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Abstract

Serum Response Factor (SRF) fulfills essential roles in post-natal retinal angiogenesis and adult neovascularization. These
functions have been attributed to the recruitment by SRF of the cofactors Myocardin-Related Transcription Factors MRTF-A
and -B, but not the Ternary Complex Factors (TCFs) Elk1 and Elk4. The role of the third TCF, Elk3, remained unknown. We
generated a new Elk3 knockout mouse line and showed that Elk3 had specific, non-redundant functions in the retinal
vasculature. In Elk3(2/2) mice, post-natal retinal angiogenesis was transiently delayed until P8, after which it proceeded
normally. Interestingly, tortuous arteries developed in Elk3(2/2) mice from the age of four weeks, and persisted into late
adulthood. Tortuous vessels have been observed in human pathologies, e.g. in ROP and FEVR. These human disorders were
linked to altered activities of vascular endothelial growth factor (VEGF) in the affected eyes. However, in Elk3(2/2) mice, we
did not observe any changes in VEGF or several other potential confounding factors, including mural cell coverage and
blood pressure. Instead, concurrent with the post-natal transient delay of radial outgrowth and the formation of adult
tortuous arteries, Elk3-dependent effects on the expression of Angiopoietin/Tie-signalling components were observed.
Moreover, in vitro microvessel sprouting and microtube formation from P10 and adult aortic ring explants were reduced.
Collectively, these results indicate that Elk3 has distinct roles in maintaining retinal artery integrity. The Elk3 knockout mouse
is presented as a new animal model to study retinal artery tortuousity in mice and human patients.
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Introduction

Angiogenesis is an important physiological process in which new

blood vessels are generated by sprouting of existing ones.

Dysregulated angiogenesis is implicated in many human diseases,

including cancer and retinopathies [1,2]. During angiogenesis,

endothelial tip cells at the angiogenic front form numerous

filopodia and guide vascularization, whereas stalk cells located

behind tip cells are involved in proliferation and vessel extension

[3]. Angiogenesis can be readily studied using the mouse retina.

Many angiogenic events, such as endothelial cell (EC) prolifera-

tion, sprouting, recruitment of mural cells and maturation, occur

post-natally and can be followed ex vivo on two-dimensional

retinal flat-mount preparations [4]. At post-natal day 0 (P0),

vascularization starts as a ring-shaped vessel around the optic

nerve head. By P4, half of the retina is covered by blood vessels,

and around P8, the retina is fully vascularized regarding the

primary plexus, while sprouts develop to form the additional deep

plexus capillary networks [5]. Site-directed mutagenesis of the

mouse genome can be used to identify genes involved in murine

retinal vessel angiogenesis and physiology.

Murine retinal angiogenesis requires the SRF transcription factor

[6,7,8]. SRF is ubiquitously expressed and fulfills many essential

functions [9]. Constitutive deletion of Srf results in embryonic

lethality at E7.5 [10]. Tissue specific, conditional ablation of Srf
reveals specific functions in skeletal muscle cells, cardiomyocytes,

forebrain neurons, hepatocytes, keratinocytes, intestinal smooth

muscle cells and endothelial cells (see below) (for review [9]). Tissue

and target gene specificity results from differential recruitment of

cofactors to SRF [11,12,13]. Recruitment of Ternary Complex

PLOS ONE | www.plosone.org 1 September 2014 | Volume 9 | Issue 9 | e107048

http://creativecommons.org/licenses/by/4.0/
http://www.e-cancer.fr
http://www.recherche-cancer.net
http://www.recherche-cancer.net
http://www.unistra.fr
http://www.dfg.de
http://www.krebshilfe.de
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0107048&domain=pdf


Factor (TCF) family members (Elk1, Elk3 or Elk4) [13,14] can lead

to the induction of immediate early genes (IEGs) involved in cell

cycle entry, whereas recruitment of Myocardin Related Transcrip-

tion Factors (MRTF-A and MRTF-B) [15,16,17] induces the

transcription of genes involved in adhesion and motility [11,18].

Interestingly, these SRF cofactors have different effects on

angiogenesis. Murine endothelial Srf depletion results in charac-

teristic phenotypes in early post-natal and adult retinae [7,8], which

are mimicked by deletion of Mrtf-a and Mrtf-b, but not by single or

double deletion of the Elk1 and Elk4 genes [8]. The murine

phenotypes upon post-natal endothelial depletion of SRF or

MRTF-A/-B reflect some pathological features exhibited by human

patients suffering from FEVR (familial exudative vitreoretinopa-

thies) and AMD (adult macular degeneration) [8]. Potential

contributions to retinal angiogenesis of the third TCF, Elk3, have

not yet been reported. Therefore, we have developed a new mouse

model for constitutive Elk3 depletion. We show that Elk3 deletion

leads to a distinct retinal phenotype, manifested in transiently

delayed post-natal primary plexus formation and lasting tortuous

arteries in adult retinae. This does not impair visual function. At the

molecular level, Elk3(2/2) mice display altered retinal expression

of immediate-early genes and angiogenic Tie receptor genes.

Elk3(2/2) phenotypic features partly resemble human ophthal-

mologic diseases with tortuous vessels, i.e. retinopathy of prematu-

rity (ROP) [19] and familial exudative vitreoretinopathy (FEVR)

[20]. Thus, Elk3(2/2) mice promise to be a useful animal model to

reveal insufficiently understood pathogenic mechanisms that lead to

human retinal vessel tortuousity.

Materials and Methods

Generation of Elk3 constitutive knockout (KO) mice
A previously used mouse model of Elk3 deficiency expresses a

truncated form of the protein (Net d) [21]. To avoid this

confounding factor, a new constitutive Elk3 knockout mouse line

was established in a cooperation between the IGBMC and the

MCI/ICS (Mouse Clinical Institute (Institut Clinique de la Souris),

Illkirch, France; http://www.ics-mci.fr). The targeting vector was

constructed as follows. The 59 (4.3 kb), 39 (3 kb) and interloxP

(3 kb) fragments were PCR amplified on 129sv genomic DNA and

sequentially subcloned in an ICS proprietary vector containing the

LoxP sites and a Neo cassette flanked by FRT sites (Figure S1).

The linearized construct was electroporated in 129S2/SvPas

mouse embryonic stem (ES) cells. After selection, targeted clones

were identified by PCR using external primers and further

confirmed by Southern blotting with 59 external probe. Two

positive ES clones were injected into C57BL/6J blastocysts, and

derived male chimeras gave germline transmission. The excision of

the neomycin-resistance cassette was performed in vivo by

breeding the chimeras with a Flp deleter line (C57BL/6J genetic

background). The Flp transgene was segregated by breeding the

first germ line mice with a wild type C57BL/6J animal.

Constitutive KO mice were generated by breeding floxed-allele

heterozygotes with a Cre deleter line followed by segregation in a

further breeding step.

Experimental animals
To generate Elk1/Elk4 double knockout (dKO) animals, termed

Elk1/Elk4dKO, single Elk1(2/0) [22] and single Elk4(2/2) [23]

founder mice were used. These mouse strains were crossed in

matings of Elk1(2/2)::Elk4(+/2) females with Elk1(2/
0)::Elk4(+/2) males [24].

