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A B S T R A C T

The spread of an infectious disease has been widely found to evolve with the propagation of information. Many
seminal works have demonstrated the impact of information propagation on the epidemic spreading, assuming
that individuals are static and no mobility is involved. Inspired by the recent observation of diverse mobility
patterns, we incorporate the information propagation into a metapopulation model based on the mobility
patterns and contagion process, which significantly alters the epidemic threshold. In more details, we find that
both the information efficiency and the mobility patterns have essential impacts on the epidemic spread. We
obtain different scenarios leading to the mitigation of the outbreak by appropriately integrating the mobility
patterns and the information efficiency as well. The inclusion of the impacts of the information propagation into
the epidemiological model is expected to provide an support to public health implications for the suppression of
epidemics.

1. Introduction

Infectious diseases are transmitted through social contacts between
individuals. The modeling of epidemic spreading among human beings
has been extensively studied in mathematical epidemiology and net-
work science. The developments of transportation system have enabled
people to travel more globally. Consequently, epidemics starting from a
local patch can spread to the entire network in a very short time.
Recently, the metapopulation modeling approach has been broadly
applied to study infectious disease spreading among the spatial
structure of populations with well-defined social units (Colizza et al.,
2007; Colizza and Vespignani, 2007; Balcan et al., 2010). Then the
metapopulation network model has been greatly developed by con-
sidering a number of factors such as the network structure (Watts et al.,
2005; Cao et al., 2011; Wang et al., 2014), human mobility patterns
(Belik et al., 2011a, 2011b; Balcan and Vespignani, 2011, 2012; Poletto
et al., 2012), human behavior (Meloni et al., 2011; Wang et al., 2012),
and human contact patterns (Wang et al., 2013; Yang et al., 2011;
Iribarren, 2009). It has been shown that the substrate network
structure (Watts et al., 2005; Cao et al., 2011; Wang et al., 2014) plays
an essential role in the spatial spread of epidemics. In real-world
networks, human mobility patterns vary in a very complicated way,
e.g., recurrent visits of patches (Belik et al., 2011a, 2011b; Balcan and
Vespignani, 2011, 2012), diverse staying period in patches (Poletto

et al., 2012), etc. Human behavioral responses to the epidemics have
also been found to be able to delay the epidemic spread (Meloni et al.,
2011; Wang et al., 2012). With regard to human contact patterns,
location-specific contact patterns have been investigated (Wang et al.,
2013). Recently, since human contact patterns are temporal, the nature
of burstiness and heterogeneity in human activities has been found in
empirical studies, and it has striking effects on the speed of spreading
(Yang et al., 2011; Iribarren, 2009; Masuda and Holme, 2013). For
instance, heterogeneity of human activity is responsible for the slow
dynamics of information propagation (Iribarren, 2009).

Human beings often react to the presence of an infectious disease
by changing their behavior. The perception of the risk associated with
the infection and countermeasures are usually accompanied with the
behavior like cutting the connection with infectious contacts to form
adaptive rewiring (Gross et al., 2008; Wang et al., 2011; Belik et al., ),
accepting vaccination (Bauch and Earn, 2004), wearing face-masks,
reducing travel range (Lima et al., 2015), etc. Within the epidemic-
related game, the change of human behavior such as tradeoff between
cost and risk often results in the decision-making process like
vaccination via a game-theoretic framework (Basu et al., 2008;
Perisic and Bauch, 2009; Zhang et al., 2013).

Many works have focused on the impact of information propagation
on separating a non-epidemic state and an epidemic state. With the
progression of the outbreak, messages on the epidemics, such as fears
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of the disease and self-initiated awareness, may be passed from one
individual to another (Epstein et al., 2008; Perra et al., 2011).
Following the seminal work in Ref. (Funk et al., 2009), the source of
information (e.g., local or global awareness) and the pattern of
information dissemination have been widely studied (Funk et al.,
2010; Wu et al., 2012; Granell et al., 2013; Sahneh et al., 2013; Yuan
et al., 2013; Zhang et al., 2014). Depending on the path of information
propagation, there are several types of information. For instance,
people obtain information from broadcasting and the Internet, which
could be taken as a kind of global information. People can also
exchange information by face-to-face contacts, which is a kind of
contact-based information (Funk et al., 2009). So far, the study of the
impacts of information propagation on the epidemic spread has been
restricted to individual-based networks, where one node corresponds
to one individual (Zhang et al., 2014).

Under the framework of metapopulation model, people may get
infected by contacting with infectious individuals within the same
patch; they may exchange information related to the presence of an
infectious disease through face-to-face contacts (Funk et al., 2009,
2010). Information carriers may pass the message of the epidemic
situation to uninformed individuals, which may potentially alter their
future mobility patterns, thus, affecting the epidemic spread. This has
been observed in real-world situations, where people are usually
reluctant to visit infected areas (Camitz and Liljeros, 2006; Bajardi
et al., 2011). The diameter of human mobility during the H1N1
epidemic has been found to reduce significantly with the progression
of alert campaign, which verifies the fact that human beings indeed
alter their movements when being exposed to the presence of the
information during the outbreak of epidemics (Bajardi et al., 2011).

