0.081 NS NS

Nrf2-nucleus,
non-tumor

part

>5 vs.
≤5 1.082 0.663–

1.763 0.753 NA NA

Nrf2-nucleus,
tumor part

>40 vs.
≤40 1.244 0.868–

1.783 0.235 NA NA

Nrf2-
cytoplasma,
non-tumor

part

>82.5 vs.
≤82.5 1.421 0.999–

2.021 0.050 1.527 1.023–
2.280 0.038 1.531 1.027–

2.282 0.036

Nrf2-
cytoplasma,
tumor part

>95 vs.
≤95 1.490 1.049–

2.116 0.026 NS NS

As shown in Figure 4A, using a prognostic score by incorporation of the five factors
established, the risk of HCC recurrence could be divided into four groups according to the
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stratification, with median recurrence-free survival of >120 months for low risk (score 0–1),
29.4 months for median risk (score 2), 13.5 months for high risk (score 3), and 6.2 months
for very high risk (score 4–5) patients (p < 0.0001) (Figure 4B).
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3. Discussion

Previous studies suggest that Tid1 is a tumor suppressor in various cancer types,
but this role had not been previously evaluated in HCC [18–20]. In this study, we performed
IHC to confirm that HCC tissue had a lower expression level of Tid1 than that in normal
liver; overexpression of Tid1 could inhibit colony formation, and downregulation of Tid1
would promote in vitro malignancy in HCC cell lines. However, Nrf2, as an oncogene,
its mRNA level was not well inversely associated with Tid1 mRNA, as confirmed by
the Oncomine platform. In addition, both overexpression and depletion of Tid1 protein
abrogated the protein level of Nrf2 in HCC cells. Nevertheless, both Tid1 and Nrf2 protein
levels in the non-tumorous part of liver were significant factors associated with RFS
in the 210 HCC patients after surgical resection. Moreover, a novel scoring system by
incorporation of clinical factors and Tid1, and Nrf2 expression could stratify patients into
four categories of risk in recurrence of HCC after surgical resection.

Interaction of Tid1 and viral oncoproteins reveals the role of Tid1 in virus-induced
carcinogenesis [34–36]. Functional J-domain of viral oncoproteins is important for viral
replication and cellular transformation. The effect of interaction of DnaJ protein Tid1 and
viral oncoproteins is controversial. Tid1 interacts with HPV E7 and Epstein–Barr virus
encoded BARF1 accelerates maturation and secretion of these proteins, as well as maintains
biological functions [34,37]. Degradation of HBV core protein and HBx via ubiquitination
by binding with Tid1 represses HBV replication [36]. In addition, several Tid1-regulated
proteins were found involved in hepatocarcinogenesis, such as EGFR [18,20], ErbB2 [38],
Myc [39], Ras [40], VEGF, and Hif1α [41]. Previously, we reported that HNSCC patients
with low expression of Tid1 demonstrated a poor prognosis. Furthermore, we demonstrate
that by overexpressing Tid1 in HNSCC cells inhibit the in vitro cell proliferation, migration,
invasion, and anchorage-independent growth. Additionally, ectopic overexpression of Tid1
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is shown to suppress in vivo xenotransplantation tumorigenicity and diminish Galectin-7-
mediated metastasis [19,20]. Abovementioned that Tid1 may play as a tumor suppressor
in HCC. In this study, significant reduction of Tid1 is observed in tumor tissues compared
to the non-tumor part (Figure 1A). Patients with high Tid1 in the non-tumor part of
the liver have a favorable recurrence-free survival in HCC (Figure 3D). These results
show Tid1 expression in the non-tumor part of liver can serve as a novel prognostic
factor to predict the patient’s prognosis after surgery. Our data also found that as the
tumor progressed, the expression of Tid1 in the non-tumor part was mostly enhanced
(Tables 2 and 3). This association with expression of Tid1 in the non-tumor part might
reflect a protective anti-tumor mechanism of humans in face of tumor progression.

Tumor suppression functions of Tid1 rely on degradation of ErbB2 in breast cancer [42],
and attenuation of EGFR/Akt/Erk signaling in HNSCC and in NSCLC [18,20]. Mitochon-
dria translocation of p53 by Tid1 triggers intrinsic mitochondria-mediated cell death in p53
wild-type MCF-7 and HCT-116 cells [43,44]. In hepatitis virus-related HCC, most patients
harbored mutated p53 [45]; this may explain why Tid1 lost its suppression function in the
tumor part and could be a tumor suppressor against cancer spreading in the normal part
of the liver. In this study, we also demonstrate Tid1 suppresses anchorage-independent
growth in p53-wild-type HCC cells (Figure 1C).

