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Diabetic nephropathy is the leading cause of chronic kidney disease (CKD) in western countries. Notably, it has a rapidly rising
prevalence in China. The patients, commonly complicated with cardiovascular diseases and neurologic disorders, are at high
risk to progress into end-stage renal disease (ESRD) and death. However, the pathogenic mechanisms of diabetic nephropathy
have not been determined. Cellular senescence, which recently has gained broad attention, is thought to be an important player
in the onset and development of diabetic nephropathy. In this issue, we generally review the mechanisms of cellular senescence
in diabetic nephropathy, which involve telomere attrition, DNA damage, epigenetic alterations, mitochondrial dysfunction, loss
of Klotho, Wnt/β-catenin signaling activation, persistent inflammation, and accumulation of uremic toxins. Moreover, we
highlight the potential therapeutic targets of cellular senescence in diabetic nephropathy and provide important clues for
clinical strategies.

1. Introduction

Diabetic nephropathy (DN) has been the leading cause of
CKD and renal failure in developed countries. In the past
two decades, the morbidity and mortality of DN have been
rising rapidly in the worldwide population [1–4]. Along with
the kidney injury, diabetic patients often suffer from multiple
complications, such as retinopathy, neuropathy, and cardio-
vascular diseases. All of them contribute to a high risk of
death [5]. Besides health problems in patients, DN also leads
to a heavy burden to the society.

Previous reports indicate that the mechanisms of DN
involve a multifactorial interaction of metabolic and hemo-
dynamic factors such as high blood glucose, advanced glyca-
tion end-products (AGEs), and the renin-angiotensin system
(RAS). They further link to the activation of protein kinase C-
(PKC-) induced generation of reactive oxygen species (ROS)
[6, 7], which further mediates the activation of downstream
transcription factor nuclear factor kappa-light-chain
enhancer of activated B cells (NF-κB). Thus, the main treat-
ments of DN refer to modulate glycemic and blood pressure
through insulin and RAS inhibitors. However, they could

only delay the progression of DN but not prevent or cure it.
Patients suffering from DN still inevitably reach the stage of
ESRD at an alarming rate in both developed and developing
countries [8–10]. Hence, the new pathogenic mechanisms
except hyperglycemia and hypertension should be deter-
mined for a better management of DN. Recently, the emerg-
ing role of cellular senescence in DN has attracted a broad
attention. However, a comprehensive elucidation has not
yet been achieved. In the present review, we will focus on
the role of cellular senescence and its related mechanisms in
DN. Furthermore, we will explore the potential therapeutic
targets of cellular senescence and provide important clues
for clinical strategies in the management of DN.

2. DN and Renal Aging

The aging kidneys undergo a wide range of macrostructural
changes, such as decreased cortical volume, increased surface
roughness, and augmented numbers and sizes of cysts [11],
which correspond to the typical microstructural features of
glomerulosclerosis, tubular atrophy, interstitial fibrosis, and
nephron loss [12]. Cellular aging or cellular senescence is

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2019, Article ID 7495629, 16 pages
https://doi.org/10.1155/2019/7495629

https://orcid.org/0000-0001-5044-6965
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7495629


the critical factor for the process of aging. Although the
senescent cells remain viable, they show typical changes with
enlarged and flattened cell bodies, apoptosis resistance,
increased activity of senescence-associated β-galactosidase
(SA-β-gal), and upregulation of cyclin-dependent kinase
(CDK) inhibitors including p16INK4A, ARF proteins, and
p21 [13–16]. Furthermore, senescent cells, with the secretory
features known as the senescence-associated secretory phe-
notype (SASP), could produce proinflammatory cytokines,
such as tumor necrosis factor-α (TNF-α), interleukin-6
(IL-6), and monocyte chemoattractant protein1 (MCP-1),
to greatly affect the neighboring cells [17, 18].

Recent reports show that CKD presents as a clinical
model of premature aging. Wang et al. introduced a new
concept of CKD-associated secretory phenotype (CASP),
which indicates that senescent renal cells could secrete SASP
components of various cytokines such as IL-1, IL-6, and
TNF-α [19, 20]. Other reports also show that DN is highly
associated with accelerated aging in various types of cells
such as tubular cells, podocytes, mesangial cells, and endo-
thelial cells [21–23]. Notably, hyperglycemia could directly
induce cellular senescence in mesangial [24] and tubular cells
[13, 25, 26]. Interestingly, high glucose could also induce
macrophages to secrete SASP components, thus promoting
the development of a low-grade inflammatory state and
cellular senescence [20].

