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Introduction: Despite recent advances in the drug discovery field, developing selective 
kinase inhibitors remains a complicated issue for a number of reasons, one of which is that 
there are striking structural similarities in the ATP-binding pockets of kinases.
Objective: To address this problem, we have designed a machine learning model utilizing various 
structure-based and energy-based descriptors to better characterize protein–ligand interactions.
Methods: In this work, we use a dataset of 104 human kinases with available PDB 
structures and experimental activity data against 1202 small-molecule compounds from the 
PubChem BioAssay dataset “Navigating the Kinome”. We propose structure-based interac
tion descriptors to build activity predicting machine learning model.
Results and Discussion: We report a ligand-oriented computational method for accurate 
kinase target prioritizing. Our method shows high accuracy compared to similar structure- 
based activity prediction methods, and more importantly shows the same prediction accuracy 
when tested on the special set of structurally remote compounds, showing that it is unbiased 
to ligand structural similarity in the training set data. We hope that our approach will be 
useful for the development of novel highly selective kinase inhibitors.
Keywords: kinase, machine learning, activity prediction, docking, interaction descriptors

Introduction
Protein kinases are highly attractive drug targets since they are implicated in critical 
functions in signaling pathways in all cells. In many cases, the development of 
highly-specific kinase inhibiting reagents is crucial, because of various adverse 
effects caused by off-target activity. One example is receptor-associated Janus 
kinases (JAK1, JAK2, JAK3 and TYK2), which are involved in transmitting signals 
from cytokine receptors. Potentially, JAK3-specific inhibitors can act on immune 
cells, inhibiting only the γc-chain-containing cytokine receptors, whereas it was 
shown experimentally that the germline targeting of JAK1 and JAK2 results in 
perinatal and embryonic lethality.1,2 Kinases are also highly attractive targets for 
anti-cancer therapy.3–8 There are many mechanisms where specific kinases or their 
mutated forms are involved in cancer cell development and regulation. For exam
ple, the neurotrophic growth factor receptor (nTRK2) was shown to be essential for 
allowing some cells to survive detachment and therefore it is required for tumor cell 
metastasis. Vascular endothelial growth factor receptor (VEGFR) and the fibroblast 
growth factor receptor (FGFR) kinases are important in developing and sustaining 
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tumor blood supply. Nevertheless, the development of 
kinase inhibitors for anticancer therapy is hindered by 
the problem of target selectivity, especially within the 
kinase family. Clinically observed adverse effects for 
kinase-based drugs such as imatinib, sorafenib, sunitinib 
and inhibitors of epidermal-growth-factor receptor 
(EGFR) include skin rash, secondary hypertension and 
vascular thrombosis.9 Some of the side effects could be 
caused by a non-direct mechanism of drug intervention, or 
due to off-target activity, where the drug compound inter
acts with non-target proteins, or due to the implications of 
the affected proteins in a number of pathways and different 
regulatory mechanisms, which may also be affected.10,11

Binding pockets in kinase proteins are highly structu
rally conserved; therefore, developing inhibitors selective 
to kinase remains a highly challenging task. To address the 
problem of kinase selectivity, a variety of approaches have 
been developed during the past decades. For example, 
recently many drug developers have focused on type II 
kinase inhibitors. These are compounds that bind within 
the allosteric site, stabilizing inactive kinase conformation 
and interacting with the conserved DFG-motif (“Asp-Phe- 
Gly”) when it is in “out” form.12 An interesting alternative 
is the so-called I1/2 type inhibitors, which possess advan
tages of both the type I and type II inhibitors, forming 
interactions in the ATP binding area with the hinge region 
and the DFG motif in both the “in” and “out” conformations 
of the activation loop.13 Cohen et al used a bioinformatics- 
based approach to define two main residues to act as 
selectivity filters, that are responsible for the selectively 
inhibiting p90 ribosomal protein S6 kinase (RSK) and not 
other kinases. Based on these findings, they designed potent 
selective inhibitors that required the presence of both the 
residues in appropriate positions in the ATP-binding pocket, 
as is found only in RSK kinases.14