Nrf2 is found as a key transcription regulator for antioxidant and detoxification [46].
Activation of Nrf2 is observed in liver cells, such as hepatic stellate cells and Kupffer
cells, as well as in parenchymal hepatocytes [47,48]. It was reported that Nrf2 played a
protective role in hepatic inflammation, fibrosis, and hepatocarcinogenesis, through its
target gene induction [49]. However, accumulative evidences indicate that Nrf2 is abun-
dantly expressed in cancer cells, including HCC. It was reported that Nrf2 activation is
related to proliferation, invasion, and chemoresistance in HCC [31,50,51]. Our results
revealed that there were significant correlations between the expressions of Nrf2 with
recurrence of HCC (Table 6 and Figure 3E). This suggests that Nrf2 may play an oncogenic
role in HCC. Surprisingly, we also observed a negative correlation between Tid1 and Nrf2.
Expression of Nrf2 was affected in Tid1 overexpressed-SK hep1 and Tid1 depleted-HepG2
cells, respectively (Figure 1C,D). Nevertheless, we analyzed the mRNA expression of two
liver cancer cohorts from the open-source database and discovered that the correlation of
Tid1 and Nrf2 was inconsistent. Of note, the regulation between Tid1 and Nrf2 proteins
could be in the post-translation level but not the transcription level, and future exploration
to study how Tid1 negatively regulates the Nrf2 protein is necessary.

Surgical resection is the better therapy for HCC but with a limitation of high probability
of recurrence [52]. Tumor size, tumor number, and microvascular invasion are well-known
factors associated with recurrence after resection of HCC. [53] Interestingly, the recurrent
patterns categorized by Tid1 and Nrf2 in the non-tumor part indicate that the tumor
suppressor effect of Tid1 might play a more important role for late recurrence, while the
oxidative stress effect of Nrf2 is responsible for both early and late recurrence (Figure 3D,E).
Development new biomarkers or combination with clinical and pathological features may
be a bright way for prognosis determination. Molecular alteration in non-tumor part tissues
could provide more information for clinical application [54]. Expression of low Tid1 and
high Nrf2 in the non-tumor part showed significance with worse recurrence-free survival.
Combination with clinical and molecular features showed a valuable contribution to stratify
the risk of recurrence after surgical resection of HCC. In summary, Tid1, serving as a tumor
suppressor, has a prognostic role to predict RFS for surgically resected HCC.

4. Materials and Methods
4.1. Cell Lines

Human hepatocyte carcinoma cell lines, Mahlavu, Huh7, Hep3B, HepG2, and SK
hep1, were purchased from ATCC and maintained with complete medium containing 10%
fetal bovine serum (FBS) for further experiments.
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4.2. Human Specimens

The tissue arrays of 210 surgically resected HCC specimens were provided from the
Taiwan Liver Cancer Network (TLCN No. 150104) with available clinical characteristics
and outcomes [55]. The tumors and non-tumor tissues of liver were used for Tid1 and Nrf2
expression analysis by immunohistochemistry (IHC) staining to analyze the association
between Tid1, Nrf2 protein, and clinical parameters, as well as prognosis of HCC.

4.3. Data Collection of DNAJA3 (Tid1) and NFEL2 (Nrf2) mRNA Expression from Open
Source Database

Expression of Tid 1 differential transcriptomes in normal and HCC tissues was ob-
tained from the Oncomine public data portal (www.oncomine.org). The datasets GSE15420 and
GSE17967 were randomly selected. The correlation between DNAJA3 (Tid1) and NFEL2
(Nrf2) mRNA expression was also compared from Oncomine. Normalized RNA-Seq data
(log2) were used as gene expression value and for measuring the correlation coefficient.

4.4. Western Blotting

Western blotting was used to measure Tid1 protein level (clone RS13, Thermo Scientific,
Fremont, CA, USA) in HCC cell lines; GAPDH protein level served as loading control.
The procedures of Western blotting were described previously [18].