Antibody staining of retinal flat-mounts in vitro
Generation of IsolectinB4 stained retinal flat-mounts was

performed as described previously [8]. Briefly, eyes were isolated

and fixed in 4% PFA for two hours at RT. After 265 minutes in

PBS, retinae were dissected and incubated in blocking buffer (1%

BSA, 0.3% Triton-X, PBS) for 2 h at RT. Incubation with

primary antibodies was performed at 4uC in blocking buffer

overnight. After washing 3620 minutes with PBS, retinae were

incubated with secondary antibodies in blocking buffer for two

hours at RT. After washing 3620 minutes in PBS, retinae were

flat-mounted on coverslides and embedded in Mowiol for

fluorescence microscopy.

Primary antibodies: CollagenIV 1:40 (AbD Serotec), Ki67 (SP6

undiluted) (DCS). Secondary antibodies: anti rabbit Alexa 546

1:200 (Molecular Probes), SMA-Cy3 conjugate 1:200 (Sigma

Aldrich). Retinal vessels were stained with Isolectin B4 (ILB4) from

Griffonia simplicifolia 1:25 (Sigma), detected by Streptavidin-

Alexa488 1:100 (Molecular Probes).

RNA isolation, cDNA synthesis and qRT-PCR analysis of
brain and retinal tissue

Brains and retinae of post-natal pups or adult animals were

dissected and frozen in liquid nitrogen for further use. All tissues

were lysed for RNA isolation according to the manufacturer’s

protocol (Qiagen, RNeasy). cDNA synthesis was performed using

random hexamers. qRT-PCR analysis was performed using

specific primers (Sigma) and SYBR green technology in an ABI

Prism 7000 cycler. Primer mix for one sample included 10 mM

forward primer (0.3 ml), 10 mM reverse primer (0.3 ml) and 2.4 ml

water. cDNA mix for one sample included 5 ml SYBR green and

2 ml cDNA. For each qRT-PCR reaction, 7 ml of the cDNA mix

and 3 ml of the primer mix were combined in the 96-well plates.

Primer sequences are listed in Table S1. For description of general

methods, see [25]. Amplification protocol: segment 1: 50uC,

2 min., segment 2: 95uC, 10 min., segment 3: 95uC, 15 sec, 60uC,

1 min., 40 cycles.

Western Blot
Retinal tissue was lysed in Iyer-buffer (0.5 M Hepes pH 7.5;

1 M MgCl2; 0.5 M EDTA; 5 M NaCl; in water) [26]. Protein

content of cell lysates was determined by Bradford reagent.

Separation of bands was performed by SDS-PAGE (12% gel for

SMA, 15% for P-Cofilin). Electrotransfer was done at 4uC for 2 h

at 100 V and 400 mA. To detect specific bands, membranes were

blocked in 5% bovine serum albumin BSA for one hour at RT.

Incubation in primary antibodies was performed overnight at 4uC.

After three washes with TST (Tris Saline Tween), membranes

were incubated in secondary antibodies for one hour at RT.

Primary antibodies: GAPDH 1:20000 (Hytest Ltd.), P-Cofilin

1:500 (Cell Signalling), SMA 1:1000 (Sigma Aldrich). Secondary

antibodies (1:10000 dilution, GE Healthcare): anti-mouse IgG

HRP-conjugated, anti-rabbit IgG HRP-conjugated.

Scanning laser ophthalmoscopy (SLO)
Scanning-laser ophthalmoscopy (SLO) was performed as

described previously [27]. Briefly, mice were anaesthetized by

subcutaneous injection of ketamine (66.7 mg/kg) and xylazine

(11.7 mg/kg). After anaesthesia, pupils were dilated with tropic-

amide eye drops (Mydriaticum Stulln, Pharma Stulln, Stulln,

Germany). SLO imaging was performed using a Heidelberg

Retina Angiograph (HRA I) equipped with an argon laser

featuring two wavelengths (488 nm and 514 nm) in the short

wavelength range and two infrared diode lasers (795 nm and

Elk3 Deficiency Causes Tortuous Arteries

PLOS ONE | www.plosone.org 2 September 2014 | Volume 9 | Issue 9 | e107048

http://www.ics-mci.fr


830 nm) in the long wavelength range. The laser wavelength used

for fundus visualization was 514 nm (RF, red-free channel). The

488 nm wavelength was used for fundus autofluorescence (AF)

analysis. Additionally, the 488 nm and 795 nm lasers were used

for fluorescein angiography (FLA) and indocyanine green angiog-

raphy (ICGA), respectively. FLA and ICGA were performed using

subcutaneous injection of 75 mg/kg body weight fluorescein-Na

(University pharmacy, University of Tübingen, Germany), or

50 mg/kg body weight ICG (ICG-Pulsion, Pulsion Medical

Systems AG, Munich, Germany), respectively.

Electroretinography (ERG)
Electroretinograms were recorded as described previously [28].

After overnight dark-adaptation, single-flash ERG responses were

obtained under scotopic (dark-adapted; no background illumina-

tion) and photopic (light-adapted with a background illumination

of 30 cd/m2, starting 10 min before recording) conditions. Single

white-flash stimuli ranged from 24 to 1.5 log cd s/m2 under

scotopic and from 22 to 1.5 log cd s/m2 under photopic

conditions. Ten responses were averaged with inter-stimulus

intervals of 5 s (for 24 to 20.5 log cd s/m2) or 17 s (for 0 to

1.5 log cd s/m2).

Hematoxylin/Eosin (H&E) staining of paraffin sections of
whole eyes

Eyes were fixed overnight at 4uC in Davidson’s fixative (6%

formaldehyde, 32% ethanol, 11% acetic acid, 5% sucrose in PBS).

Histological examination of the eyes was performed on 4 mm

sections of paraffin embedded eyes mounted on Superfrost Plus

slides (Langenbrinck, Emmendingen, Germany). Sections were

stained with Hematoxylin/Eosin followed by dehydration and

mounting in Entellan.

Aortic ring assay
Aortae from P10 or adult Elk3(+/+) control and Elk3(2/2)

knockout animals were excised, cut into 1 mm rings and

embedded in Matrigel (BD Biosciences) on cleaned coverslips

(12 mm diameter) in 4-well plates. Matrigel was polymerized for

10 minutes at RT followed by 30 minutes at 37uC. Embedded

rings were covered with 700 ml of HUVEC EGM growth medium

with all required supplements added according to the manufac-

turer’s protocol (Lonza). Fresh medium was supplied every other

day. Aortic rings from P10 and adult mice were cultivated for two

and three weeks, respectively, and microvessel sprouting of each

aortic ring was quantified every day using the following score: 0 =

no microvessel sprouting, 0.25 = isolated sprouting, 0.5 = 20–50%

sprouting, 0.75 = 50–75% sprouting, 1 = 75–100% sprouting,

1.25 = 100% sprouting. A tip cell index for microvessel sprouting

was calculated for each day and plotted to reveal the kinetics of

microvessel sprouting for each genotype. To stain actin filaments

of embedded aortic rings, rings were fixed with 4% PFA, washed

36 with PBS, permeabilized with 10% Triton, blocked with 2%

BSA, and incubated with Phalloidin-Texas Red. Rings were

washed 36with PBS and photographed on coverslips, which were

removed from the 4-well plates.