There are many examples that demonstrate the effective 
application of machine learning in various different ways in 
order to solve the problem of large-scale target prioritization 
or activity prediction. Christmann-Franck et al presented 
a large-scale investigation of kinase promiscuity based on 
kinase activity profiles combined in a dataset covering 482 
kinases against 2106 reported kinase inhibitors of different 
types. They were able to develop proteochemometric models 
for activity prediction by combining ligand and target 
descriptors.15 Stepniewska-Dziubinska et al used a structure- 
based approach for binding affinity prediction using deep 
learning for a diverse set of targets. For this purpose, they 
exploited 3D voxel-type descriptors applied to protein-ligand 

complexes with known crystal structures (PDBbind dataset). 
These descriptors characterize different aspects of the phy
sico-chemical properties in each voxel.16 Another structure- 
based affinity prediction model based on a 3D convolutional 
neural network (CNN) was presented by Jiménez et al. In this 
work, the authors used voxel-type descriptors from the 
python library High Through-Put Molecular Dynamics 
(HTMD) applied for protein-ligand complexes of known 
structure (PDBbind).17 In computational drug design pro
jects, protein-ligand crystal structures are often unavailable, 
but methods such as molecular docking can be used to obtain 
ligand conformations in the protein binding pocket. For such 
cases, Fukunishi et al developed a quantitative structure- 
activity relationship (QSAR) model based on docking scores 
to predict the binding energy in protein-ligand complexes, 
and tested it on kinase family proteins and matrix metallo
proteinase (MMP) proteins.18

Lately, multi-task machine learning approaches 
attracted the attention of many computational chemists. 
Recent studies demonstrated high accuracy of such meth
ods in tasks related to activity prediction across multiple 
targets and pharmacokinetic properties.19–21 Improvement 
has been achieved due to the synergetic effect of several 
related tasks predicted during the model training at the 
same time. In addition, such models are more efficient 
due to the reduced training time compared to the models 
trained for each endpoint separately.

The purpose of our research is to prioritize small- 
molecule kinase inhibitors selective against a broad range 
of kinases. Such an operation should be useful for the pre
diction of potential off-target activity of a drug candidate 
compound at the early stages of drug development. To 
achieve these objectives, we have developed an activity 
prediction method for a candidate inhibitor against a large 
set of kinases with or without the knowledge of the com
pound’s primary target. We combined the latest advances in 
machine learning techniques with structure-based methods 
for computational drug design. The set of descriptors that we 
designed to characterize protein–ligand interactions in com
plex structures do not include any direct structural character
ization and therefore, our method is potentially unbiased to 
the structural similarity of the training dataset. Most QSAR 
methods have a limited applicability domain, meaning that 
they perform less accurately when tested on compounds 
which are out of the chemical space of the compounds in 
the training set and therefore can usually not be applied to 
novel compounds, or should be applied with caution.22 

Therefore, the absence of structural descriptors in our 
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model makes it advantageous for application to de novo 
designed drug candidates.

Methods
To build a kinase-targeted activity prediction model, we 
used activity data from the PubChem BioAssay Database 
dataset “Navigating the Kinome”, containing experimental 
data for activity screening for 172 kinase proteins, 1497 
drug-like kinase-binding ligands, and overall 107,791 activ
ity values.23 We used a single activity dataset in order to 
exclude the possibility of data inconsistency associated with 
a difference of experimental conditions and techniques. The 
set of descriptors we used to develop the machine-learning 
models include information from different stages of the 
workflow and incorporate features for unbound ligands, 
proteins and different aspects of kinase-–ligand interaction 
in a complex obtained by docking (Figure 1).

We assumed that the analyzed compounds have a known 
primary kinase target within the dataset, based on the ana
lysis of relationship between target similarity and target 
activity profiles (target similarity reflects the similarity of 
target activity profiles, see the results and discussion section 

for further details). We defined the primary target as the 
kinase with the highest activity for a given compound and 
pKi > 6. The compounds not having activity data > 6 pKi 

were excluded from analysis. After data preparation, there 
were 1202 ligands and 104 kinases remaining in our dataset 
(Supplementary materials).

