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Objective: Timely and accurate forecast of infectious diseases is essential for achieving

precise prevention and control. A good forecasting method of infectious diseases should

have the advantages of interpretability, feasibility, and forecasting performance. Since

previous research had illustrated that the spatial transmission network (STN) showed

good interpretability and feasibility, this study further explored its forecasting performance

for infectious diseases across multiple regions. Meanwhile, this study also showed

whether the STN could overcome the challenges of model rationality and practical needs.

Methods: The construction of the STN framework involved three major steps: the

spatial kluster analysis by tree edge removal (SKATER) algorithm, structure learning by

dynamic Bayesian network (DBN), and parameter learning by the vector autoregressive

moving average (VARMA) model. Then, we evaluated the forecasting performance of

STN by comparing its accuracy with that of the mechanism models like susceptible-

exposed-infectious-recovered-susceptible (SEIRS) and machine-learning algorithm like

long-short-term memory (LSTM). At the same time, we assessed the robustness of

forecasting performance of STN in high and low incidence seasons. The influenza-like

illness (ILI) data in the Sichuan Province of China from 2010 to 2017 were used as an

example for illustration.

Results: The STN model revealed that ILI was likely to spread among multiple cities in

Sichuan during the study period. During the whole study period, the forecasting accuracy

of the STN (mean absolute percentage error [MAPE] = 31.134) was significantly better

than that of the LSTM (MAPE = 41.657) and the SEIRS (MAPE = 62.039). In addition,

the forecasting performance of STN was also superior to those of the other two methods

in either the high incidence season (MAPE= 24.742) or the low incidence season (MAPE

= 26.209), and the superiority was more obvious in the high incidence season.

Conclusion: This study applied the STN to the forecast of infectious diseases across

multiple regions. The results illustrated that the STN not only had good accuracy

in forecasting performance but also indicated the spreading directions of infectious

diseases among multiple regions to a certain extent. Therefore, the STN is a promising

candidate to improve the surveillance work.

Keywords: spatial transmission network, infectious disease, vector autoregressive moving average, SEIRS,

long-short term memory
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INTRODUCTION

The outbreak of infectious diseases poses a serious threat to
public health and imposes a heavy burden on the global economy.
According to recent research studies, there were around 291,000–
646,000 deaths caused by seasonal influenza-related respiratory
illnesses worldwide every year (1, 2). The US Centers for Disease
Control and Prevention (CDC) estimated that from October
1, 2019 to April 4, 2020, there were 39,000,000–56,000,000 flu
infections and 24,000–62,000 flu deaths in the US (3). In addition,
the WHO assessed that the first influenza pandemic in this
century damaged the global economy by around $800 billion (4).

In view of the severe threats of infectious diseases, consistently
improving the infectious disease surveillance work is the
top priority for health promotion (5). How to utilize the
surveillance data to achieve accurate and reliable forecasting in
the early stage of infectious diseases is an important basis for
formulating corresponding prevention and control strategies, so
it has attracted the attention of a large number of researchers.
Specifically, good forecasting for infectious diseases requires
three main properties: (1) interpretability, that is, the model
reflects the epidemic features of infectious diseases in order
to guarantee the forecasted results to make sense in practice,
(2) feasibility, which involves the support of statistical software
(such as SPSS, SAS, and R), the availability of data, and
the needs from disease surveillance, etc., and (3) forecasting
performance, the inherent ability of the model to accurately
forecast the future epidemics of infectious diseases, so as to
help propose precise prevention and control measures and to
allocate limited resources in the most needed places. To this
end, previous research proposed the spatial transmission network
(STN) and showed its good interpretability and feasibility for the
transmission mechanism of diseases (6). However, the last but
most important work of forecasting performance assessment was
left to be done. Therefore, the purpose of this study was to further
explore the forecasting performance of the STN for infectious
diseases across multiple regions.