Microscopic analysis
For fluorescent staining analysis, a Zeiss Axiovert 200 M

microscope equipped with an AxioCam MRm camera and an

ApoTome (Zeiss) was used. Retinal overviews (original magnifi-

cation 56) are presented as composite images of individual,

successively overlapping (5%) images, generated by computer-

controlled x-y settings and processed using MosaiX Software.

H&E-stained sections were visualized using Zeiss Axioplan 2 with

AxioCamHRc camera. Higher magnifications were obtained with

106 and 206 objectives. % radial outgrowth, a quantitative

measure for retinal vascularization, was calculated by dividing the

retinal area covered by blood vessels (yellow line in Figure 1A) by

the total retinal area (red line in Figure 1A). The percentage of

abnormally shaped arteries was calculated by counting both

abnormally shaped arteries and the total number of arteries, using

SLO imaged retinae and retinal flat-mounts. Mean blood vessel

width was calculated as follows: blood vessels were identified by

ILB4 staining followed by measuring blood vessel areas and blood

vessel lengths. Blood vessel widths (W) were calculated dividing

vessel length (L) by area (A), i.e. W = L/A. Tortuousity of adult

vessels was quantified as shown in Figure S2. A tortuousity factor

was calculated by normalizing actual vessel length (red line) over

idealized vessel length (yellow line), as measured between common

equidistant endpoints. For quantitation of proliferation in arteries

and veins, retinal flat-mounts of Elk3(+/+) WT and Elk3(2/2)
KO P6 animals were co-stained with ILB4 and Ki67 and

photographed at 206 magnification with focus on single arteries

and veins. Using these images, Ki67 positive endothelial cells were

counted and normalized to 100 mm vessel length. Obtained values

are expressed as % of WT values (Table S2).

Statistical analysis
For all quantitative analyses, data are presented as means +/2

s.e.m. For comparison of different experiments, values are

normalized to the control = 100%. To test significance, Student’s

t-tests were used, p levels,0.05 were considered significant.

Significance is indicated by * p,0.05, ** p,0.01, *** p,0.001

and ns (not significant).

Study approval
All animal experiments were approved by the Regierungsprä-

sidium Tübingen (Tübingen, Germany) permit for SLO angiog-

raphy of wt and Elk3(2/2) mice (IM 1/13, approved 20th

February 2013, valid until 28th February 2016), permit for SLO

imaging of wt and Elk1/Elk4dko mice (IZ 1/13, approved 15th

August 2013, valid until 31st August 2016), and permit for ERG

measurements of wt and Elk3(2/2) mice (IM 3/13, approved

06th December 2013, valid until 15th December 2016).

Results

Generation of Elk3 deficient constitutive knockout mice
Elk3 deficient mice were generated by homologous recombina-

tion and subsequent Cre-mediated deletion, as described in

Materials and Methods and Figure S1. The Elk3 gene was

deleted around the major transcription start and exon 1, from 2

1720 to + 650 relative to the major transcriptional start site. The

deletion decreased Elk3 expression at the RNA level, by at least

99.5% in the retina (see below) and other adult tissues and

embryos (E8.5, 10.5, 12.5 and 14.5; data not shown), and at the

protein level in E12.5 mouse embryo fibroblasts (data not shown).

General description of phenotypic features of Elk3
knockout mice

The Elk3 homozygous knockout mice displayed impaired

viability with variable penetrance (usually around 50% of the

expected ratio at P10 for heterozygous crosses in this study). The

reasons for this partial lethality were not systematically examined,

but chylothorax was observed, as in the previous study with the

Net d mouse [21] (and data not shown). Surviving 8 week old mice

were globally phenotyped by the EUMODIC Pipelines 1 & 2 (see

Elk3 Deficiency Causes Tortuous Arteries
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EMPRESS). The most significant (p,0.001) annotation in both

Pipelines (PipelinesElk3) was vessel pattern detected by indirect

ophthalmoscopy (see below). There was no change in systolic

arterial pressure and pulse rate that could be detected by the non-

invasive blood pressure tests (Figure S3). These ‘‘high throughput’’

observations suggested that the ‘‘retinal vascular structure’’ defect

was a prime candidate for further investigation, especially given

the role in this tissue of the Elk3 interacting partner SRF [7,8].

Elk3 deficiency results in reduced vascularization during
early post-natal retinal angiogenesis

Guided by the observations obtained after endothelial-specific

Srf deletion, we analysed the effect of Elk3 depletion on post-natal

retinal angiogenesis since, during this period, SRF depletion

resulted in reduced vascularization of the retina, formation of

distal microaneurysms at the angiogenic front, and absence of

Figure 1. Deletion of Elk3 leads to delayed retinal angiogenesis during early post-natal stages in Elk3(2/2) knockout mice. (A)
IsolectinB4 staining of flat-mounts of retinae from P4 Elk3(+/+) control and Elk3(2/2) knockout mice. The red lines outline the whole retinal area, the
yellow lines the areas covered by blood vessels. (B) Quantitation of retinal area covered by blood vessels (% vascularization) at P4. (C) Higher
magnification of the angiogenic front in P4 control and Elk3(2/2) knockout retinae. (D) IsolectinB4 staining of retinal flat-mounts of a P6 Elk3(+/+)
control and Elk3(2/2) knockout mouse. The red arrow points towards delayed angiogenic front in the Elk3(2/2) retina. (E) Quantitation of retinal
area covered by blood vessels (% vascularization) at P6. (F) Higher magnification of the angiogenic front in P6 control and Elk3(2/2) knockout
retinae. (G) IsolectinB4 staining of retinal flat-mounts from P8 Elk3(+/+) control and Elk3(2/2) knockout mice. The red arrow points towards the
delayed angiogenic front in the Elk3(2/2) retina. (H) Quantitation of retinal area covered by blood vessels (% vascularization) at P8. (I) Higher
magnification of the angiogenic front in P8 control and Elk3 knockout retinae. All quantitation data are normalized to the control = 100%. The data
shown are means +/2 s.e.m. Statistical significance using Student’s t-test is indicated with * p,0.05 ** p,0.01 *** p,0.001. Scale bar in (A, D, G)
1000 mm, in (C, F, I) 100 mm.
doi:10.1371/journal.pone.0107048.g001

Elk3 Deficiency Causes Tortuous Arteries

PLOS ONE | www.plosone.org 4 September 2014 | Volume 9 | Issue 9 | e107048



deep plexi [8]. Observation of IsolectinB4 stained retinal flat-

mounts at post-natal stages P4, 6, and 8 showed that retinal

primary plexus vascularization was reduced in Elk3(2/2) animals

(Figures 1A, D and G; quantifications in Figures 1B, E and H, red

arrows point towards delayed angiogenic fronts in P6 and P8

Elk3(2/2) retinae). However, higher magnification views of

angiogenic fronts did not reveal any abnormalities of tip cell

morphology and number and length of tip cell filopodia in

Elk3(2/2) knockout retinae (Figure 1C, F, I), suggesting that the

phenotype is different from Srf iECKO animals, as well as from

Mrtf-a(2/2)Mrtf-biECKO animals [8].

