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Abstract
Background: Fragile sites are regions of the genome sensitive to replication stress and to
exposure to environmental carcinogens. The two most commonly expressed fragile sites FRA3B
and FRA16D host the histidine triad (FHIT) and WW domain containing oxidoreductase (WWOX)
genes respectively. There is growing evidence that both genes contribute to cancer development
and they are frequently altered by allelic and homozygous deletions in a variety of tumors. Their
status is linked to prognosis in several malignancies and they are thought to be involved in early
tumorigenesis.

The loci for FHIT and WWOX both span over a megabase but the genes encode for small
transcripts. Thus the screening of intragenic deletion can be difficult and has relied on loss of
heterozygosity LOH assays, or genomic arrays.

Methods: Multiplex ligation dependent probe amplification MLPA, allows for the detection of
deletions/duplications and relative quantification of up to 40 specific probes in a single assay. A
FHIT/WWOX MLPA assay was designed, applied and validated in five esophageal squamous cell
carcinoma ESCC, cell lines established in South Africa where this cancer is of high prevalence.
Sixteen probes covered all FHIT exons and 7 probes covered WWOX.

Results: Both homozygous and hemizygous deletions were detected in FHIT, in four of the cell
lines with a preferential deletion of exons 5 and 4. Chromosome 3 short arm was present in normal
copy number indicating that deletions were site specific. In contrast WWOX was not altered in any
cell lines. RT-PCR expression pattern paralleled the pattern of deletions. Ten primary ESCC tumor
specimens were subsequently screened with this assay. FHIT exon deletions were found in four of
them.

Conclusion: This method offers an alternative to loss of heterozygosity studies. Simultaneous
scanning of FHIT and WWOX exons in the context of early tumorigenesis and tumor progression,
may help clarify the mechanistic events related to cancer development which are not revealed by
imuno histochemistry assays. The presence of site specific deletions of FHIT in these cell lines and
primary tumors support its possible role in South African ESCC and justifies a wider screening.

Published: 08 August 2006

BMC Cancer 2006, 6:205 doi:10.1186/1471-2407-6-205

Received: 23 March 2006
Accepted: 08 August 2006

This article is available from: http://www.biomedcentral.com/1471-2407/6/205

© 2006 Willem et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16895604
http://www.biomedcentral.com/1471-2407/6/205
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Cancer 2006, 6:205 http://www.biomedcentral.com/1471-2407/6/205
Background
The two most commonly expressed human fragile sites,
FRA3B and FRA16D, harbor genes which have a tumor
suppressive function, namely the fragile histidine triad,
FHIT, and the WW domain containing oxidoreductase,
WWOX genes respectively [1-3]. Both genes have small
exons distributed over their respective fragile loci and
large intragenic deletions have been detected in a wide
variety of malignant and pre-malignant tumors, reviewed
in [4,5]. In particular, FHIT inactivation can occur in early
stages of carcinogenesis [6], and also correlates signifi-
cantly with malignant progression [7-9]. Both WWOX
and FHIT have been implicated in cancers that are
strongly associated with environmental carcinogens such
as smoking and alcohol consumption.

Esophageal squamous cell carcinoma ESCC is a common
cancer in South Africa, ranking as second most common
malignancy in black males and third most common in
black females [10]. Similarly to other parts of the world
where this cancer is of high prevalence, a strong associa-
tion between environmental exposure and the risk of
developing ESCC has been demonstrated. Risk factors
include heavy smoking [11], exposure to fumonisin, a
fungal toxin produced by fusarium fungi growing on local
maize [12], consumption of alcohol, and home made
beer fermented from infected maize [13,14]. Human Pap-
illoma virus HPV infection, and poor nutrition, have been
made to make a contribution to the development of ESCC
[15].

The above risk factors and carcinogens have the potential
to affect the integrity of fragile sites directly or indirectly.
Tobacco exposure increases the expression of common
fragile sites [16], HPV preferentially integrates within frag-
ile sites loci [17], alcohol and fumonisin both affect folate
intake which may facilitate the expression of fragile sites
[18-20], and fumonisin exposure in cell cultures increases
the incidence of chromosomal damage [21,22]. This
strengthens the hypothesis that the combinatorial effect
of all or some of these factors may have a role in the initi-
ation of genetic instability early in the disease and that
fragile sites may be early targets. At present the genes
within the most common fragile sites FHIT and WWOX
have not been examined in South African ESCC.