However, there were two major challenges when exploring

the forecasting performance of STN. The first challenge was

related to the rationality of the model. The STNmodel essentially
involved spatial clustering analysis, structure learning, and
parameter learning, where the vector autoregressive moving
average (VARMA) model was adopted for parameter learning.
Although it seemed natural to apply the VARMA model to
forecasting, the rationality remained quite unclear in the spatio-
temporal settings, especially when compared with mechanism
models (7, 8) and machine learning methods (9). For example, as
classic representatives of mechanism models, the compartmental
models, such as susceptible-infectious-recovered-susceptible
(SIRS) (10, 11), susceptible-exposed-infectious-recovered (SEIR)
(12), and susceptible-exposed-infectious-recovered-susceptible
(SEIRS) (13), have been widely applied in the field of influenza
prediction. Meanwhile, the machine learning methods are also
playing more and more important roles in infectious disease
forecasting. Svitlana et al. established and evaluated the capability
of long-short term memory (LSTM) for nowcasting (predicting
in “real time”) and forecasting (predicting the future) of

influenza-like illness (ILI) dynamics, which found that the neural
network structure that relied on LSTM units outperformed
the traditional regression model (14). Therefore, the rationality
of the VARMA model in infectious disease forecasting should
be qualified by comparing its performance with those of the
machine learning models and mechanism models.

In addition, the second challenge came from practical needs.
To be specific, both spatial and temporal transmission of
infectious diseases are influenced by many external factors, such
as the effective distance between the cities, population size, and
transportation. Previous research showed fantastic applications
on how such factors could be used to improve forecasting
performance (15). In addition, another inspiring study suggested
that, in order to verify the robustness of the model when dealing
with seasonal infectious diseases, its forecasting performance
should be verified in both high and low incidence seasons (16).
All these contributions shed light upon a systematic way to build
the forecasting framework based on the STN model.

This study will show whether the STN could overcome the
above two challenges and contribute to the forecast of infectious
diseases across multiple regions. The sentinel surveillance data of
ILI in the Sichuan Province of China from 2010 to 2017 was used
as an example for illustration. Sichuan is one of the core regions
for influenza surveillance in China. The representativeness of
these areas not only guaranteed the applicability of this method
in these regions but also offered evidence for future application
to other regions.

MATERIALS AND METHODS

Data Collection and Preparation
Ever since the outbreak of influenza A (H1N1) in 2009, China
has established a nationwide ILI sentinel surveillance system,
which consists of 193 sentinel hospitals in 30 provinces at
present. The identification of patients with ILI is based on the
standard case definition of the WHO, that is, body temperature
≥38◦C with either cough or sore throat, in the absence of an
alternative diagnosis (17). Besides, the ILI% was widely used in
influenza surveillance to reflect the local intensity of the influenza
epidemic, where ILI% = (the number of ILI cases in outpatient
and emergency departments)/(the total number of outpatient
and emergency cases) × 100% (18, 19). Taking n places as an
example, x1(t), x2(t), · · · , xn(t) denoted the ILI% values of the
place n at the t-th week. Accordingly, all the observed data at
the t-th week could be noted as xt =

{

x1(t), x2(t), · · · , xn(t)
}

,
where xt is a vector with n series components (boldface notation
indicated vectors and matrices hereafter). As for this study, the
weekly ILI% time series data came from each city of Sichuan
Province from 2010 to 2017, so t ranged from 1 to 416. Such
sample size was large enough relative to the complexity of the
models utilized below, since the maximum degrees of freedom of
the STN, LSTM, and SEIRS model employed by this study were
no more than 40. In addition, Zhang et al. reported that at least 3
years of weekly historical data were required for VARMA-type
models to assure the quality of infectious diseases surveillance
(20). Therefore, it was plausible that the sample size in this study
could support the model estimation.
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Furthermore, the application of STN required either each
univariate time series to be weak stationary (i.e., the mean
and covariance matrices of the time series are independent on
time), or the multivariate time series to meet the cointegration
condition (i.e., a linear combination of individual unit-root
non-stationary time series becomes a stationary series), where
the weak stationary and the cointegration conditions could be
checked by the unit-root test and cointegration test, respectively
(21). If both conditions were violated, one should seek other
time series analysis techniques for the solution. For the sake
of clarity, this study only focused on situations when both
conditions were satisfied, and readers who might be interested
in more complicated situations could refer to the works of other
researchers (22).