Reduced angiogenesis in Elk3 knockout retinae is
transient and is overcome at post-natal day 10

The delay in radial outgrowth of the primary plexus was mild,

suggesting that it could be overcome with time. Indeed, the

outgrowth at post-natal day 10, observed on IsolectinB4 stained

retinal flat-mounts, was indistinguishable in Elk3(+/+) control and

Elk3(2/2) knockout retinae (Figure 2A and quantitation of radial

outgrowth in Figure 2D). There were no avascular zones in the

primary retinal periphery, and deep plexi formed normally in both

control and Elk3(2/2) knockout retinae (Figure 2B and 2C).

These findings indicated that impaired radial outgrowth at P4/

P6/P8 was transient and was overcome by P10 in Elk3(2/2)
knockout animals.

Scanning laser ophthalmoscopy reveals tortuous arteries
in Elk3 deficient, but not in Elk1/Elk4 deficient, adult
retinae

Adult Srf iECKO animals have neovascular lesions that connect

to the retinal pigment epithelium, which can be detected by in
vivo SLO imaging of adult eyes and confirmed by subsequent

H&E staining of paraffin sections [8]. We therefore studied the

effects of Elk3 deficiency using the same techniques. With SLO

imaging, we found that arteries of Elk3(2/2) animals exhibited

an abnormal tortuous morphology, which was not observed in

control animals (Figure 3A left; tortuous arteries in the knockout

retina are highlighted by red arrowheads). These findings were

confirmed on IsolectinB4 stained retinal flat-mounts prepared

after completion of in vivo imaging (Figure 3A middle). The

penetrance of the tortuous arterial phenotype was 100%, i.e. all

Elk3(2/2) knockout animals showed tortuousity of arteries in

their retinae. We studied the effect of age on the proportion of

abnormally shaped arteries. Two-week old animals did not have

any detectable abnormalities (data not shown). Arterial tortuousity

was detected as early as 4 weeks after birth and increased with age

(Table 1). Heterozygotes also exhibited this phenotype, which was

however less pronounced (Table 1). Tortuousity was quantified by

measuring the lengths of arteries and calculation of a tortuousity

factor (see Material and Methods, and Figure S2). Elk3(2/2)
knockout arteries were significantly longer than control Elk3(+/+)
arteries (Table 2). In contrast, there were no changes in vessel

widths (see Material and Methods, and Table 2). Retinal layering

and layer thickness, as determined by H&E staining on paraffin

sections of whole eyes, were similarly unaffected. In addition,

neovascularization was not observed in Elk3(2/2) knockout

retinae (Figure 3A right), in contrast to adult Srf iECKO animals

[8].

To determine if deficiency of the two other TCFs, Elk1 and

Elk4, had similar effects as Elk3 deficiency, we analysed control

and Elk1/Elk4dKO adult animals by the same techniques. No

abnormalities were detected in Elk1/Elk4dKO retinae by in vivo
imaging and on retinal flat-mounts stained with IsolectinB4

(Figure 3B left and Figure 3B middle). There were no changes

in arterial shapes, lengths and widths (Table 2), nor in retinal

layering and layer thickness (as judged by H&E staining on

paraffin sections of whole eyes, Figure 3B right). Moreover,

neovascularizations were not detected in Elk1/Elk4dKO retinae,

in contrast to adult Srf iECKO animals. Taken together, these data

indicate that the Elk3(2/2) phenotype of tortuous retinal arteries

is distinct from Elk1 and Elk4 deficiencies in the Elk1/Elk4dKO

mice, and SRF deficiency in Srf iECKO animals. This reveals a

specific role of Elk3 in retinal vessel formation, which is non-

redundant to the TCF paralogues Elk1 and Elk4. Analysis of visual

function by ERG in adult Elk3(+/+) control and Elk3(2/2)
knockout mice did not detect any impairment, suggesting that

Elk3(2/2) mice can see normally despite their abnormally shaped

arteries (Figure S4).

Molecular and cellular defects in post-natal Elk3 deficient
retinae

To study the underlying molecular mechanisms for the observed

phenotypes of Elk3 deficient mice, we studied candidate target-

gene expression by quantitative RT-PCR. In post-natal brains of

Elk3(2/2) animals, Elk3 RNA levels were ,0.5% when

compared to wild type, and 48% in Elk3(+/2) heterozygotes

(Figure 4A). There were no changes in Elk3 knockout brains of the

related factors Srf, Elk1 and Elk4, or of the potential target genes

b-actin and Vegfr-1 and Vegfr-2 (Figure 4B).

In P6 retinae from Elk3 knockouts, Elk3 levels were greatly

decreased (,0.2%, data not shown), the immediate-early genes

(IEGs) Egr-1, Egr-2 and c-fos were significantly downregulated,

and regarding angiogenic factors, Vegf and Vegf-r2 were

unchanged, while Vegfr-1 was slightly downregulated (Figure 4C).

These data suggested that decreased IEG expression and possibly

reduced proliferation could account for the delay in vascular

outgrowth during the early post-natal period. However, when

investigating this possibility, we did not detect any differences in

width (measured microscopically at P6 and P8) and proliferative

activity (measured by Ki67 staining at P6) of either arteries and

veins in Elk(2/2) compared to control retinae (Table S2).

In Elk3(2/2) retinae of the later time point P10, when the

transient delay in retinal vascularization was overcome, RNA

expression level of Vegfr-1 was restored to wild-type levels,

whereas Egr-1, Egr-2 and c-fos were still reduced, similar to P6

(Figure 4C).

To uncover potential causes for the observed delay in vascular

outgrowth of Elk3(2/2) retinae, we studied RNA expression

patterns of the second major class of angiogenic signalling

partners, the Angiopoietins and their Tie-receptors Tie1 and

Tie2. Interestingly, at P6, both Tie1 and Tie2 were significantly

downregulated, whereas the Angiopoietins Ang-1 and Ang-2 were

unchanged (Figure 4C). In contrast, at the later stage of P10, only

Tie1 was significantly downregulated while Tie2 was restored to

wildtype levels (Figure 4C).

We next investigated whether the transiently impaired primary

plexus formation in Elk3(2/2) retinae was possibly due to

impaired migration of astrocytes towards the periphery. We found

that astrocytic radial outgrowth, at all stages analysed (P4, P6, P8),

was unaffected by the knockout of Elk3, as judged by glial

fibrillary acidic protein (GFAP) staining on retinal flat-mounts

(Figure S5).