Preparing the Dataset of Crystal 
Structures for Kinases
We collected the dataset of kinase crystal structures from the 
PDB database, available for the proteins in the activity dataset. 
For each target from the dataset we have chosen one crystal 
structure, taking into consideration the following criteria:

1) only human protein structures;
2) structures obtained by X-ray with the highest avail

able resolution;
3) having a small chemical ligand bound in the binding 

pocket (higher affinity is preferable if affinity data are 
available). The existence of a co-crystallized ligand is 
important for the further analysis of protein pockets. 
Moreover, ligand-bound (active) conformation of the 

Figure 1 Schematic workflow of activity prediction with a machine-learning model for test compounds.
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protein in many cases is preferable to perform 
docking.

Furthermore, some additional processing steps were 
performed:

1) for multimeric structures only one protomer with 
a ligand bound in the ATP-binding pocket was left;

2) non-relevant small-molecules such as solvent mole
cules were removed;

3) structures with missing long parts of the chain close 
to the ATP-binding pocket were excluded;

4) for structures containing short chain breaks close to the 
ATP-binding pocket (less than 6 residues missing) we 
performed comparative modeling followed by energy 
minimization to reconstruct missing parts using the 
protein preparation tools of MOE (Molecular 
Operating Environment (MOE), 2013.08; Chemical 
Computing Group ULC, 1010 Sherbooke St. West, 
Suite #910, Montreal, QC, Canada, H3A 2R7, 2019);

5) the 104 remaining kinase structures were prepared 
for docking. The preparation procedure was done 
using ICM tools24 and includes the following steps:

- removal of the secondary alternative positions of 
atoms in the PDB file;

- reconstruction of hydrogens;
- removal of ambiguous covalent bonds with some 

metals according to the ICM and MMFF force field;
- assigning of the formal charges and partial atomic 

charges based on MMFF force field;
- reconstruction of missing heavy atoms according to 

the residue library;
- optimization of residues which have several states of 

protonation: His (three protonation states and two 
rotations), Asn and Gln (a 180 deg. flip), and Cys in 
the vicinity of metals.

- global energy optimization to avoid clashes.

6) all proteins were superimposed by ATP-binding 
pockets with an APF superimposition tool.25

Performing these steps resulted in a structural dataset 
consisting of 104 kinase protein structures.

Calculation of Pairwise Similarities
To investigate the effect of target structural similarity on 
target activity similarity (similarity of activity profiles) we 

calculated pairwise protein-protein similarities of 2 types: 
sequence similarity and APF structural similarity.

Sequence similarity was obtained as an ICM function 
Score, which returns the real score of the Needleman and 
Wunsch alignment for each protein pair.26 To calculate 
these scores we used sequences of PDB crystal structures 
that were prepared as described above.

APF score was obtained with the ICM tool 
siteSuperAPF. Atomic Property Fields (APF), is 
a method for chemical superimposition based on the con
sensus of atomic field maps, characterizing seven different 
physico-chemical properties, such as H-bond donor/accep
tor property, lipophilicity, electrostatics, charge, size, and 
sp2-hybridization state. This method can be effectively 
applied for protein pockets, and APF consensus score is 
a good indicator for pairwise pocket similarity in terms of 
the physico-chemical properties of the pocket environ
ment. Furthermore, we calculated the normalized APF 
distance and Sequence distance scores to avoid protein/ 
pocket size effect as follows:

Scoreij ¼
Sij Sji

Sii Sjj
(1) 

Sij and Sji are raw APF or Sequence similarity scores for 
i and j proteins in the dataset, Sii and Sjj - raw similarity 
scores of i and j proteins when similarity is measured 
against the protein itself (self-similarity).

Calculated similarities were incorporated with other 
descriptors for use in the activity prediction model. To 
introduce these values as descriptors for all protein- 
ligand pairs we assume that each of the ligands has its 
primary protein target within the dataset (the target with 
the highest activity and pKi > 6. Compounds that did not 
satisfy this requirement were excluded from the analysis). 
In this case, for each protein-ligand complex, we can 
assign similarity of the protein in a given complex to the 
primary target protein of the ligand (in the case where 
a given protein is the primary target for a given ligand in 
the analysed complex, the similarity will be the highest).