The Construction of STN
The construction of STN mainly consisted of three steps: spatial
clustering analysis, structure learning, and parameter learning.
First, due to the heterogeneity of ILI% data in Sichuan Province,
the spatial kluster analysis by tree edge removal (SKATER)
algorithm was used to divide the whole area into several
homogeneous clusters. Second, the structural information of
STN (i.e., the existence and direction of disease transmission)
among cities in each cluster was identified from the original
data through structure learning. Lastly, the parameters of STN
that measured the intensity of disease transmission between
different cities were estimated by parameter learning. After the
construction of STN, the future incidence of infectious diseases
could be forecasted.

Spatial Clustering Analysis
To avoid the curse of dimensionality in modeling and to make
the results more interpretable, the SKATER algorithm was
used for spatial clustering analysis. This is a graph clustering
algorithm based on the minimum spanning tree, which obtains
the clustering result that satisfies the spatial adjacency constraint
by cutting off the edges of the minimum spanning tree (23).
Specifically, after standardizing the ILI%, population density
(people per-square kilometer), and the number of domestic
tourists (10,000 person-times), the Euclidean distance between
the two regions was calculated to obtain the difference matrix.
The root adjacency method was used to constrain the adjacency
matrix, the minimum clustering area size was set to two regions,
and the result of cluster division was finally obtained.

The Structure Learning of STN
The first-order conditional dependencies approximation for
dynamic Bayesian network (G1DBN) was used to build the
structure of STN (24). It implemented the structural learning in a
two-step way. Specifically, it first learned a directed acyclic graph
from the first-order partial dependence relationships among the
time series of different regions. Then, it optimized the graph from
the first step to infer the network structure of the STN. As a
result, the estimated STN structure would include a set of nodes
to represent each city and pairs of edges to indicate which cities
have an impact on others in influenza transmission (6).

The Parameter Learning of STN
We used the VARMA model for parameter learning, which
was a flexible modeling framework that could comprehensively
describe and predict the dynamic relations among each
component of multivariate time series (25). Taking the n-
dimensional as an example, a general VARMA (p, q) model can
be written as:

xt = a0 +

p
∑

i=1

aixt−i + εt −

q
∑

j=1

bjεt−j. (1)

Where, p and q are non-negative integers, a0 is an n-dimensional
constant vector, ai and bj are n × n constant matrices, and {εt}

is a sequence of independent and identically distributed random
vectors. In addition, εt is the white noise sequence and the

residual of the model fitting, and
q

∑

j=1
bjεt−j is a moving average

(MA) term.
The model-fitting step was comprised of order determination

and parameter estimation. First, in the part of order selection,
the values of p and q in Equation (1) were determined. Tiao
and Tsay proposed to use the two-way p-value table for extended
cross-correlation matrices to specify the order (p, q) (26). Once
the orders were determined, the parameters of the VARMA
model could be estimated by the conditional likelihood method.
However, the VARMA model may encounter a problem of
identifiability, which means that the coefficients may not be
uniquely determined. To solve this problem, this study used the
Kronecker index approach to perform structural specification of
the VARMAmodel (25).