Reduced retinal vascularization could be a result of enhanced

vessel regression. We therefore performed co-staining of ILB4-

positive retinal blood vessels and extracellular collagenIV, using P6

retinal flat-mounts of Elk3 wildtype and knockout mice. Thus we

checked for so-called ‘empty sleeves’ of regressed, previously
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Figure 2. At P10, retinal vascular plexi appear normal in Elk(2/2) knockout mice. (A) Representative images of IsolectinB4 stained retinal
flat-mounts from P10 control and Elk3(2/2) knockout mice. (B) Focal plane set on the primary plexus in control and Elk3(2/2) knockout retinae. (C)
Focal plane set on the deep plexus in control and Elk3(2/2) knockout retinae. (D) Quantitation of retinal area covered by blood vessels (%
vascularization) at P10. Data are normalized to the control = 100%. The data shown are means +/2 s.e.m, ns = not significant. Scale bar in (A)
1000 mm, in (B, C) 50 mm.
doi:10.1371/journal.pone.0107048.g002
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Figure 3. Scanning laser ophthalmoscopy reveals abnormally shaped tortuous arteries in adult Elk3(2/2), but not Elk1/Elk4 dKO eyes.
(A) Scanning laser ophthalmoscopy (SLO) of Elk3(+/+) control (upper panel) and Elk3(2/2) knockout (lower panel) retinae by indocyanin green
angiography (left) and a higher magnification of arteries in IsolectinB4 stained retinal flat-mounts of the same retina (middle; tortuous arteries are
highlighted by red arrowheads). H&E staining of paraffin embedded whole eyes (right). (B) Scanning laser ophthalmoscopy (SLO) of Elk1/Elk4 control
(upper panel) and Elk1/Elk4dKO (lower panel) retinae by indocyanin green angiography (left) and a higher magnification of arteries in IsolectinB4
stained retinal flat-mounts of the same retina (middle). H&E staining of paraffin embedded whole eyes (right). Scale bar in (middle) 200 mm, in (A
right) 50 mm, in (B right) 100 mm.
doi:10.1371/journal.pone.0107048.g003

Table 1. Incidence (%) of tortuous arteries.

Age/months Elk3(+/+) control Elk3(+/2) heterozygotes Elk3(2/2) KO

1 0% (n = 7) 12% (65%) (n = 8) * 62% (611%) (n = 5) ***

2 0% (n = 6) 11% (65%) (n = 8) ** 91% (67%) (n = 5) ***

$4 3% (63%) (n = 5) 44% (69%) (n = 10) *** 85% (68%) (n = 5) ***

Elk1/Elk4 control Elk1/Elk4 heterozygotes Elk1/Elk4 dKO

$4 0% (n = 4) na 0% (n = 5) ns

(* p,0.05 ** p,0.01 *** p,0.001, na = not analysed, ns = not significant, n = number of retinae analysed).
doi:10.1371/journal.pone.0107048.t001
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existing vessels, as identified by exclusive collagenIV positivity. At

the angiogenic front we did not find any vessel regression (Figure

S6). Inside the primary plexus, occasional vessel regression (Figure

S6, white arrows) was normalized to plexus area and found not to

be significantly different between Elk3 genotypes (Figure S6; for

measurements, see Materials and Methods).

SRF deficiency in neurons of the forebrain results in increased

Ser3 phosphorylation of the actin-severing protein cofilin [29]. To

analyze whether this indicator of imbalance in actin dynamics was

changed in Elk3(2/2) knockout retinal ECs compared to

controls, similar to Srf iECKO endothelial cells [8], we performed

Western blotting using a P-Cofilin antibody on adult retinal lysates

(Figure S7A). No change in P-Cofilin levels were detected after

quantitation of five pairs of control and knockout samples (Figure

S7B) indicating that actin imbalance is not the reason for disturbed

retinal vascular development.

Molecular and cellular defects in adult Elk3 deficient
retinae

Various mechanisms could account for the observed formation

of tortuous arteries in adult Elk3(2/2) animals (see Discussion).

We tested for VEGF levels in affected retinae, increased blood

pressure, altered coverage of retinal blood vessels with smooth

muscle cells and procollagen type IVa1, and expression of the tight

junctional components claudin1 and claudin5. Further, since

knockout mice of the angiogenic factor Ang-2 displayed arteriolar

tortuousity [30], we studied retinal expression of the Ang-1/-2

system, including Tie1 and Tie2 co-receptors.

We did not detect any significant changes of Vegf RNA level in

adult Elk3 knockout retinae (Figure 4D). Interestingly, amongst

Angiopoietins and cognate Tie receptors, a significant change was

observed for Tie1, as was already found at post-natal ages P6 and

P10 (compare Figure 4C and 4D). There were no significant

changes in systolic blood pressure, measured by the tail cuff

method (Non Invasive blood pressure) (Figure S3). We did not

detect any differences in smooth muscle actin (SMA) coverage as

judged by antibody staining on retinal flat-mounts (Figure 5A) and

analysis of SMA levels by Western blot (Figure 5D and

quantitation in Figure 5E). Mutations in the mouse Col4a1 gene,

encoding procollagen type IVa1, resulted in tortuous arteries in

the C57BL/6J background [31]. However, we did not detect any

significant changes by collagenIV antibody staining of adult retinal

flat-mounts (Figure 5B) and qRT-PCR of whole retinal adult

tissue (Figure 5C). In Drosophila, mutation of the megatrachea
gene, which plays an essential role in the tracheal system of

invertebrates, results in elongated and tortuous tracheal branches

in mutant embryos [32] reminiscent of the tortuous vessel

phenotype in Elk3(2/2) knockout mice. Mega encodes a

transmembrane protein that is located in septate junctions and is

thereby similar in structure and function to claudins, the

component of tight junctions in vertebrates. We therefore analysed

if claudins were changed in adult Elk3(2/2) knockout retinae but

did not find any significant changes on RNA levels of claudin1 and

claudin5 (data not shown).

Impairment in in vitro microvessel sprouting and
microtube formation of aortic ring explants derived from
post-natal and adult Elk3 deficient mice

The aortic ring assay is a commonly used assay of angiogenesis.

It bridges the gap between in vivo and in vitro models of

angiogenesis, thereby combining advantages of both systems [33].

Endothelial cells first appear at the severed edges of the explants

after 2–3 days in culture and subsequently proliferate and migrate

thereby resulting in microvessels around the explants. Previous

studies using the hypomorphic Netd/d mutant mouse line indicated

that Elk3 was required for aortic ring sprouting [34]. Using the

aortic ring assay, we investigated whether the observed retinal

phenotypic abnormalities reflected altered characteristics of

endothelial cells in general or represented specific effects of retinal

endothelial cells. Aortic rings were embedded in a polymerized

extracellular matrix gel supplemented with endothelial growth

medium. Microvessel sprouting from Elk3(2/2) knockout adult

aortic explants was found to be reduced compared to Elk3(+/+)
control animals (Figure 6A left). A scoring system was used to

quantitate and follow the kinetics of microvessel sprouting (see

Material and Methods). Sprouting from Elk3(2/2) aortic rings

was reduced at all time points examined. Sprouting from Elk3(+/
+) control explants reached a maximum after seven days, whereas

Elk3(2/2) explants did not reach this level even after 20 days

(Figure 6B). Microtube formation after three weeks was robust in

Elk3(+/+) control explants cultures and greatly reduced in

Elk3(2/2) cultures (Figure 6A middle). Staining of the cytoskel-

eton of fixed aortic explants after three weeks in vitro was used to

study the microtubes. Elk3(+/+) control explants had intact

interconnections between endothelial tubes and filopodia; whereas

Elk3(2/2) explants had degenerated endothelial tip cells with

retraction bulbs and lacked filopodia (Figure 6A right). Microves-

sel sprouting from P10 Elk3(2/2) aortae was also reduced

compared to control animals (Figure 6C). This analysis demon-

strates that Elk3 contributes to endothelial cell sprouting and

migration.