4.5. Overexpression by hTid1-L or -S Isoform

The plasmids with pRK5 backbone containing C-terminal tag of HA and harbor-
ing the full-length cDNAs of Tid1 long form (Tid1L) or short form (Tid1S), respectively,
were constructed for ectopic expression, and have been described [13,19,20].

4.6. Downregulation by Small Hairpin RNA Interference (shRNAi)

The lentiviral shRNA plasmids for the knockdown of Tid1 protein level were pur-
chased from National RNAi Core Facility (Academia Sinica, Taipei, Taiwan), as follows:
ShDNAJA3-1: Clone ID: TRCN0000008775 and ShDNAJA3-2: Clone ID: TRCN0000273884.
ShLuc vector (Clone ID: TRCN0000072266) against luciferase was used as a negative
control. The method of lentivirus production and cell infection was described in the
manufacturer’s protocol.

4.7. Cell Anchorage-Independent Growth Assay

Anchorage-independent growth assay was performed as described previously [19].
Briefly, each well of a 6-well culture dish was coated with 1 mL bottom agar mixture (DMEM,
10% (vol/vol) FBS, 0.6% (wt/vol) agar, 1% (vol/vol) penicillin–streptomycin) [31,50,51]. After the
bottom layer was solidified, 1 × 104 plasmid-transfected (pRK5-Ctrl, pRK5-hTid1-L-wt and
pRK5-hTid1-S-wt) [13] or virus-infected (shLuc, shDNAJA3-1 and shDNAJA3-2) cells were
plated, subsequently followed by topping approximately 1 mL of top agar-medium mixture
(DMEM, 10% (vol/vol) FBS, 0.3% (wt/vol) agar, 1% (vol/vol) penicillin–streptomycin) to
each well. The dishes were cultured at 37 ◦C with 5% CO2 for 2 weeks. Cells grown on
the plates were stained with 0.005% crystal violet for 1 h, and then the cell colonies were
quantitated over five fields per well for 15 fields in triplicate experiments.

4.8. Immunohistochemistry (IHC)

IHC was performed as described previously [19,20,42]. The primary antibody against
Tid1 protein (clone RS13, Thermo Scientific, Fremont, CA, USA) was performed according
to a previous report [40]. The H scores of Tid1 were defined by a single pathologist
(Figure 5). In brief, H-score method is a semiquantitative approach defined as the sum of
the products obtained by multiplying staining intensity (0, 1, 2, and 3) by the percentage
of positively stained cells with respect to each staining intensity. H-scores ranged from
0 to 300. Intensity was defined as follows: 0 for no detectable staining, 1+ for weak
reactivity mainly detectable at high magnification (20–40× objective), and 2+ or 3+ for

www.oncomine.org
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intense (moderate or strong, respectively) reactivity easily detectable at low magnification
(4× objective). Ref. [56] Tid1 expression of the non-tumor part was subgrouped as low
(≤75) and high (>75). Tid1 expression of the tumor part was subgrouped as low (≤47.25)
and high (>47.25). The primary antibody against Nrf2 protein (NCBI NP_001138884.11;
NM_001145412.21, Biorbyt LLC, San Francisco, CA, USA) was performed according to
manufacturer instruction.
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4.9. Statistical Analysis

The association between Tid1 and Nrf2 was compared by the chi-square test. Continuous vari-
ables were compared by the Mann–Whitney U test. Fisher’s exact test and Pearson chi-
square analysis were applied to assess categorical data. The Kaplan–Meier method with
log-rank test was used for recurrence-free survival (RFS) analyses. Analysis of prognostic
factors for RFS was performed using the Cox proportional hazards model. Variables that
achieved statistical significance (p < 0.05) or those close to significance (p < 0.1) by uni-
variate analysis were subsequently included in the multivariate analysis. For all analyses,
p < 0.05 was considered statistically significant. All statistical analyses were performed
using IBM SPSS Statistics (SPSS 27 for Windows) and Excel (Microsoft Office Professional
Plus 2013).

5. Conclusions

Tid1 plays a novel prognostic role in HCC after surgery. Additionally, suppression of
tumorigenesis and cancer progression by Tid1 may imply that this co-chaperone pro-
tein could be a promising prognostic marker and potential therapeutic target for HCC.
Combination of clinical features (tumor size and number, and vascular invasion) with Tid1
and Nrf2 expression in the non-tumor part of livers could provide a novel and useful
strategy to stratify the extremely high-risk group of recurrence after surgical resection.
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