The most commonly used method to investigate deletions
in FHIT and WWOX is loss of heterozygosity (LOH) anal-
ysis in separate assays [23-25]. Other methods such as
immuno histochemical (IHC) assays have provided a con-
siderable amount of data regarding the loss of Fhit protein
in a variety of cancers [26-29], IHC however does not
inform on the nature of inactivating genetic events that
may reflect the role of etiological factors. RT-PCR studies
are dependent on the availability of fresh material, which

are often difficult to obtain, as most biopsy specimens are
very small or fixed in paraffin. Since genomic deletions
and hypermethylation appear to be the main mechanism
of FHIT and WWOX inactivation [6,9,30,31] a significant
amount of information can be retrieved from the retro-
spective evaluation of archived paraffin embedded speci-
mens.

Although the FHIT locus spans 1,67 Mb and WWOX
spans more than 750 kb [2,32], both genes only code for
transcripts of around 1 kb. It should be noted that the
detection of LOH in the respective fragile locus does not
always reflect the loss of coding exons or of protein prod-
uct [25]. In addition, deletions within fragile sites may be
heterogeneous within one cell line, which could bias LOH
results.

In order to obtain an exon specific, cost effective and high
throughput method to screen ESCC specimens for FHIT
and WWOX genomic deletions, a new assay was designed
using the existing multiplex ligation-dependent probe
amplification MLPA technology [33]. This assay allowed
for the detection of deletions/duplications and relative
quantification of both FHIT and WWOX exons in a single
run. We evaluated its performance investigating FHIT and
WWOX deletions in five ESCC South African established
cell lines. The assay was subsequently used to screen the
genomic status of these two genes in ten primary ESCC
tumors.

Methods
Cell lines
The five esophageal carcinoma cell lines investigated here
were originally established from black South African
patients with known esophageal squamous cell carci-
noma. These were previously described in the literature
and referred to as cell lines: SNO, WHCO1, WHCO3,
WHCO5 and WHCO6, [34,35]. Cells were grown in Dul-
becco Modified Eagles medium (DMEM): HAMS F12
(GIBCO) (3:1) supplemented with 10% fetal calf serum
(FCS) in a humidified atmosphere at 37°C.

ESCC primary tumor tissue samples
Endoscopic esophageal tumor biopsies were collected
from ESCC patients by a gastroenterologist in the course
of routine diagnostic investigations. Touch preparations
were prepared from each sample for histological assess-
ment and were examined by an experienced pathologist.

The research was approved by the University of the Witwa-
tersrand Ethical Committee and patients were enrolled
after written consent was obtained.
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DNA preparation
After trypsinisation and centrifugation of the cultured
ESCC cells, DNA was extracted by standard phenol:chlo-
roform extraction followed by ethanol precipitation. DNA
from tumor biopsies was extracted by the same method.

RT-PCR
RNA was extracted from each cell line using the Qiagen
RNeasy kit (Qiagen GmbH, Hilden Germany) according
to the manufacturer's instructions. RT-PCR for the FHIT
full transcript was performed using previously published
primer sequences [36]. Primers were designed for WWOX
full transcript analysis. They were: forward primer 5'-GAG
TTC CTG AGC GAG TGG-3' mapping in exon 1, and
reverse: 5'-GCT CGT TGG AGA AGA GGA-3' mapping in
exon 9.

Fluorescence in-situ hybridization, FISH
Metaphases from each cell line were prepared as per
standard cytogenetic techniques. FISH analysis using
probes specific for the short arm of chromosome 3 and
the long arm of chromosome 16 (Qbiogene, Strasbourg,
France) was performed as per manufacturer's protocols
(Universal FISH protocol).

MLPA
The MLPA method initially developed and described by
Schouten et al, [33] was used to detect exons specific copy
number change in the FHIT and WWOX genes. Briefly, a
series of MLPA probes each consisting of 2 target specific
hemi probes, one of which is linked to a stuffer sequence
of variable length, and with two end sequences recognized
by universal MLPA primer pair are hybridized to the test
DNA. Once hybridized to the target DNA the 2 hemi
probes, designed next to each other, can be ligated and
PCR amplified. The stuffer sequence allows for each spe-
cific probe set amplification product to have a defined size
and to be separated by capillary electrophoresis. For each
probe the amount of PCR product obtained reflects the
amount of target DNA in the sample and relative target
copy number can be measured.