Docking Protocol to Obtain 
Protein-Ligand Complex Structures
To obtain the complex structures of the protein-ligand 
pairs according to the activity data from the “Navigating 
the Kinome” dataset we performed a docking simulation 
for 1202 compounds into prepared receptor structures of 
104 human kinases. Docking was performed with the 
SMINA software, which is a fork of Autodock Vina with 
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an improved scoring function, and is convenient for auto
mated docking as a command-line tool.27 For each of the 
ligands, we sampled a single low-energy 3D conformation, 
added hydrogens, and charged with ICM tools.

The best-scored conformation for each receptor-ligand 
pair was used for further analysis. The resultant dataset of 
protein-ligand pairs with available activities consisted of 
21,482 entries with activity range pKi 4–11.1.

Docking Accuracy Test
To estimate the potential docking-associated errors, we 
performed re-docking experiments for the refined DUDE 
dataset of 4129 co-crystallized protein-ligand structures.28 

Protein structures were prepared according to the protocol 
described in the Methods section. The ligand molecules 
were removed from the binding pockets and initial ligand 
conformations were randomly sampled with the Open 
Babel tool.29 Docking was performed with SMINA as 
described in Methods, but for each ligand, for this test, 
we saved up to 100 top-scored ligand conformations. For 
each of docking conformations, we calculated static 
RMSD to its correct crystal conformation.

Calculating Descriptors
Docking-obtained protein-ligand complexes were used for the 
calculation of several features characterizing complex 
interactions.

SMINA Score
The scores obtained from docking included several energy 
terms reflecting different types of interaction, including 
hydrogen bond formation, hydrophobic interaction, elec
trostatic interaction and others.27 We extracted values for 
all these terms as additional descriptors for our model.

X-Score
We calculated binding affinities using resulted complexes 
using the X-score.30 The X-score includes three differently 
calibrated scoring functions and the consensus function 
X-CSCORE. We used all 4 scores for each complex.

Protein-Ligand Contact Area
The protein-ligand contact area was calculated with the 
ICM-pro Area tool.

Interaction Signatures for Complexes
The PyMol-based program PLIP (Protein-Ligand 
Interaction Profiler)31 was used to calculate Interaction 
signatures for complexes. To process the PLIP output 

report file we additionally created a bash-script to run the 
processing automatically and to extract the interaction 
signatures from the program output report (counting the 
number of interactions of each type). PLIP descriptors 
include H-bond and Hal-bond formation, hydrophobic 
interactions, pi-Cation and pi-Stacking interaction, and 
formation of salt bridges (if present in the structure).

H-Bond Formation with the Hinge Region of 
ATP-Binding Pockets
This feature was calculated using the PLIP utility as well. 
For this purpose, we determined hinge region residues for 
each protein target based on multiple protein sequence 
alignments (hinge residues for the proteins of the set are 
available in the project’s Github repository). We prepared 
a bash-script to check for H-bond interactions of the ligand 
with these residues for each protein-ligand complex from 
PLIP report files and to run the process automatically.

Solvation Energies of the Ligands
To better understand the solvation energy change between 
unbound and bound states of ligands, we calculated solva
tion energies of the ligands in an unbound state in water 
solution for all of the dataset compounds based on the R6 
Generalized Born Model.32 The tool calculates several 
values including polar and nonpolar components of solva
tion energy and electrostatic potential energy and requires 
an input file in PQR format, containing partial charge and 
atom radius information. To convert MOL2 format to PQR 
we used the ACPYPE tool (AnteChamber PYthon Parser 
interfacE).33

Number of Atoms and Number of Rotational Bonds 
in a Ligand
Additionally, we added two descriptors – the number of 
atoms in a ligand and the number of rotational bonds in 
a ligand, calculated with ICM tools.