Discussion

In this study we show that Elk3(2/2) mice display a dual

retinal phenotype: (i) transient impairment in post-natal develop-

ment of the superficial vascular plexus, paralleled by (ii) a lasting

retinal arterial tortuousity in animals 4 weeks of age and older.

Arterial tortuousity is found in the retinae of adult Elk3 deficient

mice with 100% penetrance. These phenotypic features are not

displayed by knockout animals of the paralogues Elk1 and Elk4
(Table 3). This shows that Elk3 has distinct, non-redundant

functions relative to Elk1 and Elk4 in retinal vascular develop-

ment, as was similarly indicated for thymocyte development [23]

and adhesion of cultured cells [35].

Table 2. Extent of tortuousity and width of adult arteries.

Elk3(+/+) control Elk3(2/2) KO Elk1/Elk4 control Elk1/Elk4 dKO

Tortuousity factor 1.0 (60.003) (n = 9) 1.06 (60.008) (n = 9) *** 1.0 (60.001) (n = 6) 0.999 (60.002) (n = 5) ns

Width of adult arteries 20.5 mm (61.0) (n = 9) 20.6 mm (61.0) (n = 9) ns 19.7 mm (61.0) (n = 6) 20.3 mm (61.06) (n = 5) ns

(*** p,0.001, ns = not significant, n = number of retinae analysed).
doi:10.1371/journal.pone.0107048.t002
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At the molecular level, we find Elk3(2/2) mice to display

reduced retinal RNA expression of the angiogenic receptor Tie1,

at P6, P10 and adult stage. The co-receptor Tie2 was found to

have lower RNA levels at P6 but not P10 or adult retinae, while

the cognate ligands Ang-1 and Ang-2 were expressed at normal

RNA levels at all times investigated. These findings correlate with

the arterial tortuousity phenotype shared by Elk3(2/2) and Ang-
2(2/2) mice [30], indicating in both knockout models an

impaired functionality of the Tie/Ang receptor/ligand signalling

system. Of note, endothelial Tie1 depletion in conditional

Figure 4. Downregulation of immediate-early genes and the angiogenic Tie1 receptor gene in post-natal Elk3(2/2) retinae. (A)
Quantitative RT-PCR analysis of whole brain lysates of Elk3(+/+) control, Elk3(+/2) heterozygote and Elk3(2/2) knockout P4-P10 animals for
expression of Elk3 RNA level (n = 9 independent experiments). (B) Semiquantitative RT-PCR analysis of whole brain lysates of Elk3(+/+) control and
Elk3(2/2) knockout P6 animals for Srf, Elk1, Elk4, b-actin, Vegfr-1, Vegfr-2 expression level (n = 5 independent experiments). (C) Quantitation of RNA
levels in P6 and P10 control and Elk3(2/2) knockout retinae for Vegf, Egr-1, Egr-2, c-fos, Vegfr-1, Vegfr-2, Ang-1, Ang-2, Tie1 and Tie2 (n.5 independent
experiments). (D) Quantitation of Vegf, Ang-1, Ang-2, Tie1 and Tie2 RNA levels in adult control and Elk3(2/2) knockout retinae (n.5 independent
experiments).
doi:10.1371/journal.pone.0107048.g004
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knockout mice leads to decreased sprouting angiogenesis in the

post-natal retinal vasculature [36], similar to Elk3(2/2) mice.

Interestingly, this conditional phenotype was only seen when Tie1
deletion was induced directly after birth but not when the deletion

was induced between P7 and P9, suggesting a short window for the

requirement of Tie1 during initial post-natal retinal angiogenesis,

while – at the same time - arguing for Tie1 not being important in

subsequent vascular remodelling [36]. Thus, the transient post-

natal requirement for Tie1 in retinal angiogenesis, as revealed by

conditional Tie1 depletion [36], is fully congruent with the

transient impairment in retinal primary plexus development

observed here in Elk3(2/2) mice, which also displayed reduced

Tie1 expression. We thus hypothesize that impairment in the

functionality of the Tie1/Ang-2 signaling system accounts – in

part - for both phenotypic irregularities of Elk3(2/2) mice,

namely transient inhibition of retinal primary plexus formation

Figure 5. Smooth muscle actin and CollagenIV levels are not altered in Elk3(2/2) knockout retinae. (A) IsolectinB4 (ILB4) (left) and
smooth muscle actin (SMA) (middle and right) staining of retinal flat-mounts of control (upper panel) and Elk3(2/2) knockout animals. (B) IsolectinB4
(left) and collagenIV (middle and right) staining of retinal flat-mounts of control (upper panel) and Elk3(2/2) knockout animals. (C) Quantitation of
collagenIV RNA levels in control and Elk3(2/2) knockout retinae (n = 5 independent experiments). (D) Representative pairs of control and Elk3(2/2)
knockout retinal lysates tested for smooth muscle actin expression in Western Blot analysis. (E) Quantitation of control and Elk3(2/2) knockout
retinal levels of SMA (n = 5 independent experiments). Scale bar in (A, B left and middle) 1000 mm, in (A, B right) 100 mm.
doi:10.1371/journal.pone.0107048.g005
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and adult retinal arterial tortuousity. We do not exclude potential

contributions of the Tie2 co-receptor. We further hypothesize that

Elk3, but not Elk1 or Elk4, is involved in transcriptional regulation

of Tie1 expression. Tie1 may represent a direct or indirect Elk3

target gene. We note that approximately 1.6 kb upstream of the

murine Tie1 promoter, there is a canonical SRF-binding CArG-

box with the sequence CCTTAATTGG. This element, however,

is not conserved at this position in the human genome. Future

Figure 6. Microvessel sprouting and microtube formation is impaired in P10 and adult Elk3(2/2) knockout aortic ring explants. (A
left) Aortic rings from Elk3(+/+) control animals show robust microvessel sprouting on day 5 of culture. In contrast, aortic rings from Elk3(2/2)
knockout animals show drastically reduced microvessel sprouting. (A middle) Control Elk3(+/+), but not Elk3(2/2) knockout aortic ring endothelial
cells form microtubes in Matrigel after three weeks of culture. (A right) Phalloidin staining of aortic ring endothelial cells cultivated in Matrigel shows
interconnected ECs and tip cells with filopodia in control explants, whereas Elk3(2/2) knockout aortic ring endothelial cells lack connections and
instead have degenerated bulbs. (B, C) Kinetics of aortic ring microvessel sprouting for four pairs of adult (B) and four pairs of P10 (C) Elk3(+/+) control
and Elk3(2/2) knockout animals observed during in vitro growth (for each time point mean +/2 s.e.m. presented). Scale bar in (A left and middle)
500 mm, in (A right) 50 mm.
doi:10.1371/journal.pone.0107048.g006

Table 3. Comparison of retinal phenotypes in the different knockout mouse models.