The Forecast of STN
We applied the minimum mean-squared error criterion for the
forecasts of the VARMA (p, q) time series xt . For VARMA (p, q)
model, the l-step ahead forecast of xt+l at the forecast origin t is:

xt(l) = E(xt+l|Ft) = a0 +

p
∑

i=1

aixt(l− i). (2)

A more convenient expression based on MA appears as:

xt(l) = E(xt+l|Ft) =

∞
∑

k=0

ψ l+kεt−k. (3)

The prediction of the minimum mean-squared error of
xt+l is the conditional expectation of xt+l at a given Ft . We
denote Ft and the information available at t and ψ l as the
coefficient matrices. The l-step ahead forecast error is Equation
(4). Consequently, the covariance matrix of l-step ahead forecast
error is Equation (5):
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et(l) = εt+l +

l−1
∑

k=1

ψkεt+l−k, (4)

Cov[et(l)] =
∑

ε
+

t−1
∑

k=1

ψk

∑

ε
ψT

k , (5)

where Equation (4) shows that the forecast error tends to the
random part of xt as l increases. When l approaches 0, xt(l)
tends to E(xt). Besides, Equation (5) shows that, as l approaches
infinity,Cov[et(l)] converges toCov(xt). As the time lag increases,
the dynamic dependence of the stationary reversible VARMA
model decays exponentially to 0. Equation (5) also provides an
effective method for calculating the covariance matrix of the
forecast error.

The Comparison Models
Since it has been already reported that the forecasting
performance of the VARMA model was superior to that of the
univariate time series model (27), this study chose another two
mainstream methods, SEIRS and LSTM, as comparison models.
The two methods respectively represented the mechanism
models and machine learning methods, which could serve as
benchmarks for forecasting performance comparison.

The SEIRS Model
The SEIRS model, as a type of mechanism model, has four
groups: susceptible (S), exposed (E), infectious (I), and recovered
(R), with the total population size N = S + E + I + R. For ILI,
the immunity of individuals after recovery is only temporary, and
there is still the possibility of reinfection. We emphasized that
both infected persons and exposed persons who may be in the
incubation period were infectious. Meanwhile, this study did not
consider dramatic population changes during only a few years.
Therefore, the SEIRS model was adopted in this study to describe
the transmission of ILI. The specific equation of the SEIRS model
adopted was as follows:



















dS
dt

= −
rβIS
N −

r2β2ES
N + λR

dE
dt

=
rβIS
N − αE+

r2β2ES
N

dI
dt

= αE− γ I
dR
dt

= γ I − λR

. (6)

In Equation (6), the N represents the total number of people
in the region. S, E, I, and R denote susceptible, exposed,
infected, and recovered group, respectively. For each unknown
parameter, β is the probability of the infected person transmitting
the virus to the susceptible person, β2 is the probability of
the exposed person transmitting the virus to the susceptible
person, r denotes the average number of susceptible persons in
contact with infected persons, r2 denotes the average number of
susceptible persons in contact with exposed persons, α represents
the probability of the exposed person becoming infected, γ

represents the probability of the infected person recovering to
health, and λ indicates the probability of the recovered person

returning to a susceptible state. The optimal estimates of these
parameters were estimated by the historical ILI% data of each city
based on the minimum fitted error.

The LSTM Method
The LSTMneural network is an improved algorithm based on the
recurrent neural network (RNN). By adding a “gate” structure, it
overcomes the shortcomings of RNN and avoids the vanishing
gradient problem. “Gate” structure can selectively forget or
memorize information, including the existence of a sigmoid
activation function. A LSTM unit contains three gates: forgetting
gate, input gate, and output gate, which makes the invariable self-
cycling weight matrix in RNN change. These changed weights are
adjusted continuously according to the learning process, so as to
solve the problem of gradient disappearance.

Performance Validation
The performance validation step included residual checking and
performance comparison.

For the residual checking part, since a well-behaved VARMA
model should ideally extract all the regular pattern information
out of the original data, the residuals of the model were white
noise (i.e., the data should be completely random series without
any regular pattern information). Therefore, the Ljung-Box
statistics was utilized in this study to verify the model by testing
whether residuals of the model were only white noises.