Machine Learning Models Construction
We built two regression models to predict the activity of 
protein-ligand complexes: one is a Random Forest (RF) 
based model and the other is a Deep Neural Network 
(DNN) model based on the Python package Keras.34 All 
operations for dataset processing were performed with the 
Pandas module. Numerical features were normalized by 
Z-score (z = (x–x_m)/s, where x_m is the sample mean, 
and s is the sample standard deviation), assuming that 
most of the features have standard distribution. For cate
gorical features, we used the one-hot encoding technique 
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to allow incorporation with numerical features and intro
duction to the machine learning solver.

Five features were treated as categorical: target (com
plex forming protein), primary_target (primary target for 
the given ligand) and H-bond formation with the 3 resi
dues in the hinge region (since these values are usually 
either 0 or 1).

After feature preparation, we have randomly split the 
dataset into a training set (1600 complexes) and 
a validation set (5047 complexes), roughly 3:1. The valida
tion set was used to fine-tune the models’ hyperparameters.

To examine the effect of the structural similarity of 
ligands on prediction results, we prepared an additional 
small test set, consisting of 15 compounds that were fully 
excluded from training and validation sets. To choose these 
15 compounds we performed cluster analyses of all ligands 
in the dataset based on a compressed hierarchical clustering 
algorithm35 using structure fingerprints36 in order to eluci
date the most dissimilar compounds (we chose compounds 
forming single clusters with a similarity threshold of 0.5). 
These compounds were selected as an additional test set 
(Supplementary Figure S1) with 435 experimental activities 
in the range 5.1–9.3 pKi. This test set was used one time to 
assess the ML models’ accuracy on the challenging mole
cules (structural outliers) and was not used for the training 
and the hyperparameter fine-tuning.

To optimize the number of trees for the RF model, we 
analyzed the validation curve from the sklearn.learning_
curve tool for a range of tree numbers (5, 10, 15, 25, 50, 
100, 200, 400, and 800). RandomForestRegressor was 
used as an estimator, and the optimization was conducted 
on the training set with 5-fold cross validation. The mean 
validation accuracy (R2) was used to plot the validation 
curve (Figure S2). We observed a plateau on the validation 
curve approximately between 200 and 400 estimators 
(Supplementary Figure S2). For that reason, we have cho
sen the number of estimators to be 300, trained the RF 
model again with 3-fold cross validation, and estimated 
resulted accuracy additionally on the validation set.

To build the deep learning model we used the Sequential 
model from the Keras package and added 3 fully connected 
dense layers with 512 nodes each (dropout=0.3, regulariza
tion l1=1e-5 and l2=1e-5, activation function - ReLU) and 1 
output layer for regression (Figure 2).

The following parameters were set for model training: 
batch size is 10 (batch_size), maximum number of epochs 
is 100. The root-mean-square error (RMSE) was used as 
a loss function for model training. We used early stopping 

implementation in Keras to stop the training if there was 
no improvement of loss function for the validation set for 
10 steps in a row (Supplementary Figure S3). The model 
weights giving the lowest loss function on a validation set 
were saved and used finally for the test set evaluation.

Hyperparameters tuning was performed by probing 
several different combinations of the number of layers 
(1–3), the numbers of nodes (128, 264, 512, 1024, 2048), 
dropout level (10%, 20%, 30%, 40%, 50%), L1 and L2 
regularizations (0.001, 0.0001, 0.00001), and the batch 
size (10, 20, 50, 100, 200). We changed hyperparameters 

Figure 2 DNN model architecture scheme.
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one at a time and trained the model for 100 epochs by 
tracking the loss of the validation set. We paid attention to 
the training/validation accuracy gap (overfitting effect), 
training speed, and stability of training.

Results and Discussion
Target Similarity Implies the Similarity of 
Target Activity Profiles
It is known that in many cases very similar or related proteins 
show similar activity for the same compounds. Many target 
prediction methods are based on this idea, utilizing protein 
sequence similarities and compound structural similarities in 
different ways.15,37–39 To investigate this dependency, we 
calculated pairwise protein-protein similarities of two 
types: sequence similarity and similarity of physicochemical 
properties of the ATP-pockets (APF score), as described in 
the Methods section. To account for the similarity of activity 
profiles, we calculated the Pearson correlation coefficient for 
the activity values of the common compounds for each 
protein-protein pair for each of the receptors in our dataset. 
To ensure the significance of the Pearson correlation coeffi
cient, we set the minimum number of common compounds 
with known activities to be 100.