Sixteen probes for the FHIT gene covering all 10 exons
(two probes set covering exons 1 to 5 as well as exon 8)
and 7 probes for the WWOX gene covering 5 out of 9
exons were developed. Fifteen other probes for other
human genes on chromosome 3p and 16q as well as other
chromosomes, (8p, 9q, 10p, 12p, 16p), were included as
internal control.

The MLPA reaction was performed as previously described
[33] using ± 200 ng of DNA from each cell line and pri-
mary tumor.

Experimental data analysis
The PCR amplified products were separated by capillary
electrophoresis on an ABI 3100 Genetic Analyzer
(Applied Biosystems, Foster City, CA, USA). The peak
heights values were obtained by Gene Scan analysis soft-
ware (Applied Biosystems) and exported to an excel
spreadsheet for further processing.

Ten DNA samples extracted from healthy individuals were
first analyzed to assess the pattern of probe amplification
in normal tissue, to create a mean "reference control" pat-
tern, and to exclude the possibility of copy number poly-
morphism. For each probe in each sample run, the relative
peak height was calculated by dividing its absolute value
by the sum of all probes peak height for this run. A mean
normalized peak height was calculated for each probe and
standard deviation established. All five ESCC tumor cell
lines were then processed in duplicate from cell cultures
grown at different time and with differing DNA extrac-
tions. External control samples were included in each run.
The cell lines amplification patterns were consistent
across runs. The ratio of each cell line probe peaks to the
control sample probe peaks was first examined using rel-
ative peak height values.

Since a large number of chromosomal abnormalities may
be present in cancer cells, the normalization of probe
peaks by relative values (percentage) can distort the over-
all profile of probe amplification. Normalization to the
ratio of the absolute peak height of 'control probes' in the
tumor by the peak height of 'control probes' in the exter-
nal reference DNA is therefore preferable and has been
used with differing MLPA probes set [37,38]. Assigning
this ratio a value of one, it can be applied to normalize all
peaks in a run. The choice of adequate control probes is
important due to the number of genetic alterations that
may be present in cancer cells and affect "control probes"
themselves. Here we have used an absolute peak ratio,
selecting internal control probes whose pattern of ampli-
fication did not deviate from that of the reference control
in the same run as seen on the original Gene Scan data.

Results
Amplification pattern in controls
Five males and 5 female control DNA samples were used
to establish the relative pattern of probe amplification in
normal samples. A mean reference control pattern was
derived (380 probe points) (Figure 1A). Although sample
size was small, standard deviations were used based on
previous MLPA results and the consistency of amplifica-
tion patterns [39]. This was done to verify the recom-
mended confidence interval for interpretation of deletion
and amplifications in this assay. In the mean reference
control, when each probe peak value was normalized to
one, the addition of two standards deviations above and
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below respectively remained within a range of 1.3 and 0.7
(Figure 1B). A ratio of less than 0.7 was considered as a
deletion and a ratio greater than 1.3 was considered as a
gain.

Comparison of FHIT and WWOX DNA copy number in 
cell lines by MLPA and FISH
For subsequent experiments using the tumor cell lines,
control specimens were included in the run and experi-

(A) Mean "reference control" pattern of probe amplification established from 10 normal individual samplesFigure 1
(A) Mean "reference control" pattern of probe amplification established from 10 normal individual samples. Each probe is rep-
resented on the horizontal axis in the order of their size. The normalized peak heights are expressed in percentages on the 
vertical axis. (B) Two standard deviations above and below the mean peak height (normalized to one) for each probe are 
shown and validate the scoring of deletion/amplification within the: 0.7–1.3 ranges. Standard deviations are generally bigger for 
larger probes.
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ments were done in duplicate. First the relative peak
height value for each probe, in each cell line, was com-
pared to the same probe relative peak value in the external
control (Figure 2A). Cell line WHCO3 had a probe ampli-
fication profile comparable to the control with no signifi-
cant changes in FHIT and WWOX (Figure 2A). A complete
homozygous deletion of FHIT exon 5 was detected in cell
line SNO while the other FHIT exons were under repre-
sented. Relatives (not shown) and absolute peak heights
comparison of tumor to control specimen, showed FHIT
exons 4 and 5 deletion in cell line WHCO5 (ratio of 0.55)
(Figure 2B), compatible with a hemizygous deletion.

Because some internal control probes appeared to be
increased in the tumor cell lines, we normalized the peak
height ratios to a control probe that did not deviate from
the same probe in the external control sample of the same
run, (original Gene Scan data). The results are summa-
rized in Figure 3A, which shows FHIT and WWOX exons
copy number in each cell line. The ratios derived from
absolute values were comparable to ratios seen with rela-
tive values (Figure 2), but clarified the level of significance
of deletions and corrected the level of some control probe
over representation.