As for the performance comparison part, we compared the
results of the STN with those of the other two types of models.
To this end, the accuracy of the methods was measured. The
accuracy evaluated whether the forecasted values of the ILI%
were close to the real ones. In this study, considering that the
value of ILI% was decimal, the relative measurement index
would be appropriate to distinguish the difference of forecasting
performance of the models, so we adopted mean absolute
percentage error (MAPE) to monitor the accuracy. In addition,
to assess the forecasting performance of the model, the whole
time series data was split into the training set and the testing
set. We used the first set for the test of model fitting and the
second one for forecasting. For the overall performance, the
training set integrated the data from the 1st week of 2010 to the
26th week of 2017, while the testing set data consisted of data
from the second-half year of 2017. Furthermore, we also tried
several different dataset splitting methods (see Section Seasonal
Forecast) to evaluate the seasonal forecasting performance.

Seasonal Forecast
Influenza has the characteristic of seasonal epidemics, and the
high incidence season of disease epidemics is from November
to March of the next year. In order to study whether there was
a difference in the forecasting performance of STN in the high
incidence season and the low incidence season of the disease,
and the robustness of the forecasting performance of STN, the
last high incidence season (data integrated from the 44th week of
2016 to the 13th week of 2017) and the last low incidence season
(data integrated from the 14th week of 2017 to the 43rd week
of 2017) were specifically divided from the original data set for
forecasting verification. The forecasting performances of the STN
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and the other two models were compared in the high and low
incidence seasons of ILI.

All the above statistical tests were conducted at the statistically
significant level of 0.05. The SKATER was performed in GeoDa
1.18.0.0. SEIRS model and LSTM model were performed in
MATLAB R2021a. The rest of the statistical analyses were
performed in R 4.0.1 using the computing packages {MTS} for
the VARMAmodel and {G1DBN} for DBN.

RESULTS

Cluster Partitioning
The grouping of eight clusters based on the SKATER algorithm
is shown in Figure 1. However, this study did not include the
clusters where these cities may contain outliers. Therefore, 14
cities in Sichuan Province were included, which were divided into
5 clusters (i.e., cluster 1: Aba, Mianyang, Ganzi, and Ya’an; cluster
2: Guang’an, Suining, and Ziyang; cluster 3: Yibin, Luzhou, and
Neijiang; cluster 4: Chengdu and Deyang; cluster 5: Meishan
and Zigong).

Data Preparation and Description
The ILI% series of actual values of the 14 cities in Sichuan
could be seen from Figure 3 and Supplementary Figures 1–4.
In most time series, stationarity could be visually verified since

there was no dramatic change. Furthermore, except for Chengdu,
Suining, and Ziyang, the unit-root test showed that the values of
P of other cities were less than 0.05, which further confirmed
that the time series were stationary. For Chengdu, Suining,
and Ziyang, cointegration tests were performed on ILI% time
series vectors of all cities in their clusters (i.e., clusters 2 and
4). The results were significant, indicating that there were
both cointegrations among ILI% sequences of cities in these
two clusters. Besides, from the cross-correlation plots shown
in Figures 2A–F and Supplementary Figures 5–8, the existence
of dynamic correlations among the ILI% time series had been
verified. Therefore, it was appropriate to use the VARMA model
for further analysis.

Estimates of the VARMA Model
In this study, we estimated the VARMA model for 1–390 weeks.
The best model for each cluster is listed in Table 1.

Performance Validation
It could be seen from Figure 3 and Supplementary Figures 1–
4 that both the fitted values and forecasted values approximated
very well to the actual ones. In addition, the forecasting part also
exhibited that the 95% CI of forecasted values could basically
contain the actual values, which suggested the STN was also good

FIGURE 1 | The cluster results of spatial kluster analysis by tree edge removal (SKATER) algorithm.

Frontiers in Public Health | www.frontiersin.org 5 March 2022 | Volume 10 | Article 774984

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Wang et al. Spatial Transmission Network

FIGURE 2 | The cross-correlation of ILI% between cities of cluster 1. (A) Aba and Mianyang. (B) Aba and Ganzi. (C) Aba and Ya’an. (D) Mianyang and Ganzi. (E)

Mianyang and Ya’an. (F) Ganzi and Ya’an.

TABLE 1 | The best vector autoregressive moving average (VARMA) model for

each cluster.