Figure 3 shows the normalized values for the pairwise 
Sequence similarities and pocket APF similarities versus 
pairwise activity correlations.

Most of the dots on these plots fall into the area of the 
lower-right corner on the plot space (area of higher activity 
correlation and lower protein similarity). This is especially 
prominent for the sequence similarity plots. Few points 
appear in the upper-right corner (area of high protein 
similarity and lower activity correlation) and even those 
fall close to the diagonal line. Interestingly, the dots on the 
APF plots are more spread comparing to a corresponding 
sequence similarity plot, even though overall, these plots 
are similar. Moreover, we found that for highly relative 
pairs of proteins, these plots are highly similar (Figure 4).

Overall, there is no clear correlation between kinase 
similarity and similarity of activity profiles. Nevertheless, 
these plots suggest that two highly similar proteins have 
a high probability of having very similar activity profiles 
(higher right corner of the plot area). However, two pro
teins may demonstrate relatively high activity profile cor
relation even if they are not structurally similar (lower left 
corner of the plot area). In this case, it is likely that some 
other features of these proteins are responsible for the 
activity profile similarity.

Based on these findings, we chose target similarity as an 
important feature that should be accounted for in the machine 
learning model. To incorporate this feature as a descriptor for 
protein-ligand complexes, we introduced the concept of 
a primary target, assuming that the highest activity target is 
known for each compound (see Methods). When we have 
candidate compounds for a particular kinase and wish to 
investigate their off-target activities, our predictive model 
will be applicable, assuming that this kinase is the compounds’ 
primary target. (Potential pitfalls of this argument and how to 
mitigate them will be discussed later.) For our dataset, the 
primary target of each compound is the target with the highest 
activity (in terms of pKi available from the experimental activ
ity data). Thus, for each protein-ligand complex, we can now 
introduce a new feature, the pairwise similarity between this 
protein and the compound’s primary target. As will be shown 
later, this feature plays a powerful role in activity prediction.

Docking Accuracy Issue
We decided to generate protein-ligand complexes using mole
cular docking, because our activity prediction model should be 
used in a situation where the compounds being investigated 
are unlikely to have been co-crystallized with all the kinases of 
interest. We should, then, keep in mind that any docking 
protocol has limited accuracy due to different reasons, ranging 
from the lack of (or inaccurate) structural data (such as protein 
flexibility, binding cofactors, or mediating water molecules) to 
the probabilistic nature of docking algorithms. All these fac
tors can lead to inaccurate ligand conformations, which is 
critical for the accuracy of the activity prediction model.

In 68% of cases, the highest scoring docking pose was 
satisfactory (<2Å RMSD to the crystal structure) and in 
52% of cases, the highest scoring pose was <1Å RMSD 
from the crystal pose. In 59% of the cases, the highest 
scoring pose was found to be the closest to the crystal 
structure. For the remaining 41%, the most accurate pose 
was not scored the highest but was usually conformation
ally close to the highest scoring pose. Therefore, we 
assumed that it would be reasonable to use only the high
est scoring docking conformation for our analysis.

Random Forest (RF) and Deep Neural 
Network (DNN) Models Showing Similar 
Accuracy for Activity Prediction
We built two regression models, using RF and DNN, to 
predict the activity of protein-ligand complexes. To ana
lyze the accuracy of these models, we used the Pearson 
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correlation, RMSE and 1-fold and 2-fold error metrics. 
The 1-fold and 2-fold error metric represents the ratio of 
points with prediction errors exceeding 1 or 2 pKi (10 and 
100 Ki, respectively) and therefore, these metrics are more 

intuitive to assess the prediction performance. Both mod
els showed similar accuracy for the validation and test sets 
in terms of RMSE (see Table 1). The RF model was much 
more overtrained than the DNN model, because for the 

Figure 3 Relationships between protein–protein similarity and pairwise activity correlations for several kinases in the dataset. (Each dot represents a protein–protein pair in 
the 104 kinase structural dataset.) Sequence similarity on the left, and similarity in APF pockets on the right (colour gradient corresponds to activity correlation values).
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DNN model, we used an early stopping technique to stop 
model training when accuracy did not improve for the 
validation set, in order to prevent overtraining.