Besides hyperglycemia, the production of AGEs and
induction of oxidative stress, chronic persistent inflamma-
tion, glucose toxicity, and lipid metabolism disorder under
DN disease conditions could cooperatively promote the grow-
ing microenvironment for senescent cells [27]. Conversely,
senescent cells could accelerate the progression of disease.
The studies [28] show a strong association between glomerular
expression of p16INK4A and proteinuria. In addition, the
excessive SA-β-gal activity and expression of p16INK4A in

tubules are positively correlated with interstitial fibrosis,
tubular cell atrophy lesions. Of note, tubular cell senescence
is intimately associated with BMI and blood glucose level,
implicating that controlling cellular senescence plays a crit-
ical role in the therapeutics of DN.

There are two main consequences from the accumulation
of senescent cells. First, as one might expect, because of per-
manent cell cycle arrest, cellular senescence may cause a loss
of self-repair capacity and regenerative ability [29–32]. These
would lead to the exhaustion of renal cells as well as other
progenitor or stem cells. A study shows that the number of
endothelial progenitor cells is 30%–50% lower in patients
with chronic kidney disease than that in healthy subjects
[33]. There are a limited reservoir, decreased population,
and low renewal efficiency of stem cells in DN-affected
kidneys [34, 35], which would certainly accelerate the pro-
gression of disease. Second, senescent cells could produce
proinflammatory and matrix-synthesizing cytokines, such
as IL-6 and TGF-β. These SASP-associated molecules may
cause persistent inflammation and fibrosis, as well as stem
and renal cell renewal dysfunction in a paracrine and auto-
crine fashion [17, 36]. Collectively, cellular senescence partic-
ipates in many pathological processes to accelerate the
progression of DN. In this review, we discuss the role of
cellular senescence in the pathogenesis of DN, highlight
new findings on the mechanisms of cellular senescence
(Figure 1), and propose the novel strategies to treat patients
with DN by targeting cellular senescence.

3. The Mechanisms of Cellular Senescence in
Diabetic Nephropathy

3.1. Telomere Attrition and Cellular Senescence. Telomeres
are stretches of repetitive DNA, which are located at the end
of each chromosome. Telomeres protect the chromosomes
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Figure 1: The cellular senescence in diabetic nephropathy.
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from degradation or fusion [37, 38]. In repeated cell division,
the length of a telomere may gradually shorten due to the lack
of telomerase activity, an enzyme that helps to maintain the
length of the chromosome.

Telomere shortening could occur in both type 1 and
type 2 diabetes [39]. It can be accelerated by inflammation
[40, 41], hyperglycemia, AGEs [42], and chronic oxidative
stress [43], the main mechanisms of diabetes. Telomere attri-
tion could trigger stress-induced premature senescence
(SIPS). As early as 1999, it was found that telomere shorten-
ing is displayed in kidney diseases [44]. Consistently, recent
studies show that high glucose induces accelerated senes-
cence in proximal tubular cells, which is related to telomere
shortening [28]. In both type 1 and type 2 diabetes, chromo-
somal telomere attrition is associated with renal cell senes-
cence, proteinuria, and the progression of DN [45, 46].
After the prevention of telomere attrition, fenofibrate pro-
vides beneficial effects on the treatment of DN [39, 47]. The
p53-p21-Rb signaling pathway is involved in the cellular
senescence caused by telomere attrition under the condition
of high glucose [48]. Besides the kidney parenchymal cells,
the telomere of white blood cells in DN patients also displays
the state of shortening. Although suggested as a biomarker in
coronary heart disease [49], telomere shortening could also
be applied in the diagnosis of DN. Supporting findings show
that there is a high association between telomere length
shortening and the progression of nephropathy through the
mass population surveys [50].

3.2. DNA Damage and Cellular Senescence. DNA damage has
been thought to be a main cause of cellular senescence since
the late 1950s [51]. Besides the “wear and tear damage” during
normal aging, there are various stress factors that could
directly induce the damage of DNA, such as oxidative stress,
ultraviolet (UV) or gamma irradiation [52, 53], chemothera-
peutics [54], and hyperproliferation caused by the Ras onco-
gene [55]. Under diabetic conditions, hyperglycemia-induced
generation of ROS and accumulation of AGEs may induce
DNA damage and then trigger premature senescence in cells
[56]. In type 1 diabetes rat models, AGEs and oxidative stress
could induce DNA damage in both glomerular and tubular
cells [57].