Cluster Kronecker index VARMA model

1 (1, 1, 1, 1) (1, 1)

2 (1, 1, 1) (1, 1)

3 (2, 1, 1) (2, 2)

4 (1, 1) (1, 1)

5 (1, 1) (1, 1)

at precision. More details about the residual checking and model
comparison are given below.

Residual Checking
For cluster 1, the Q statistics for 1-, 5-, 10-, and 20-lag Ljung-
Box tests were 0.56 (df = 16, P = 1.00), 45.84 (df = 80, P =

1.00), 136.76 (df = 160, P = 0.91), and 294.01 (df = 320, P
= 0.85), respectively, which validated that the VARMA model
had fully extracted the useful information out of the original
data and that the left residuals were only white noise series.
Meanwhile, compared with Figures 2A–F, 4 displays that the
information of cross-correlation between dynamic time series
of cluster 1 has been fully extracted by the VARMA model.
The other clusters had similar results. More details are given in
Supplementary Figures 9–12.

Performance Comparisons
Comparing the forecasting accuracy of STN, SEIRS, and LSTM
models, Table 2 lists the MAPE value comparison of the three
models. The average MAPE of the 14 cites of STN was 31.134,
which was 25.26 and 49.82% less than that of the LSTM and
SEIRS respectively. At the city level, the MAPE of STN was
almost the smallest among the three models, with only a few
exceptions. For example, the forecasting accuracy of STN was
not the best among the three models in the three cities in
cluster 2, which might be affected by the instability of the
original data series of Suining and Ziyang. Although there
was a cointegration relationship between the three sequences
in this cluster, the instability of the sequence still affected
the forecasting performance of the STN model. In addition,
for the forecasting of Luzhou, SEIRS performed slightly better
than STN, which might be influenced by the geographical
location of Luzhou. As Luzhou is located at the intersection
of Sichuan, Yunnan, Guizhou, and Chongqing, its epidemic
situation is likely to be affected by other cities outside the
province, which was out the scope of this study since it only
built networks within Sichuan Province. However, even in this
case, the forecasting performance of the other two cities in
cluster 3 was still good. As for Ganzi, it could be seen from
Figure 3 that ILI% remains at a low level from 2010 to 2015,
and the incidence of ILI in some weeks was reported to be
zero. Except for the above plausible exceptions, the accuracy of
STN forecasting was generally better than that of the SEIRS and
LSTMmodels.
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FIGURE 3 | The fitted/forecasted time series vs. the actual values for cities of cluster 1. (A) Aba. (B) Mianyang. (C) Ganzi. (D) Ya’an.
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FIGURE 4 | The cross-correlation of the residuals between cities of cluster 1. (A) The residuals of Aba and Mianyang. (B) The residuals of Aba and Ganzi. (C) The

residuals of Aba and Ya’an. (D) The residuals of Mianyang and Ganzi. (E) The residuals of Mianyang and Ya’an. (F) The residuals of Ganzi and Ya’an.

TABLE 2 | The comparison of the forecasting mean absolute percentage error

(MAPE) of the three methods.

Cluster City STN LSTM SEIRS

1 Aba 112.875 158.754 147.466

Mianyang 27.797 51.749 81.770

Ganzi 101.340 49.793 80.979

Ya’an 17.298 19.708 89.588

2 Guang’an 9.329 6.182 40.684

Suining 22.778 15.485 36.475

Ziyang 15.834 24.119 13.515

3 Yibin 14.192 54.143 73.715

Luzhou 23.741 60.174 22.218

Neijiang 16.061 28.275 40.692

4 Chengdu 16.756 20.194 50.962

Deyang 31.440 40.642 77.262

5 Meishan 14.886 24.695 59.439

Zigong 11.550 29.290 53.774

AVERAGE 31.134 41.657 62.039

The minimum MAPE value of the three methods for each city is indicated in bold and

underlined in the table.