In this paper, we present a metapopulation framework to explore
the interplay between epidemic dynamics and information dynamics
based on diverse mobility patterns. With a mean-field approximation of
the metapopulation model, we find that both the information efficiency
and the mobility patterns jointly affect the epidemic spread in terms of
both the outbreak size and the epidemic threshold. When the informa-
tion efficiency is low, mobility to the patch with more healthy
individuals facilitates the epidemic spread with an increased outbreak
size and an decreased epidemic threshold, even though more indivi-
duals get informed; on the contrary, when the information efficiency is
high enough to cause people's attention, mobility to the patch with
more healthy individuals, suppresses the epidemic outbreak by in-
forming more individuals. In order to highlight the role of mobility, we
apply a simplistic model of information dynamics to that of the disease
dynamics; the incorporation of passing messages among mobile
individuals in the metapopulation model gives us a new perspective
on the countermeasure of epidemics, which is different from the
previous studies on the contact-based networks. It suggests a possible
way to suppress the epidemic spread by guiding individual mobility
patterns in accordance with the evaluation of the risk perception and
the information efficiency as well.

2. Model definitions

Before introducing the model, we briefly demonstrate the mobility
patterns and information propagation, respectively. Usually, a random
mobility pattern is often used for the convenience of theoretical
analysis. To be more realistic, we consider that the mobility pattern
is driven by the safety level at destination. In facing the outbreak,
people usually prefer to visit safer patches in order to avoid infection,
i.e., the safer the destination is, the higher the probability that
individuals move to it is (Wang et al., 2012).

In the context of information, we regard it to be only accessible by
contacting with information carriers as opposed to the general knowl-
edge obtained through multi-media (global awareness) and self-
initiated awareness as well. Thus, we focus on the interplay between
mobility patterns and information propagation. The role of information

in reducing the infection risk is described by the information efficiency,
which is classified into two major types: (i) the information that is
highly efficient to warn people to take measures in the face of a fatal flu,
such as severe acute respiratory syndrome (SARS); (ii) the information
that cannot cause people's sufficient attention to take measures in the
face of an infectious disease, such as seasonal influenza. As a result, the
exchange of information on the risk perception may potentially alter
human behavior, e.g., contact structures or travel patterns, which in
turn influences the spreading process.

The metapopulation approach describes the spatially structured
interacting patches, which are connected by the movement of indivi-
duals. Inside each patch, individuals are divided into classes that
represent their states according to the infection dynamics. To demon-
strate the role of information propagation in the epidemic dynamics,
we couple a mathematical model similar to the susceptible-infectious-
susceptible (SIS) model for the epidemic dynamics with a model for the
information propagation. Due to the information propagation, suscep-
tible individuals are further classified into two types: Uninformed
susceptible (S) and informed susceptible (A) individuals. Uninformed
susceptible individuals are those who have not yet received the
information on the epidemic and may get infected by contacting with
infectious individuals at transmission rate β, while informed suscep-
tible individuals (A) may get infected with a reduced transmission rate
βA with β β<A . This is supported by the fact that people may reduce
the number of contacts as a defensive response (Poletti et al., 2009)
and they also may get infected with a reduced infection transmission
rate by self-awareness, such as wearing face-masks or washing hands
frequently (Can et al., 2015; Zhang et al., 2015, 2016). For conve-
nience, we represent the reduced transmission rate as β α β= (1 − )A ,
where α denotes the information efficiency for reduction of infection
risk. Infectious individuals may get recovered at rate μ. Here, we
assume the nonlimited transmission, where the infection rate is not
divided by the total population in the patch. The propagation of
information is analogous to that of an infectious disease, often called
“information contagion”: information is passed from information
carriers to uninformed individuals through contact at rate σ, and
information carriers may lose the information at rate r as time goes by.
We assume that information is passed by contact instead of self-
awareness, and for simplicity, we also assume that infectious indivi-
duals are ignorant to the information. In fact, it is more realistic to
assume that infectious individuals know the infectious status and they
may reduce their contact number by being detected or quarantined,
however, it is out of the range of this paper and may be investigated in
the future. Fig. 1 illustrates the interplay between the information
propagation and the disease spread on metapopulation networks.

Connected patches as a force of infection result from the movement
of individuals. Next, let us consider the diffusion process (Colizza and
Vespignani, 2008; Saldaña, 2008; Juher et al., 2009). Parallel to the
contagion process, simultaneously all the individuals move from one
patch to another at rate D. In more details, uninformed, informed, and
infectious individuals leave the patch at rates DS, DA, and DI,
respectively. Considering the heterogeneity in the real-world networks,
individuals in state θ (θ S A I= , , ) at patch k′ (patch with degree k′ is
briefly denoted by patch k′) move to the neighboring patch k with
probability dθ k k, ′ . Human mobility shows diverse patterns depending on
individual's gender, age, and native or non-native (Salon and Gulyani,
2010; Yan et al., 2013; Yang et al., 2017). An explicit expression of dθ k k, ′
relies on the knowledge of the empirical data on traveling patterns of
human beings (Brockmann et al., 2006; Brockmann and Theis, 2008;
González et al., 2008; Song et al., 2010a, 2010b). In the following, we
use dθ k k, ′ as a general expression for mobility probability in the
determined reaction-diffusion equations to describe the dynamics of
the epidemic and that of the information in the metapopulation system.