The Pearson correlation coefficients for the test set 
were relatively poor for the following possible reason. 
The test set was prepared specifically to represent the 
compounds that are structurally most distant from the 
training and validation datasets. The activity data for this 
subset had a distribution different from the training or 
validation datasets, which were formed by random split
ting (Figure 5); the external test dataset consists of 435 
activity data points with pKi mostly lying in the narrow 
range of 5.5–7.0 pKi. This observation explains the lower 
correlation of predicted accuracy for the test set.40 To 
address this issue with Pearson correlation, we also used 
other statistical metrics as mentioned above.

Overall, both models demonstrate low RMSE for the 
validation and test set, which means that most of the 
predictions for the validation and test set are located in 
the area within ±2 pKi from the diagonal line on the scatter 
plot (2-fold error less than 1% for all subsets in both 

models) (Figure 6). Predictions for the test set fall in the 
same area as the validation set, that can be proved as well 
by very close values of RMSE and 1-fold and 2-fold errors 
for the test and validation sets. This proves that our models 
are unbiased to the structural similarity of the tested 
ligands to training set ligands (since the test set consists 
of 15 compounds which are structurally the most different 
from the other compounds and were fully excluded from 
both training and validation sets).

To investigate the feature importance in constructed 
models we used the feature_importances_ module from 
Sklearn for the RF model. From the bar plot in Figure 7 
we can see that the features associated with primary target 
information (protein-protein similarity features) are at the 
top of the list.

Incorrect Primary Target Assignment 
Greatly Affects Activity Prediction
To investigate the effect of incorrect primary target infor
mation on the prediction accuracy of our models, we 
simulated two test cases.

Figure 4 Comparison of the pairwise sequence similarity versus activity correlations plots for a pair of relative kinases.

Table 1 Comparing RF and DNN Model Accuracy

Random Forest Model DNN Model

Pearson Correlation RMSE 1-Fold Error 2-Fold Error Pearson Correlation RMSE 1-Fold Error 2-Fold Error

Training set (1600 random samples)

0.98 0.23 6.25e-05 0.0 0.85 0.49 0.069 0.0013

Validation set (5047 random samples)

0.73 0.63 0.1038 0.0037 0.72 0.64 0.117 0.0057
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For the first test case, we prepared the test set based on 
the validation set, where for a primary target we assigned 
the protein with the lowest activity for a given compound 
(overall activity range for these protein-ligand pairs was 
4–6 pKi). Accordingly, we changed the protein-protein 
similarity metrics of these compounds to reproduce a real- 
case scenario, when the “primary target” was assigned 
wrongly for the input compound.

In the second test case, we simulated the situation where 
the primary target does not have the highest but instead has 
average-range activity for a test ligand. The activity range for 
primary target – ligand pairs in this test set is 7–8 pKi.

Descriptors for both test sets were processed in the 
same way as for the original dataset, and activities were 
predicted with pre-trained DNN and RF models.

The results of the activity prediction for the two test 
scenarios are presented on the scatterplots in Figure 8.

Prediction for the first test is mostly wrong for both 
models. For the second test, we can see that protein- 
ligand pairs with high activities were considerably 
underestimated while low and average activity com
plexes resulted in the similar accuracy as the original 
dataset.

Investigating Alternative Model Without 
Primary Target Information
In the real-life process of computational drug design, we 
often do not have strong evidence to assign “primary 
targets” for a tested compound. As we have shown, the 
primary target associated features are among the strongest 

Figure 5 Distribution densities for the activity values in the training and validation subsets (on the left) in comparison to the training and test sets (on the right).