The Results of the Seasonal Forecast
The Forecast of High Incidence Season
The training set and testing set were redivided, and the forecast
analysis of high incidence season used data integrated from the

1st week of 2010 to the 43rd week of 2016 as the training set, data
integrated from the 44th week of 2016 to the 13th week of 2017
as the testing set. Table 3 lists the comparison of MAPE values of
the three models in forecast analysis in high incidence season.
According to the mean MAPE of the 14 cities, the forecasting
accuracy advantage of STN was more obvious than that of LSTM
and SEIRS. The MAPE value of STN decreased to 24.742 when
compared with that before the seasonal division of the forecast
set, and the MAPE value of LSTM reached about three times
that of STN. For each city except Zigong, the accuracy of STN
forecasting of the other cities was better than that of the other
two models. In Zigong, the forecasting accuracy of LSTM was
slightly better than that of STN. However, it did not affect the
overall assessment of performance since theMAPE in Zigong was
already very low and the difference between STN and LSTM was
even lower.

The Forecast of Low Incidence Season
In the forecasting analysis of low incidence season, we included
the data integrated from the 1st week of 2010 to the 13th week
of 2017 as the training set, and the data integrated from the
14th week of 2017 to the 43rd week of 2017 as the testing set.
Table 4 lists the comparison of MAPE values of the three models
in the forecasting analysis of low incidence season. According
to the mean MAPE of the 14 cities, the forecasting MAPE of
STN decreased to 26.209 when compared with that before the
seasonal division of the forecast set and was still better than
that of LSTM and SEIRS. At the city level, the accuracy of STN
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TABLE 3 | The comparison of the forecasting MAPE in the high incidence season

of the three methods.

Cluster City STN LSTM SEIRS

1 Aba 64.262 74.410 119.943

Mianyang 36.846 60.975 81.193

Ganzi 45.376 55.637 89.901

Ya’an 35.458 37.202 86.989

2 Guang’an 9.474 21.776 44.346

Suining 10.518 28.262 50.281

Ziyang 20.861 36.777 66.618

3 Yibin 12.189 84.445 59.409

Luzhou 25.449 32.391 31.811

Neijiang 17.640 46.750 19.606

4 Chengdu 24.027 27.664 48.388

Deyang 16.326 71.065 69.006

5 Meishan 16.441 68.871 23.672

Zigong 11.521 9.332 47.470

AVERAGE 24.742 46.826 59.902

The minimum MAPE value of the three methods for each city is indicated in bold and

underlined in the table.

TABLE 4 | The comparison of the forecasting MAPE in the low incidence season

of the three methods.

Cluster City STN LSTM SEIRS

1 Aba 89.490 115.434 121.485

Mianyang 22.858 15.868 51.397

Ganzi 78.919 63.378 86.207

Ya’an 18.395 23.174 89.810

2 Guang’an 12.344 15.428 52.549

Suining 16.127 17.211 42.276

Ziyang 10.869 10.305 11.566

3 Yibin 15.823 35.166 70.253

Luzhou 20.373 39.322 21.194

Neijiang 17.539 40.347 38.066

4 Chengdu 12.047 32.142 39.873

Deyang 25.111 35.297 71.895

5 Meishan 15.565 28.213 51.848

Zigong 11.463 21.537 57.054

AVERAGE 26.209 35.202 57.534

The minimum MAPE value of the three methods for each city is indicated in bold and

underlined in the table.

was better than that of the other two models for most cities
excluding Mianyang, Ganzi, and Ziyang. The low accuracy of
STN forecasting in Ganzi and Ziyang might be owed to the
reasons mentioned in Section Performance comparisons, and the
accuracy of Ganzi affected that ofMianyang since they were in the
same cluster.

In general, the accuracy of STN forecasting in both high and
low incidence seasons was the best among the three models, and
the MAPE value of STN decreased significantly when compared
with the forecast set which was not divided according to the

seasonality of influenza. To be more specific, the numbers of
regions with the best accuracy of STN forecasting in high
incidence season and low incidence season increased, especially
in high incidence season. This showed that STN had good
forecasting performance and strong robustness in both high and
low incidence seasons. Furthermore, STN had better forecasting
accuracy either in the high or low incidence season, but it was
more suitable in the high incidence season.