By incorporating the contagion process and the information
propagation into the diffusion processes, the dynamics of the sub-
population of uninformed, informed, and infectious individuals at
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patch k, ρS k, , ρA k, , and ρI k, , respectively, are approximated with the
mean-field approximation as follows:
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for k k k≤ ≤min max, where kmin and kmax are the minimum and
maximum degrees of the patches, respectively; P k k( ′| ) is the condi-
tional probability that a patch k connects with a patch k′. For simplicity
of calculation, we assume that the patches connect in an uncorrelated
way in the sense that they connect at random, i.e., P k k( ′| ) = k P k

k
′ ( ′)
〈 〉 ,

where k kP k〈 〉 = ∑ ( )k is the average degree of the network (Newman,
2003) and P(k) is the degree distribution of the network.

Since the information propagation affects the epidemic spread by
informing more individuals of the disease and thereby reducing their
risk of infection, mobility patterns of the informed susceptible indivi-
duals play a fundamental role in the effectiveness of the information
propagation, and thus, affect the epidemic spread. To understand the
role of mobility patterns in both the dynamics of epidemic spread and
that of the information propagation, we investigate the mobility
probability from patch k′ to patch k by assuming the detailed functional
form of dθ k k, ′ for θ S A I= , , . Intuitively, the more healthy individuals a
patch contains, the safer the patch is, and individuals usually prefer to
move to safer patches, or in other words, in order to prevent infection
they attempt to avoid visiting infected patches. To reflect this effect,
following Ref. (Wang et al., 2012), we assume that all the individuals
move in accordance with the safety level at the destination, which is
mathematically expressed by

d
ρ

k P k k ρ
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( )
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for k k k k≤ , ′ ≤min max, where the parameter γθ controls the dependency
on the safety level at the patch. By tuning γθ, diverse mobility patterns
can be observed. For instance, if γ > 0θ , the safer the patch is, the more
likely it is that individuals move to the patch; this is consistent with the
phenomenon that people attempt to bypass infected areas; in order to
deploy a systematic study, we also consider the opposite case with
γ < 0θ , which means that the safer the patch is, the less likely it is that

people travel to the patch. This may correspond to the situation that
people receive incorrect information. If γ = 0θ , the model is reduced to
the case of random mobility and Eq. (2) is simplified as follows:

dρ
dt

βρ ρ σρ ρ ρ rρ D ρ D k
k

ρ

dρ
dt

σρ ρ β ρ ρ rρ D ρ D k
k

ρ

dρ
dt

βρ ρ β ρ ρ ρ D ρ D k
k

ρ

= − − + μ + − +
〈 〉

,

= − − − +
〈 〉

,

= + − μ − +
〈 〉

,

S k
S k I k S k A k I k A k S S k S S

A k
S k A k A A k I k A k A A k A A

I k
S k I k A A k I k I k I I k I I

,
, , , , , , ,

,
, , , , , ,

,
, , , , , , (3)

for k k k≤ ≤min max. In the following, we will explore how mobility
patterns influence the information propagation and the epidemic
process as well.

3. The invasion thresholds for disease dynamics and
information dynamics

3.1. The equilibrium point ρ ρ ρ ρ( , , ) = ( , 0, 0)S k A k I k S k, , , ,
We investigate the ability that a disease or information can survive in

the network by analyzing the stability of the disease-free and information-
free state at the equilibrium point ρ ρ ρ ρ( , , ) = ( , 0, 0)S k A k I k S k, , , , . By inserting
Eq. (2) into Eq. (1), the uninformed susceptible individuals at patch k, ρS k, ,
at the equilibrium state is given by
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for k k k≤ ≤min max, which is rewritten using P k k( ″| ′) = k P k
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〈 ′〉 as follows:
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where ρ〈( ) 〉S
γ., S denotes an arbitrary order moment of ρ( )S

γS and ρ0 is the
total population density in the network and the parameter γS controls the
susceptible population at the equilibrium. The exact solution of ρS k, can be
numerically solved with the fixed-point iteration with Eq. (5).