Figure 6 Performance of activity prediction models: a) DNN model and b) RF model.
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predictors and the incorrectly assigned “primary targets” 
affect prediction performance greatly. As a result, we 
decided to investigate how exclusion of such information 
would affect the model potency and whether this alterna
tive model based on a reduced predictor set may still be 
useful for kinase prioritizing analysis.

We excluded from the original dataset all descriptors 
associated with “primary target”, including sequence simi
larity and APF pocket similarity. In total, we excluded 108 
features: 104 resulted from splitting of the primary_target 
categorical feature and four are sequence and APF simila
rities, raw and normalized, as described in the methods sec
tion (do not confuse with Z-score normalization). After that, 
we re-trained both models with no other changes in model 

construction or data preparation and model training 
protocols.

The resultant accuracy for validation and test sets was 
lower for both models, as expected (Figure 9).

Pearson correlation for the validation set decreased from 
0.73 to 0.63 and from 0.71 to 0.61 in the RF and DNN 
models, respectively, RMSE increased from 0.63 to 0.72 
for the RF model and similarly from 0.64 to 0.72 for the 
DNN model for the validation set. However, elimination of 
the most potent features resulted in an observable drop in 
predictive accuracy. Therefore, when there is a lack of evi
dence for the primary target having a high activity for the 
tested compound, we will recommend using this alternative 
model trained on the data with no primary target information.

Figure 7 Top list of features sorted by its estimated importance based on RF model.
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Figure 8 Prediction accuracy test for the cases with wrongly assigned primary targets: primary targets with low activity (pK i < 6) on the left; and primary targets with 
average activity (7 < pK i < 8) on the right.

Figure 9 Performance of activity prediction models trained on the dataset without primary target.
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Performance of Developed Activity 
Prediction Methods
Regarding the predicting accuracy of our approach we 
assume that the main source of error in our predicting 
models may be introduced due to incorrect ligand confor
mation in the protein pocket resulting from docking, since, 
as we discussed above, molecular docking has limited 
accuracy in both pose prediction and pose scoring.

There are many factors affecting docking accuracy, 
including ligand flexibility and size, in addition to receptor 
conformational flexibility and the possibility of having 
several conformational states (like the open/closed posi
tion of the activating loop in kinase proteins). In addition, 
the filtering of incorrect docking poses is a very non-trivial 
task, especially when it comes to large-scale analysis. 
Therefore, if more sophisticated docking protocol is pro
posed, it could significantly improve the performance of 
our designed activity prediction model.

The other important point is the composition of the 
training dataset. The dataset used in this work contained 
compounds whose activity data had a narrow activity 
range, which was later reflected in the correlation values. 
In addition, for many compounds the strongest activity 
value was relatively low (pKi > 6), ie, for such com
pounds, we did not have examples of “good” targets. We 
expect that expanding the activity dataset will lead to 
a better more robust model, although using different 
sources for activity data may introduce errors associated 
with the differences in experimental approaches, which 
would need to be accounted for.

Conclusion
In this work, we developed a set of descriptors character
izing protein–ligand interaction and demonstrated the 
effectiveness of activity prediction based on these descrip
tors using two machine-learning models: RF and DNN.

Both models demonstrate relatively high prediction 
accuracy in terms of the RMSE. Descriptors that we used 
included very limited information on ligand structure; 
therefore, our method is unbiased to structural similarity 
of training set compounds, which is an important advan
tage for a machine-learning-based method. We have 
proved this by using a test dataset consisting of ligands 
that are structurally most distant from both training and 
validation datasets. This feature makes the developed 
machine learning method highly prospective for the pre
diction of off-target activity for novel kinase inhibitors.

The other advantage of the developed approach is that it 
is based on docking obtained from complex structures so it 
could be applied for novel compounds which usually do not 
have X-ray structures of their co-crystallized complexes. 
Using docking obtained complexes to predict activity in 
other machine learning models built upon complex crystal 
data may result in much worse prediction accuracy than 
reported, due to the limited accuracy of docking.

Data availability
The scripts and datasets are available at https://github.com/ 
arinaafan/predict_Kinase.git.
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