Knockout mouse model Srf iECKO Mrtf-a(2/2) Mrtf-b iECKO Elk1/Elk4 dKO Elk3 KO

Post-natal analysis

Radial outgrowth drastically reduced# drastically reduced# unaffected# transiently reduced at early stages*

Tip cell morphology drastically altered# drastically altered# unaffected# unaffected*

Distal microaneurysms present# present# absent# absent*

Deep plexi absent# absent# present# present*

Adult analysis

Neovascular lesions present# present1 absent* absent*

Tortuous arteries absent# absent1 absent* present*

(* this study, # published in Weinl et al., 2013, 1 unpublished observations).
doi:10.1371/journal.pone.0107048.t003
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studies will investigate whether a functionally relevant ternary

complex of SRF and Elk3 is formed with this CArG-box in vivo
and wether the postulated complex shows preference for Elk3 over

Elk1 or Elk4. In light of the findings by D’Amico et al. [36], our

data suggest that Elk3 represents a potential target for tumor

therapy.

Alternatively, or in addition, reduced retinal expression at P6

and P10 of the immediate-early and proliferation-associated genes

Egr-1, Egr-2 and c-fos might have contributed to the transient

delay in retinal angiogenesis of Elk3(2/2) mice. However, our

measurements (Ki67 marker quantitation for proliferating cells at

P6, vessel width at P6, P8 and adult animals) did not reveal any

differences in proliferation of retinal endothelial cells at any of the

investigated time points. We have therefore no direct experimental

evidence for Elk3 impairment affecting proliferation of retinal

endothelial cells.

In a separate study, human ELK3 was argued to inhibit

angiogenic functions of HUVEC cells in vitro [37]. While this

finding appears to differ with our report, the specific conditions

and cells studied by Heo and Cho (2014) may have evoked the

inhibitory role of Elk3, and could have involved Elk3-dependent

changes in Tie1 expression in combination with inhibitory Ang-2

signaling, as suggested by this study.

The Elk3(2/2) mice differ from other mouse and rat models

for tortuousity. In the rat ROP model, tortuousity is prevalent at

young age and then decreases [38]. In contrast, Elk3(2/2) retinal

arteries are completely normal in young animals, tortuousity is first

obvious at four weeks of age and persists into later ages (2–8

months). The rat model of type-2 diabetic retinopathy displays

tortuous retinal vessels that almost completely lack pericytes,

microaneurysms and higher vessel diameters, and irregular retinal

layering [39]. In contrast, Elk3(2/2) knockout retinal vessels have

a normal smooth muscle coverage. Mutations in the Col4a1 gene

encoding procollagen type IVa1 result in tortuous arteries in mice

with the C57BL/6J background [31]. We did not detect any

significant changes in collagenIV levels between control and

Elk3(2/2) knockout retinae as judged by antibody staining on

adult retinal flat-mounts and qRT-PCR using whole retinal adult

tissue. Tortuous vessels are commonly seen after injection of

TNFa in mice [40], in a rat model of Oxygen Induced

Retinopathy (OIR) [38] and in patients with cyanotic congenital

heart disease [41]. Tortuousity might increase perfusion of

avascular regions of the retina by reducing blood flow. All of

these conditions are associated with increased VEGF expression.

In contrast, Vegf RNA levels are normal in adult Elk3(2/2)
knockout retinae displaying tortuousity. Furthermore, retinal

layering and layer thickness are normal in Elk3(2/2) knockout

mice, in contrast to the TNFa-injection mouse model [40].

Vessel tortuousity is observed in a number of human

pathologies, for example in an aggressive form of ROP that

additionally displays rapid retinal detachment, leakage of blood

vessels and severe dilations [19]. In Elk3(2/2) knockout mice

leakage of affected blood vessels was not detected by in vivo SLO

angiography, which is consistent with unchanged VEGF levels. In

some other human patients, changes in thickness of vessels are

correlated with occurrence of abnormally shaped vessels. In

patients with aortic isthmic coarctation, retinal arteriolar, but not

venular diameter, was reduced [42,43]. In the Elk3 deficient

arteries, proliferation was unchanged, as we did not detect any

change in diameter of abnormally shaped adult arteries. Venular

tortuousity has been observed in some human patients diagnosed

with aortic isthmic coarctation [42,43] and in a screen for

abnormalities of ocular fundi in monkeys [44]. Interestingly, only

arteries are affected in the Elk3(2/2) eyes, as in the rat model of

OIR [38], in humans with ATS (arterial tortuousity syndrome)

[45], and in the mouse TNFa injection model [40]. Abnormally

shaped vessels are sometimes correlated with vision loss. ERGs are

altered in ROP eyes [38], TNFa injected mice [40], and

monocular vision loss during an exercise marathon run [46].

However, some patients with tortuous blood vessels and elevated

VEGF levels have no ocular complaints [41]. As revealed by ERG

measurements, vision was not impaired in adult Elk3(2/2)
knockout mice. Blood pressure or hypertension could be expected

to affect arterial shape. However, human patients with aortic

isthmic coarctation after operative repair had retinal arteriolar

tortuousity, but no hypertension, and blood pressure was normal

[42,43], suggesting that vessel tortuousity is not necessarily

correlated with hypertension. In agreement, we did not detect

any abnormalities in blood pressure of Elk3(2/2) knockout

animals.

Interestingly, a recent clinical characterization of FEVR

patients (familial exudative vitreoretinopathy), using wide-field

fluorescein angiography, revealed hitherto unrecognized, frequent

vessel tortuousity among these patients [20]. We therefore note

that post-natal impairments in retinal plexus formation and vessel

tortuousity are shared pathological features of some human FEVR

patients and murine knockout models of the SRF transcriptional

system. The latter is evidenced by endothelial depletion of SRF

itself [8], endothelial depletion of the SRF cofactors MRTF-A and

–B [8], and constitutive depletion of the SRF cofactor Elk3 (this

study). It remains an intriguing, but testable possibility that

mutations in Elk3 alleles might contribute to FEVR pathology.

Using the aortic ring assay [33], we tested if endothelial cells of

an origin other than the retinal blood vessel system were affected

by the absence of Elk3. This turned out to be the case. Aortic rings

explanted from P10 or adult Elk3(2/2) animals showed

impairments in microvessel sprouting and tube formation. While

this defect mirrors the post-natal delay in retinal angiogenesis of

Elk3(2/2) mice, it does not reflect the transient nature of this

effect. The observed impairment in Elk3(2/2) aortic ring

adherence functions, leading to the formation of retraction bulbs,

might however reflect specific functions of Elk3 in regulating

adhesion-mediated cell behaviours [35].

In conclusion, this study shows that Elk3 has a distinct role in

determining retinal RNA levels of immediate-early genes and

genes encoding the angiogenic receptors Tie1 and Tie2. Elk3 is

involved in ensuring proper radial outgrowth and arterial length in

the mouse retina, which is consistent with previous in vivo and in
vitro studies [21,34]. Interestingly, the new Elk3(2/2) mouse

model described in our study has a highly penetrant phenotype of

tortuous vessels with distinct features that could be used to study

mechanisms of angiogenesis and vessel formation and could thus

lead to a better understanding of human pathologies displaying

tortuous vessels, including ROP and FEVR.