The linearized matrix of Eq. (1) around the disease-free and
information-free equilibrium is given by

⎡
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⎢⎢⎢⎢⎢
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S S k S k

S k A

A

S k I

, ,

,

,

(6)

where each block is a k k( − )max min matrix; 0 is the null matrix; I is the
identity matrix; diag x( )k is a diagonal matrix with kth component as xk;
the matrix C is given by

kP k
k

C = ( ′)
〈 〉

.kk′
(7)

Since C is a rank-one matrix, it has an eigenvalue λ = 0 with multi-
plicity k − 1max and an eigenvalue λ = 1. The characteristic equation of
JDF is given by f λ f λ f λ f λ( ) = ( ) ( ) ( )1 2 3 , where f λ( )1 is the characteristic
equation of D C I( − )S , f λ( )2 is the characteristic equation of
diag σρ r D D C( − ( + )) +S k A A, , and f λ( )3 is the characteristic equation
of diag βρ μ D C I( − ) + ( − )S k I, . The set of eigenvalues of JDF is the union
of the solutions f λ( ) = 01 and those of f λ( ) = 02 and f λ( ) = 03 . Because
f λ λ λ D( ) = − (−( + ))S

k k
1

− −1max min , the largest eigenvalue of D C I( − )S is
0. From a general interlacing theorem of eigenvalues for perturbations
of a diagonal matrix by rank-one matrices, the largest eigenvalue λmax A,

of diag σρ r D D C( − ( + )) +S k A A, satisfies λ ρ σ r D> − ( + )max A
k

k A,
0

〈 〉
max ,

while the largest eigenvalue λmax I, of diag βρ μ D D C( − ( + )) +S k I I,

satisfies λ ρ β μ D> − ( + )max I
k

k I,
0

〈 〉
max . The largest eigenvalue of JDF is

given by λ λmax {0, , }max A max I, , . Therefore, the sufficient condition for
the disease-free equilibrium to be unstable is given by

Fig. 1. Schematic illustration of the model of the epidemical spread and the information
propagation (SAIS). In this model, each individual falls into one of the three states:
uninformed (S), informed (A), and infectious (I). All types of individuals move from
patch i to patch j with probability dθ ij, for θ S A I= , , . For example, informed individuals

in patch i may move to patch j with probability dA ij, ; susceptible individuals in patch i

may move to patch k with probability dS ik, . The mobility probability of infectious

individuals dI jk, can be defined in a similar way.
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ρ k
k

μ D
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≥ 〈 〉 + ,c I
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I
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(8)

or the sufficient condition for the information-free equilibrium to be
unstable is given by:

ρ k
k

r D
σ

≥ 〈 〉 + .c A
max

A
,
0

(9)

3.2. The equilibrium point ρ ρ ρ ρ ρ( , , , ) = ( , , 0)S k A k I k S k A k, , , , ,

Except for the equilibrium point of the disease- and information-
free state ρ ρ ρ ρ( , , ) = ( , 0, 0)S k A k I k S k, , , , , we have to note that there exists
the second equilibrium point ρ ρ ρ ρ ρ( , , ) = ( , , 0)S k A k I k S k A k, , , , , with
ρ > 0A k, . Let us start with a simplistic assumption that individuals in
all the states move at random, i.e., γ γ γ= = = 0S A I and DS=DA. By
solving Eq. (1), the population density at patch k, ρk , at the equilibrium
is given by

ρ ρ ρ k
k

ρ= + =
〈 〉

.k S k A k, ,
0

(10)

With Eq. (1), the informed populations at the equilibrium state, ρA k, , is
obtained by solving the following equation:

σρ r D σρ ρ k
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〈 〉
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2
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where ρ P k ρ= ∑ ( )A k A k, is the total informed population at the equili-
brium state in the network.

By setting ω ρ= −k
k
k
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0 + A , the informed and uninformed suscep-

tible populations at patch k, ρA k, and ρS k, , respectively, at the equili-
brium are given by
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where the equilibrium solution ρA k, can be solved with the fixed point
iteration.

The equilibrium becomes unstable if the uninformed susceptible
and informed susceptible individuals become infected before the
infected individuals get recovered, that is,
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which is rewritten as
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where α0 ≤ ≤ 1, ρA can be obtained from Eq. (11). In order to trigger
an epidemic outbreak, there exists a third invasion threshold, ρc AI,

0 , such
that the unformed and informed susceptible individuals get infected by
contacting with the infectious individuals. Regarding ρA as a parameter,
ρc AI,

0 is such ρ0 that satisfies the condition (15). The exact value of ρc AI,
0

can be obtained numerically.
If ρ ρ≤ c I

0
,
0 and ρ ρ ρ≥ max{ , }c A c AI

0
,
0

,
0 , then the epidemic occurs by

infecting more informed individuals instead of infecting uninformed
individuals. If ρ ρ≥ c I

0
,
0 and ρ ρ ρ≤ ≤c A c AI,

0 0
,
0 , then the epidemic occurs by

infecting more uninformed individuals instead of infecting informed
individuals.

Let us see some specific cases. When α = 0, all the informed
individuals get infected at the same infection rate as the uninformed

individuals do, and ρ ρ=c AI c I,
0

,
0 ; when α = 1, all the informed individuals

get full immunity to the disease with the infection rate β = 0A ; hence,

the threshold condition is given by ρ = 1S k
β

μ D, + I
, where ρS k, satisfies the

condition ρ P k ρ= ∑ ( )S k S k, and ρ ρ ρ= −S A
0 , which is consistent with

Eq. (8); when α0 < < 1, if ρ ρ ρ> >c AI c A,
0 0

,
0 , it indicates that the

population density ρ0 is large enough to inform a quantitative size of
susceptible individuals but it is not large enough to infect them,
whereas it is possible that the outbreak occurs by infecting the
informed individuals if ρ ρ> c AI

0
,
0 .