DISCUSSION

The results of this study illustrated that the STN had advantages
in forecasting performance of infectious diseases across multiple
regions. The accuracy of its forecasting performance was superior
to SEIRS and LSTM. Combined with previous research results
(6), it could be seen that the STNwould be very helpful in guiding
the practical prevention and control work of infectious diseases.

According to Stoto (28), a practical surveillance system should
include three parts: continuous monitoring of multivariate
data, applying algorithms to raise the alarm when something
unusual is happening, and a protocol on how to respond to
an alarm. It was observed from our results that the STN
could assist to improve all three parts of the surveillance
system. First, as a multivariate time series analysis model, the
STN model could inherently integrate and extract information
from multivariate data, which could not only be limited to
a single variable (e.g., ILI%) across regions but could also
contain other types of variables (e.g., meteorological, social-
economic, and environmental factors). The second advantage
of STN was that its results could suggest when and where
the next outbreak would probably occur and how serious the
next outbreak would be, so that it could provide suggestions
and evidence on whether an alarm should be raised. Last
but not least, the information of direction and time-lag of
influenza transmission exhibited by STN could also indicate
the way about how to respond to an alarm. For example, this
study found that there was a 1-week lagging transmission route
from Yibin to Luzhou (the estimated effect was 0.248), which
suggested that Luzhou should pay attention to the epidemic
situation of Yibin. The same suggestion was also applicable
to Yibin, where there was a 2-week lagging transmission
route from Neijiang to Yibin (the estimated effect was 0.014).
Furthermore, the lag effect as long as 2 weeks also reminded
that the surveillance of influenza should maintain a long enough
temporal window for early warning. Since the interpretation
of the STN model and its potential application were highly
consistent with the establishment of a multi-point trigger and
a multi-channel surveillance mechanism of infectious diseases
(29), it was expected that the STN model could probably serve
as a new tool for the improvement of intelligent early warning of
infectious diseases.

Except for the interpretation of results, there were still other
features that could also guarantee the potential use of STN in the
practice of influenza surveillance.

First, the VARMA model could provide evidence of both
strengths of association and temporality, which were the two
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key points of the Hill’s criteria for causality (30). Meanwhile,
under some mild conditions, the probability distribution of the
VARMAmodel could be reliably represented as a causal network,
and the latter was a commonly used tool in causal inference
(24). To this end, it was plausible that the STN could at least
partly serve for the etiological study to screen crucial clues of the
cause-and-effect relationships.

Secondly, from the perspective of representativeness, China
is a large country with great diversities among different areas
in many aspects (e.g., environment, population, economy,
and social customs), and Sichuan Province has the fourth
largest population, the fifth largest land, and the sixth highest
GDP in China. Besides, the population in Sichuan province
includes 55 of China’s 56 ethnic groups, and there are many
major types of landforms in Sichuan (e.g., mountains, hills,
plateaus, and plains). Therefore, the application of STN to the
surveillance of influenza in Sichuan province suggested that it
could also be considered for infectious diseases surveillance in
other areas.

However, it should also be acknowledged that there were
still some limits in our study. For example, this study
provided our explanations based on the features of our
analyzed results and some practical experience, so relevant
etiological and laboratory data were still in need to further
identify the speculations about the spreading direction of
influenza in the Sichuan province. Besides, there was a
long way to go from model building to making causal
inferences about influenza epidemics in the real world.
Therefore, it was highly expected that the STN could provide
a new way for causal inference in the surveillance of
infectious diseases.

CONCLUSION

This study applied the STN to forecasting infectious diseases
across multiple regions. The results illustrated that the STN
not only had good accuracy in forecasting performance but
could also indicate the spreading directions of infectious
diseases among multiple regions to a certain extent.
Therefore, the STN was a promising candidate to improve
the surveillance work.
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