Supporting Information

Figure S1 The targeting vector was made as follows.
The 59 (4.3 kb), 39 (3 kb) and inter-loxP (2.37 kb) fragments were

PCR amplified on 129sv genomic DNA and sequentially

subcloned in an ICS proprietary vector containing the LoxP sites

and a Neo cassette flanked by FRT sites (Figure S1). The

linearized construct was electroporated in 129S2/SvPas mouse

embryonic stem (ES) cells. After selection, targeted clones were

identified by PCR using external primers and further confirmed by

Southern blotting with 59 external probe. Two positive ES clones

were injected into C57BL/6J blastocysts, and derived male

chimeras gave germline transmission. The excision of the
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neomycin-resistance cassette was performed in vivo by breeding

the chimeras with a Flp deleter line (C57BL/6J genetic

background). The Flp transgene was segregated by breeding the

first germ line mice with a wild type C57BL/6J animal.

Constitutive KO mice were generated by breeding floxed-allele

heterozygotes with a Cre deleter line followed by segregation in a

further breeding step. The initial targeting vector contained a

deletion of 104 bp (indicated by a red triangle), which was

inconsequential regarding generation of the KO locus. Subseqent

to Cre activation, deletion of genomic sequences extends from 2

1720 to +650 relative the major transcription start site (TSS, +1),

which corresponds to the first nucleotide of Elk3-001 EN-

SMUST00000008542 (mouse GRCm38, Ensembl). The location

of primers used for genotyping is indicated by P1, P3 and P4. Use

of primers P1 and P3 detect the WT allele (PCR product size 363

bp), use of primers P3 and P4 amplify sequences surrounding the

region that is deleted in the KO, and therefore detect a shorter

fragment in Elk3 KO mice (PCR product size 230 bp, the

2480 bp product is not amplified under the PCR conditions used).

Features are not drawn to scale. Primer sequences: primer P1: 59-

GGTTCCTCCTAGAAATCTCCCCAAG-39; primer P3: 59-

TTTGCACTCAGGGTGTCTCCTCC-39; primer P4: 59-CA-

CAGTTCACCTGATGGCTCACTC-39. PCR conditions: 16:

94uC 3 min. 26: 94uC 1 min., 62uC 1 min., 72uC 1 min. 306:

94uC 30 sec., 62uC 30 sec., 72uC 30 sec. 16: 72uC 3 min. and

cooling to 4uC.

(PDF)

Figure S2 Measurement of arterial length on adult
Elk3(+/+) wildtype and Elk3(2/2) knockout retinal
flat-mount preparations. For quantitative analysis, tortuous

length (red line) and idealized length (yellow line) are measured in

mm in both wildtype and knockout retinal flat-mounts stained with

ILB4, and subsequently a tortuousity factor as defined as the ratio

red line/yellow line is calculated and used to characterize

tortuousity: a value close to 1 states no tortuousity (as shown for

wildtype arteries), whereas a value . 1 is a hallmark of vessel

tortuousity (as shown for knockout arteries). Values for WT retinae

are normalized to 1. The value for knockout arteries with 1.06

(knockout arteries are on average 6% longer than wildtype

arteries) is significantly different compared to WT as tested by

Student’s t-test statistics (p,0.001 *** as stated in Table 2). The

measurements were performed on n = 9 WT retinae and n = 9

knockout retinae from different animals including 36 WT arteries

and 30 knockout arteries in total.

(PDF)

Figure S3 Blood pressure measurements in female and
male Elk3(+/+) control and Elk3(2/2) knockout mice
(n = number of animals analysed). The data shown are

means +/2 s.e.m., ns not significant.

(PDF)

Figure S4 Retinal function is not impaired in adult
Elk3-deficient mice. Electroretinographic data of adult

Elk3(+/+) (black) and Elk3(2/2) mice (red). (A) Representative

scotopic reponses at -2 (top) and 1.5 (middle) log cd*s/m2, as well

as a photopic response at 1.5 log cd*s/m2 (bottom) flash intensity.

Scotopic (B) and photopic (C) b-wave amplitudes from Elk3
control mice and Elk3-deficient mice are plotted as a function of

the logarithm of the flash intensity. In the box-and whisker-plot,

boxes indicate the 25% and 75% quantile range, whiskers indicate

the 5% and 95% quantiles, and the asterisks indicate the median

of the data.

(PDF)

Figure S5 Analysis of astrocyte migration visualized by
GFAP and ILB4 co-staining on Elk3(+/+) wildtype and
Elk3(2/2) knockout retinal flat-mount preparations of
different post-natal ages. No difference was observed in

astrocyte migration towards the retinal periphery between Elk3(+/
+) and Elk3(2/2) mice at all ages analysed (P4, 6 and 8). Number

of analysed retinae of (WT/KO) genotype: P4 (10/6 retinae), P6

(8/8 retinae), P8 (12/8 retinae). ILB4 co-staining (not shown in

this figure) was used to evaluate radial outgrowth of retinal blood

vessels. Scale bars 100 mm.

(PDF)

Figure S6 P6 retinal flat-mounts of Elk3(+/+) and
Elk3(2/2) mice were co-stained with ILB4 (green) and
collagenIV (red). Overlay of both images results in the merge

image (yellow). To quantify for vessel regression, number of vessels

exclusively stained for collagenIV (as highlighted by white arrows),

but not for ILB4, were counted per vascularized area. No

difference was observed between both genotypes (ns not

significant). Scale bars ILB4, CollagenIV and merge images

100 mm, zoom 50 mm.

(PDF)

Figure S7 (A) Western Blot analysis for P-Cofilin levels
of two representative pairs of Elk3(+/+) control and
Elk3(2/2) knockout adult whole retinal tissue, GAPDH
was used as a loading control. (B) Quantitative Western Blot

analysis of five pairs of Elk3(+/+) control and Elk3(2/2) knockout

adult whole retinal tissue. P-Cofilin protein levels were calculated

in relation to GAPDH (n = 5 independent experiments), ns not

significant.

(PDF)

Table S1 Primer sequences for qRT-PCR of mouse
tissue. Shown are forward (fw) and reverse (rev) sequences for

analysed target genes. Gapdh was used as a housekeeping gene for

normalization in all experiments.

(PDF)

Table S2 Measurement of proliferation by Ki67 and
ILB4 co-staining of P6 and measurement of blood vessel
width on ILB4 stained P6 and P8 Elk3(+/+) wildtype and
Elk3(2/2) knockout retinal flat-mount preparations.
Retinal flat-mounts of Elk3(+/+) WT and Elk3(2/2) KO P6

animals were co-stained with ILB4 and Ki67 and photographed at

206 magnification. On these images, Ki67 positive endothelial

cells per vessel length were measured. Subsequently, Ki67 positive

endothelial cells per 100 mm were calculated and all values of the

WT were normalized to 100%. ns = not significant as tested by

Student’s t-test (p.0.05). For measurement of width, P6 and P8

ILB4-stained retinal flat-mounts were analysed. For width

measurement, arteries and veins were analysed separately by

outlining blood vessel Area (A) and blood vessel Length (L) and

calculating mean width by Length/Area (L/A), followed by

normalization of WT values to 100% (ns = not significant).

(PDF)
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