4. Numerical results

4.1. Impacts of mobility patterns on the final prevalence of the
epidemic

In order to take the safety movement patterns into account, in the
following, we investigate three representative types of mobility pat-
terns: (i) γ > 0θ : individuals in state θ (θ S A I= , , ) prefer to move to
safer patches; (ii) γ < 0θ : individuals in state θ prefer to move to less
safe patches; (iii) γ = 0θ : individuals in state θ move at random. We
take case (iii) as a standard criterion for comparison with cases (i) and
(ii). In a more detailed way, we investigate the situation that both the
uninformed and informed individuals follow the same mobility pat-
terns with γ γ=S A and the situation that they follow opposite mobility
patterns with γ > 0S and γ < 0A or vice versa. Networks of patches are
generated with the configuration network model (Molloy and Reed
1995) with size N=2000 following the degree distribution P k k( ) ∼ −2.5

with k = 2min . Simulation results are based on averaging over more than
100 results for different initial conditions and network structures.
Without specification, all the infectious individuals are assumed to
move at random with γ = 0I . We randomly seed 0.1% of the total
population for each of the dynamics of infectious disease and informa-
tion propagation. This condition ensures that the outbreak for each
dynamics is started separately.

Time courses of the uninformed, informed, and infectious popula-
tions for different combinations of α and mobility patterns γS (γA) are
shown in Fig. 2. When α is at a medium level, that is, the informed
individuals get infected with a half risk of infection (α = 0.5, Fig. 2 (a)),
the informed population (the blue curves) firstly grows and then
reduces to zero due to the infection by infectious individuals, leaving
the uninformed and infectious populations at the stable state. The final
prevalence of infection also depends on mobility patterns. For instance,
moving to safer patches (γ γ= = 0.5 > 0S A , the dotted curve) causes a
relatively higher prevalence, while, on the contrary, moving to less safe
patches (γ γ= = −0.5 < 0S A , the solid curve) causes a lower prevalence.

4.2. Impacts of information efficiency on the final prevalence of
epidemics

In the case of an extremely perfect information efficiency with
α = 1.0 (Fig. 2 (b)), where the informed individuals become totally
immune to the infectious disease, the informed population sustains a
non-zero value only if people move to safer patches (γ = 0.5S , the blue
dotted curve). In this case, mobility patterns play a role different from
that at a lower α (Fig. 2 (a)). Since informed individuals get full
immunity to the infection, the more individuals get informed, the less
individuals get infected. Hence, moving to the patch that contains more
susceptible individuals will inform more and make them immune to the
infectious disease. As a result, mobility patterns with γ γ= = 0.5 > 0S A
inform individuals most (the blue dotted curve) and yield the lowest
prevalence of infection (the red dotted curve).

The final prevalence of infection and that of the informed indivi-
duals for different choices of α can be further observed in Fig. 3. The
final prevalence depends on the combined role of the information
efficiency and mobility patterns. For instance, when α = 0, the in-
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formed individuals get the same infection rate as the uninformed
individuals do. We firstly observe that moving to the less safe patch can
cause a higher epidemic threshold and a lower prevalence irrespective
of the information efficiency α (Fig. 3 (a1), the black squares).
Conversely, moving to the safer patches causes a smaller epidemic
threshold and a higher prevalence (Fig. 3 (a1), the red triangles). The
informed population firstly grows by informing susceptible individuals,
and then it ceases to grow and reduces to zero due to the infection by
contacting with infectious individuals (Fig. 3 (b1)).

With the increase of the information efficiency such as α = 0.5, the
informed individuals get a reduced risk of infection. We find that even
if the infection rate is reduced to half, the final prevalence of infection

does not obviously decrease for all the mobility patterns that we tested
(Fig. 3 (a2)). With further increase of α, such as α = 1, the informed
individuals get full immunity to the infectious disease. When indivi-
duals prefer to move to safer patches with γ = 0.5S , we find that the
more susceptible individuals get informed (Fig. 3 (b3)), the smaller the
outbreak size will be (Fig. 3 (a3)). For instance, with γ = 0.5S , infection
disappears from the network while keeping a non-zero quantity of
individuals being informed.

From the above analysis, we find that a medium value of α cannot
change the contagion process in terms of both the final prevalence and the
epidemic threshold. Although moving to the safer patches can inform
more individuals, it increases the probability of infection as well.
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Fig. 2. Time courses of the prevalences for different combinations of α and mobility patterns controlled by γS. (a) α = 0.5; (b) α = 1.0. Informed and uninformed individuals are
assumed to move in the same way (γ γ=A S). Uninformed susceptible population (the black curve); informed susceptible population (the blue curve); infectious population (the red curve).