As for cell line WHCO5, WHCO6 had a preferential dele-
tion of FHIT exons 4 and 5, in addition all FHIT exons in
this cell line had a ratio near or below 0.7 compatible with
a hemizygous deletion of the full gene. Cell line WHCO1
had a homogeneous FHIT deletion across all exons con-
sistent with hemizygous deletion. In both cell lines delin-
eated as SNO and WHCO5, the internal control probes
that mapped near the FRA3B locus, at 3p25 and 3p22
respectively were not deleted, although cell line SNO had
a homozygous deletion of FHIT exon 5. FHIT deletions in
these cell lines were specifically confined to the FRA3B
region. In cell line WHCO1 the probe mapping at 3p22
was deleted, putting the telomeric boundary of the dele-
tion between 3p25 and 3p22. In cell line WHCO6, which

had a preferential deletion of exons 4 and 5 of the FHIT
gene, both 3p probes were underrepresented compatible
with hemizygous deletion of this region. However FISH
using a chromosome 3 short arm library 3p, showed 2
copies in this cell line (Figure 3B and Table 1). Both cell
lines SNO and WHCO1 had 2 or more 3p copies (Figure
3B and Table 1). Cell line WHCO5 had a chromosome
number of 117 with 4 to 5 copies of most chromosomes
and four copies of 3p. MLPA does not detect balanced
copy number changes such as tetraploidies. The unbal-
anced deletion of 3p was clearly detected by MLPA. In all
cell lines the 3p deletion was therefore specific for the
region surrounding FRA3B.

By contrast in none of the cell lines WWOX deletions
could be detected, with all ratios having values above 1
(but below 1.3). Cell line WHCO6 showed an increased
copy number for exon 1 and 9; chromosome 16 q was
however present in 3 to 4 copies in this cell line shown by
FISH analysis with a chromosome 16q library, (results not
shown). This was paralleled by an increased MLPA signal
for some of the control probes mapping to 16q and
included in this assay.

RT-PCR
All cell lines having a deletion in one or more exons of
FHIT, had an aberrant FHIT RT-PCR pattern (Figure 4).
Both cell lines WHCO5 and 6 showed the presence of a
smaller transcript that could represent alternative splicing
of the remaining allele. Cell line WHCO1 showed a weak
full transcript as well as an additional small product. Cell
line SNO exhibited 2 aberrant size products on RT-PCR
that were consistent across experiments. Sequencing how-
ever showed non-coding transcripts, probably due to the
fact that exon 5 is the first FHIT coding exon. RT-PCR spe-
cific for exon 5 confirmed the deletion in cell line SNO
(results not shown). Cell line WHCO3, which did not
exhibit any deletion, had a normal FHIT transcript
although it seemed weakly amplified.

Table 1: Summary of FISH, MLPA and RT-PCR results for FHIT on the five ESCC cell lines.

Cell lines Modal chromosome 
number

FISH 3p copy 
number*

MLPA FHIT exon dosage deletion RT-PCR

Control 46 2 Normal Normal transcript
SNO 47 2+ Homozygous deletion exon 5 Aberrant transcripts only
WHCO1 52 2+ 2 small Hemizygous deletion exons: 1 to 10 Normal transcript and weak expression

Aberrant transcript
WHCO3 51 2+ Normal Normal transcript

Weak expression
WHCO5 117 4 Hemizygous deletion exons 4 and 5 Aberrant transcript only and weak expression
WHCO6 47 2 Hemizygous deletions exons 1, 3, 4, 5, 7, 