The mobility parameters are set at γ = −0.5S (the solid curve), γ = 0S (the dashed curve), and γ = 0.5S (the dotted curve). The population density is set at ρ = 20 and the epidemiological

parameters are set at β σ= = 0.1 and μ r= = 0.2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Final prevalences of the infectious population ρI ((a)) and that of the informed population ρA ((b)) for different combinations of α and the mobility patterns γS (γA). (a1) and
(b1), α = 0.0; (a2) and (b2), α = 0.5; (a3) and (b3), α = 1.0. The mobility parameters are set at γ γ= = −0.5S A (the black squares); γ γ= = 0S A (the blue circles), and γ γ= = 0.5S A (the red

triangles). The other parameters are the same as in Fig. 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.3. The interaction of mobility patterns and information efficiency
on the final prevalence of epidemics

The interaction of individuals' mobility patterns and the informa-
tion efficiency can be further verified by observing the final prevalences
of the infectious and informed individuals at patches k, ρI k, and ρA k, , as
shown in Fig. 4. It shows that the larger the patch degree k is, the more
infectious individuals are contained in it, roughly following a linear
increase form. Moreover, for a medium level of α, moving to the
patches with more healthy population will infect more; while moving to
the patches with less healthy population, infect less due to the
dissemination of individuals at high degree patches (Figs. 4 (a1) and
(a2)). With the increase in α, moving to the patch with high degrees can
inform more individuals (Fig. 4 (b2), the red triangles), thus, less
individuals at the patch get infected (Fig. 4 (b1)).

The detailed interplay between α and mobility patterns for the
epidemic spread is shown in Fig. 5. We find that for all possible values
of α, moving to the patches that contain more susceptible individuals,
increases the risk of outbreak, except for an extremely information
efficiency α (α > 0.9), where the prevalence of infection can be
significantly reduced by increasing the contact probability between
information carriers and uninformed susceptible individuals (γ > 0S ).
When α is a medium value, reducing the contact probability between
information carries and uninformed susceptible individuals (γ < 0S )
can efficiently prevent the epidemic spread.

In the above analysis, we have assumed that both the informed and
uninformed individuals follow the same types of mobility patterns with
“γ > 0S and γ > 0A ” or “γ < 0S and γ < 0A ”. In order to make the analysis
consistent, in the following, we investigate the case that the informed
and uninformed susceptible individuals take different types of mobility
patterns by tuning the parameters γ > 0S and γ < 0A or vice versa, and
we explore their impacts on the final prevalence of infection (Fig. 6).

For a medium value of α, the more uninformed individuals move to the
safer patches (γ > 0S ), the higher the prevalence is. This is irrelevant to
the mobility patterns of the informed individuals and is independent of
whether they approach the safer patches or not (γ > 0A or γ < 0A ). With
an extremely high efficiency (α = 1, Fig. 6 (b)), we find two opposite
results. The highest contact probability between information carriers
and uninformed susceptible individuals yields the lowest prevalence
(“γ > 0A and γ > 0S ” or “γ < 0A and γ < 0S ”), while the separation of
them promotes the epidemic spread (γ > 0S and γ < 0A ).

From the above results, we conclude that information propagation
is vital to the epidemic spread. The role of information propagation has
to be evaluated by taking the information efficiency α into account. On
the one hand, information may help mitigate the epidemic spread as
long as it is highly efficient enough to reduce the risk of infection (a
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Fig. 4. Final prevalences of the infectious population ρI k, and the informed population ρA k, at patch k. (a1) and (a2) α = 0.5; (b1) and (b2) α = 1. γ γ= = −0.5S A (the black squares);

γ γ= = 0S A (the blue circles), and γ γ= = 0.5S A (the red triangles). The epidemiological parameters are set at the same values as in Fig. 2. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Final prevalence of the infectious individuals versus γS ( γ= A) and α. The informed

individuals move with the same pattern as the uninformed individuals do with γ γ=A S .

The total population density is set at ρ = 20 . The other parameters are the same as in

Fig. 2.
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high value of α). Under this circumstance, mobility to safer patches
may strengthen the role of information by informing more individuals.
On the other hand, when the information on the disease cannot cause
people's attention to reduce the risk of infection (a medium or lower
value of α), informing more individuals by moving to the safer patches
can only promote the epidemic spread by gathering more susceptible
individuals in one patch.

4.4. Impacts of the information efficiency α and mobility patterns on
the epidemic threshold

Next, we explore how mobility patterns affect the epidemic thresh-
old ρc I,

0 with Eq. (8) as shown in Fig. 7, where we assume that the
informed individuals follow the same mobility patterns as the unin-
formed susceptible individuals do. It shows that ρc I,

0 decreases with γS,
indicating that the more susceptible individuals move to the safer
patches, the smaller the epidemic threshold will be. In other words,
moving to the safer patches promotes the epidemic spread.

To further reveal the impacts of the information efficiency and
mobility patterns on the epidemic process, we show the dependence of
the epidemic threshold ρc I,

0 on α and γS in Fig. 8. It shows that for a lower
α, moving to safer patches promotes the disease spread with a reduced
epidemic threshold (bottom-right); while for a higher α, moving to the
safer patches informs more individuals and thus protects them from
infection yielding a higher invasion threshold (top-right). This result is
consistent with the analysis of the epidemic prevalence as shown in Fig. 5.

The dependence of the third epidemic threshold ρc AI,
0 on the

information efficiency α can be found in Fig. 9. We find that with the
increase of information efficiency, α, the informed individuals get
immunity to infection and it mitigates the disease spread in the
network, yielding a higher critical invasion threshold ρc AI,

0 .

5. Discussion

Whenever the outbreak of an infectious disease occurs, it is
inevitably accompanied with the propagation of the information that
is related to the progression of the infectious disease. In this work, we
have investigated the interplay between the disease spread and the
information propagation by focusing on the role of the information
efficiency in reducing the risk of infection, and that of mobility
patterns. The mobility pattern is mainly driven by the risk perception
expressed by the safety level at the destination patch. The more healthy
individuals a patch contains, the safer it is. Although the model we have
proposed is simplistic and more realistic scenarios with detailed
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Fig. 6. Final prevalence of the infected population versus γA and γS for different α. (a) α = 0.5; (b) α = 1.0. The total population density is set at ρ = 20 . The other parameters are the

same as in Fig. 2.
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mobility patterns are determined by the availability of data, our model
captures basic characteristics of the dynamics of information propaga-
tion and that of epidemic spread. We find that appropriately incorpor-
ating the knowledge of the information efficiency with the guidance of
human mobility may effectively mitigate the epidemic outbreak by
decreasing the outbreak size and increasing the epidemic threshold.
Changing mobility patterns in accordance with the evaluation of the
information efficiency could strengthen the role of information propa-
gation in preventing the outbreak.

Information carriers play a role of double sides of swords. Our
results suggest that mobility to the patches that contain more healthy
individuals can mitigate the epidemic outbreak only if the information
can efficiently appeal people's attention to reduce the risk of infection;
otherwise, informing more individuals can promote the epidemic
spread with a larger outbreak size. Thus, in addition to the usual
intervention measurements (e.g., vaccinations), guiding mobility pat-
terns or controlling the traffic flow between patches based on the
proper evaluation of the information efficiency may be useful in
preventing an epidemic.

Acknowledgements

This work is partly supported by the National Natural Science
Foundation of China (Grant No. 61603237) and Science and
Technology Commission of Shanghai Municipality (Grant No.
16111108202).

References

Bajardi, P., Poletto, C., Ramasco, J.J., Tizzoni, M., Colizza, V., Vespignani, A., 2011. PLoS
One 6, e16591.

Balcan, D., Vespignani, A., 2011. Nat. Phys. 7, 581.
Balcan, D., Vespignani, A., 2012. J. Theor. Biol. 293, 87.
Balcan, D., Gonalves, B., Hu, H., Ramasco, J.J., Colizza, V., Vespignani, A., 2010. J.

Comput. Sci. 1, 132.
Basu, S., Chapman, G., Galvani, A., 2008. Proc. Natl. Acad. Sci. USA 105, 19018.
Bauch, C.T., Earn, D., 2004. Proc. Natl. Acad. Sci. USA 101, 13391.
Belik, V., Geisel, T., Brockmann, D., 2011a. Phys. Rev. X 1, 011001.
Belik, V., Geisel, T., Brockmann, D., 2011b. Eur. Phys. J. B 84, 579.

Belik, V., Fengler, A., Fiebig, F., Lentz, H., Hovel, P., arXiv:1509.04054.
Brockmann, D., Theis, F., 2008. IEEE, Pervasive Comput. 7, 28.
Brockmann, D., Hufnagei, L., Geisel, T., 2006. Nature 439, 462.
Camitz, M., Liljeros, F., 2006. BMC Med. 4, 32.
Can, L., Xie, J.-R., Chen, H.-S., Zhang, H.-F., Tang, M., 2015. Chaos 25, 103111.
Cao, L., Li, X., Wang, B., Aihara, K., 2011. Phys. Rev. E 84, 041936.
Colizza, V., Vespignani, A., 2007. Phys., Rev. Lett. 99, 148701.
Colizza, V., Vespignani, A., 2008. J. Theor. Biol. 251, 450.
Colizza, V., Pastor-Satorras, R., Vespignani, A., 2007. Nat. Phys. 3, 276.
Epstein, J., Parker, J., Cummings, D., Hammond, R.A., 2008. PLoS One 3, e3955.
Funk, S., Gilad, E., Watkins, C., Jansen, V.A.A., 2009. Proc. Natl. Acad. Sci. USA 106,