10. (preferential 4 and 5)
Aberrant transcript only and weak expression

*: A sign + in the FISH column refers to additional 3p copy number full or partial.
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(A) Comparison of relative peak height values: control/cell linesFigure 2
(A) Comparison of relative peak height values: control/cell lines. Comparisons of relative probe peak heights between 
cancer cell lines in dark grey, and control, in yellow. FHIT exon specific probes are marked FHIT E1, E2...and WWOX exon 
probes: WWOX E1, E2. Internal controls probes are labeled according to their chromosomal location. Top, cell line SNO 
showing a homozygous deletion of FHIT exon 5 with both exon 5 probes. The second and third internal control probes, on 
10p and 9q, appeared increased in copy number in SNO. They were not used to normalize data when ratios were derived 
from absolute peak height values. Middle, no significant deletion nor amplification in either FHIT or WWOX was seen in 
WHCO3. (B) Absolute peak height values, comparison control/cell line WHCO5. Bottom, comparison of absolute 
probe peak heights between WHCO5 in dark grey, and control, in yellow. FHIT exons 4 and 5 were present in half copy 
number. Controls probes on chromosome 16 were consistent with the external control.
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(A) Graphic representation of FHIT and WWOX exon copy number in each cell lineFigure 3
(A) Graphic representation of FHIT and WWOX exon copy number in each cell line. Absolute ratios were normalized to a 
control probe whose amplification was consistent to that of the external control sample. Exons in their coding order (horizon-
tal axis) have been represented. (B) FISH with chromosome 3 short arm specificprobe, 3p, labeled with a red fluorochrome 
(arrowed) in each cellline.
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RT-PCR on WWOX showed a normal amplification prod-
uct size in all cell lines (results not shown). The combined
information of MLPA, FISH and RT-PCR is summarized in
Table 1.

Evaluation of FHIT and WWOX DNA copy number in 
primary tumors by MLPA
Ten ESCC primary tumors were investigated with the
MLPA assay. Four controls were included in the reaction,
and MLPA reactions were performed in duplicate. Six
tumor specimens showed an amplification profile compa-
rable to that of the mean reference control with no signif-
icant exon deletions of FHIT or WWOX, (results not
shown). Four tumor specimens showed deletions span-
ning the FHIT locus. Figure 5 shows the respective abso-
lute peak height ratios of tumor samples to control, for
FHIT and WWOX exon specific probes. ESCC samples
delineated as CA1 and CA2 showed a pattern consistent
with a hemizygous deletion of the whole FHIT locus; a
preferential deletion of exons 7 to 10 was noticeable in
CA1 (Figure 5) and included the probe at 3p22. The dele-
tion extended over 3p22 and 3p25 in the tumor deline-
ated as CA2. The tumor specimens delineated as CA3 and
CA4 had preferential deletions of FHIT specific exons,
FHIT exon 5, and FHIT exons 3 and 4 respectively (Figure
5). As observed in the permanent ESCC cell lines, WWOX
exons were not deleted in these primary tumors.

Discussion
This study describes the value of an innovative approach
using an MLPA assay specifically designed to scan the
exon intragenic composition of the FHIT and WWOX
genes involved at fragile sites, here evaluated in the setting
of ESCC South African cell lines and primary tumor spec-
imens.

Many studies have used LOH, assays to detect large intra-
genic deletion in genes at fragile sites [40-42]. However,

deletions occurring within fragile site are themselves het-
erogeneous [1,43], they can be discontinuous and do not
always affect coding exons [32]. In this approach, the
detection of deletions is reflected by ratios (Figure 3) and
does not depend on the presence of informative markers.
Hemi and homozygous genomic deletions encompassing
FHIT and WWOX exons were targeted to reflect the exon
dosage composition of the genes. The internal control
probe used to normalize the peak heights should be
selected in each cancer sample and should have an ampli-
fication pattern consistent with its equivalent in control
samples included in the same run. Fifteen internal control
probes dispersed in the genome expanded the possibili-
ties.

In this study there was a correlation between the presence
of FHIT exon deletions and aberrant pattern of RNA
expression in the cell lines. FHIT expression was generally
very low in the established ESCC cell lines. Due to its exon
based design, this assay would miss intronic genomic
deletions that do not affect exon integrity but may inhibit
FHIT expression as was observed in some studies [32]. In
this regard it is worth noting that since most of the FHIT/
WWOX probes map within exons, the assay could be used
for RNA studies.

Despite some controversy regarding the involvement of
FHIT in oncogenesis there is mounting evidence to sug-
gest that it is more than a passive actor, although the
nature of its role in differing cancer scenarios subtypes
remains to be elucidated. FHIT is altered in a wide variety
of tumors, mostly by genomic deletions and/or promoter
hypermethylation, which results in inhibition of the FHIT
product. Several reports have raised pertinent questions
regarding the relevance of FHIT deletion to cancer devel-
opment: exon skipping alternative transcripts have been
found in normal tissues in addition to normal transcripts
[44-46], the gene lies within an instable genomic region
which may be mechanistically deleted and the effect of
hemizygous deletion in tumors is unclear. Experimental
models have shown that FHIT full or haplo insufficiency
confers an increased sensitivity to carcinogen exposure
[47]. FHIT has an anti-apoptotic activity [48] and it is pos-
sible that FHIT decreased expression facilitates the occur-
rence of added deleterious genetic events.