6872.
Funk, S., Salath, M., Jansen, V.A.A., 2010. Interface Interface 7, 1247.
González, M., Hidalgo, C., Barabási, A.-L., 2008. Nature 453, 779.
Granell, C., Gómez, S., Arenas, A., 2013. Phys. Rev. Lett. 111, 128701.
Gross, T., Blasius, B., Soc, J.R., 2008. Interface 5, 259.
Iribarren, J., 2009. Phys. Rev. Lett. 103, 038702.
Juher, D., Ripoll, J., Saldaña, J., 2009. Phys. Rev. E 80, 041920.
Lima, A., Pejovic, V., Rossi, L., Musolesi, M., Gonzalez, M., 2015. arXiv:1504.01316.
Masuda, N., Holme, P., 2013. F1000 Prime Rep. 5, 6.
Meloni, S., Perra, N., Arenas, A., Gómez, S., Moreno, Y., 2011. Sci. Rep. 1, 00062.
Molloy, M., Reed, B., 1995. Random Struct. Algor 6, 161.
Newman, M.E.J., 2003. Phys. Rev. E 67, 026126.
Perisic, A., Bauch, C.T., 2009. Plos Comput. Biol. 5, e1000280.
Perra, N., Balcan, D., Goncalves, B., Vespignani, A., 2011. PLoS One 6, e23084.
Poletti, P., Caprile, B., Ajelli, M., Pugliese, A., Merler, S., 2009. J. Theor. Biol. 260, 31.
Poletto, C., Tizzoni, M., Colizza, V., 2012. Sci. Rep. 2, 00476.
Sahneh, F.D., Chowdhury, F.N., Scoglio, C.M., 2013. Sci. Rep. 2, 632.
Saldaña, J., 2008. Phys. Rev. E 78, 012902.
Salon, D., Gulyani, A., 2010. Transp. Rev. 30, 641.
Song, C., Qu, Z., Blumm, N., Barabási, A.-L., 2010a. Science 327, 1018.
Song, C., Koren, T., Wang, P., Barabási, A.-L., 2010b. Nat. Phys. 6, 818.
Wang, B., Cao, L., Suzuki, H., Aihara, K., 2011. J. Phys. A: Math. Theor. 44.
Wang, B., Cao, L., Suzuki, H., Aihara, K., 2012. Sci. Rep. 2, 887.
Wang, B., Tanaka, G., Suzuki, H., Aihara, K., 2014. Phys. Rev. E 90, 032806.
Wang, L., Wang, Z., Li, X., 2013. Sci. Rep. 3, 1468.
Watts, D., Muhamad, R., Medina, D., Dodds, P., 2005. Proc. Natl. Acad. Sci. USA 102,

11157.
Wu, Q., Fu, X., Small, M., Xu, X.-J., 2012. Chaos 22, 013101.
Yan, X., Han, X., W.B.H., Zhou, T., 2013. Sci. Rep. 3, pp. 2678.
Yang, Z., Cui, A.-X., Zhou, T., 2011. Physica A 390, 4543.
Yang, Z., Lian, D., Yuan, N.J., Xie, X., Rui, Y., Zhou, T., 2017. Physca A 469, 232.
Yuan, X., Xue, Y., Liu, M., 2013. Chaos, Solitons, Fractals 48, 1.
Zhang, H., Yang, Z., Wu, Z., Wang, B., Zhou, T., 2013. Sci. Rep. 3, 3292.
Zhang, H., Xie, J., Tang, M., Lai, Y., 2014. Chaos 24, 043106.
Zhang, X., Liu, C., Sun, G., Zhang, Z., 2015. arXiv:1505.04856.
Zhang, Z., Chuang, L., Z.X.X., L.X., Zhang, C., 2016. Phys. Rep. 651, pp. 1.

B. Wang et al. Journal of Theoretical Biology 420 (2017) 18–25

25

http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref1
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref1
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref2
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref3
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref4
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref4
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref5
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref6
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref7
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref8
http://arXiv:1509.04054
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref9
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref10
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref11
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref12
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref13
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref14
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref15
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref16
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref17
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref18
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref18
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref19
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref20
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref21
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref22
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref23
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref24
http://arXiv:1504.01316
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref25
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref26
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref27
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref28
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref29
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref30
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref31
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref32
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref33
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref34
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref35
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref36
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref37
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref38
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref39
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref40
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref41
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref42
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref42
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref43
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref44
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref45
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref46
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref47
http://refhub.elsevier.com/S0022-5193(17)30074-7/sbref48
http://arXiv:1505.04856

	Interplay between epidemic spread and information propagation on metapopulation networks
	Introduction
	Model definitions
	The invasion thresholds for disease dynamics and information dynamics
	The equilibrium point (ρ¯S,k,ρ¯A,k,ρ¯I,k)=(ρ¯S,k,0,0)
	The equilibrium point (ρ¯S,k,ρ¯A,k,ρ¯I,k,)=(ρ¯S,k,ρ¯A,k,0)

	Numerical results
	Impacts of mobility patterns on the final prevalence of the epidemic
	Impacts of information efficiency on the final prevalence of epidemics
	The interaction of mobility patterns and information efficiency on the final prevalence of epidemics
	Impacts of the information efficiency α and mobility patterns on the epidemic threshold

	Discussion
	Acknowledgements
	References