Four of five SA ESCC cell lines and four of ten primary
tumors had a FHIT deletion suggesting that FHIT might be
of relevance in SA esophageal cancer as found in other
parts of the world where the incidence of this type of can-
cer is high [7,31]. Exons 4 and 5 tended to be the prefer-
ential target in three cell lines and two primary tumors, as
in previous observations [1,49]. Cell line SNO had a
homozygous deletion of exon 5 and no functional tran-
script. The other three cell lines had hemizygous deletion

A 2% agarose gel, showing RT-PCR results of FHIT expres-sion (full transcript) investigated in the 5 ESCC cell linesFigure 4
A 2% agarose gel, showing RT-PCR results of FHIT expres-
sion (full transcript) investigated in the 5 ESCC cell lines.
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of FHIT exons, with an abnormal expression pattern. The
evaluation of chromosome 3p copy number by FISH as
well as the internal control probes on 3p in MLPA estab-
lished that these deletions were specific for the FRA3B
region in ESCC cell lines and in three of four primary
tumors. Two of the primary tumors, had an MPLA profile
consistent with hemizygous deletion of the FHIT locus.
FHIT has previously been investigated in South African
oral squamous cell carcinoma (OSCC) [50,51] which is
known to share similar etiological risk factors with ESCC.
In one study, the authors found reduced or absent Fhit
protein in 12 of 17 tumors and aberrant RT-PCR products
in a third of the cases [50]. In the present study, FHIT dele-
tions were associated with aberrant transcripts in the cell
lines and deletions were observed in a third of primary
ESCC tumors. It would be necessary to screen a larger
cohort of primary tumors to evaluate the importance of
FHIT and WWOX intragenic deletions in SA ESCC.

In contrast to FHIT, no deletion was observed in WWOX
in either the cell lines or the primary tumors. Some studies
have shown that the simultaneous loss of expression of
FHIT and WWOX is frequent in several cancers [52-54].
Since all common fragile sites are sensitive to external car-
cinogens these findings raise questions as to the exact
mechanism involved in these cell lines. FHIT loci could

have been altered early in the disease process and a clone
be driven/facilitated by its loss with FRA 3B being the
most sensitive fragile site [55]. Deletions could also repre-
sent a later event where FHIT haplo-insufficiency aggra-
vated an already unstable genetic background. WWOX
might be concordantly inactivated via a differing mecha-
nism. While LOH at the WWOX locus has been reported
in ESCC [56], WWOX is frequently inactivated by pro-
moter hypermethylation [57,58], which was not detected
in this assay.

FHIT loss, with or without WWOX loss, has been shown
to correlate positively with tumor invasiveness and prog-
nosis in several cancers (breast, pancreas, gastric cancers)
[54,59,60]. At the same time, Fhit protein loss can be
detected early in some cancer, including ESCC, and
appears to correlate with the stages of malignant transfor-
mation [7]. Whether involved early in the disease or
deleted as a consequence of genomic instability and
enrolled as a partner in the progression of the malignant
phenotype it will be important to establish the role of
genes at fragile sites in relation to specific carcinogen
exposure and disease behavior. Interestingly two recent
and independents studies have shown that both in
patients and experimentally induced pre-malignant
lesions there is an activation of the DNA damage response

Graphic representation of FHIT and WWOX exon copy number in four primary ESCC tumorsFigure 5
Graphic representation of FHIT and WWOX exon copy number in four primary ESCC tumors. Absolute peak ratios were nor-
malized to control probes not affected in the tumor, (10p, 8p). Exons in their coding order (horizontal axis) have been repre-
sented.
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and increased genetic instability at fragile sites, before
genomic instability [61,62]. The detection of genetic
imbalances at fragile sites may therefore be of value to
detect the "signature" of replication stress [63] and may
assist to characterize pre-malignant lesions.

Conclusion
The FHIT/WWOX assay described in this study may offer
a rapid and cost effective method to assist a deletion
screening of tissue lesions associated with heavy carcino-
gen exposure, (esophageal, head and neck, and lung
pathologies). It may help clarify whether genes at fragile
sites tend to be concordantly deleted.

In this study, the assay detected FHIT deletions in four of
five SA ESCC cell lines and four of ten primary tumors,
which justifies a wider screening in SA ESCC patients. The
FHIT/WWOX MLPA kit is likely to be a valuable tool in
other cancer where its prognostic and early screening
value will have to be assessed further.
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