All of these DNA-damaged stressors could trigger a per-
manent DNA damage response (DDR) that leads to the activa-
tion of phosphatidylinositol 3 kinase-like kinases, such as
ataxia telangiectasia-mutated (ATM) or ataxia telangiectasia-
mutated and Rad3-related (ATR) kinases. These kinases
subsequently activate P53 and its transcriptional target
p21CIP1/WAF1. In turn, p21CIP1/WAF1 inhibits cyclin-dependent
kinase 2- (CDK2-) mediated phosphorylation of the retinoblas-
toma protein (Rb). The hypophosphorylated Rb binds to the
E2F transcription factor, preventing E2F through interacting
with the transcription machinery. This process ultimately
results in permanent cell cycle arrest, i.e., cellular senescence.
This pathway is also called ATM/ATR-p21axis [23, 58]. Ulti-
mately, senescent cells exhibit elevated levels of DNA damage
response proteins 53BP1 and γH2AX and poor repair capacity
for DNA strands. These could induce the restructure of the epi-
genome (see below), such as CpG methylation patterns [59].

3.3. Epigenetic Alterations and Cellular Senescence. Epige-
netics refers to heritable alterations in gene expression and
phenotype without involving changes in the DNA sequence.
Epigenetic modifications include cytosine methylation of
DNA (DNA methylation, DNAme), histone posttransla-
tional modifications (PTMs), and noncoding RNAs [60–
63]. Alterations in the epigenome underlie the dynamic
switching of chromatin between a transcriptionally silent
compact structure (heterochromatin) and an active relaxed
structure (euchromatin) that cooperatively regulate gene
expression [64].

DNAme occurs primarily, but not exclusively, at the sites
of cytosine-guanine (CpG) dinucleotides. DNAme usually
represses gene transcription through recruiting repressor com-
plexes or precluding transcription factors [65]. However, the
regulatory effects of DNAme can vary from gene repression
to gene activation, which largely depends on the genomic con-
texts of the targeted sequences, such as promoters, gene bodies,
enhancers, and repeated sequences [62]. PTMs mainly include
histone lysine acetylation (HKAc) and histone lysine methyla-
tion (HKme). HKAc activates gene expression, while HKme
activates or represses transcription depending on the lysine
residue modified and the extent of methylation (mono-, di-,
or trimethylation) [64, 65]. Other histone modifications con-
sist of phosphorylation, sumoylation, ubiquitination, ADP-
ribosylation, and O-GlcNAcylation [66]. They are also
important but not well-studied.

Epigenetic changes could appear in the very early stage
of DN. In 5-week-old db/db mice, the expression of Agt,
an important component of the renin-angiotensin system,
is upregulated by histone H3K9 acetylation [67, 68]. Simi-
larly, the hypomethylation of CpG islands in Claudin-1 gene
[67, 68] is also found at a very early stage in diabetes before
the increase in albuminuria.

Increasingly, epigenetic changes are thought to be impor-
tant in the development of DN through the induction of oxi-
dative stress. In a rat model of diabetes, H3K27me at the
enhancer site of zeste 2 repressive complex 2 subunit
(EZH2) dampens the expression of the endogenous antioxi-
dant inhibitor thioredoxin-interacting protein (TXNIP) via
repressing the transcription factor PAX6. The inhibition of
EZH2 augments proteinuria, podocytopathy, and renal oxi-
dative stress, through the inhibition of glomerular TXNIP
expression [69]. In addition, high glucose-mediated TXNIP
expression is coordinated by histone acetylation and methyl-
ation in diabetic kidneys [70]. Similarly, in podocytes, high
glucose could induce CpG promoter hypomethylation and
histone H3 hyperacetylation through the activation of his-
tone GCN5 acetyltransferase, which would drive the expres-
sion of p66Shc [71, 72], the key regulator of oxidative stress
and player in lifespan shortening [73]. Furthermore, high
glucose could also recruit Suv420H2 methyltransferase and
LSD1 histone dimethyltransferase to the gene promoter of
superoxide dismutase 2 (SOD2), resulting in the downregula-
tion of SOD2, a strong endogenous antioxidant [74].

Epigenetic alterations also play important roles in per-
sistent inflammation and autophagy deficiency, two main
mechanisms of cellular senescence. In vascular endothelial
cells [75–77] and inflammatory cells, high glucose induces
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H3K4me1 activation through SET7 lysine methyltransferase
to encode the proinflammatory factor NF-κB [78]. More
and more studies show the important roles of noncoding
RNAs in the development of DN. In db/db mice, miRNA-
125b represses H3k9me3 through the downregulation of
Suv39h1 histone methyltransferase, which leads to the upreg-
ulation of MCP-1 and IL-6, the two chemoattractants for the
differentiation and migration of monocytes and lymphocytes
[79]. Another noncoding RNA named miRNA-146a, a well-
known anti-inflammatory microRNA, increases in the early
stage of DN to protect against inflammation and renal fibro-
sis through inhibiting the activation of M1 macrophage [80].
Additionally, high glucose induces the activation of histone
deacetyltransferase 4 (HDAC4) in podocytes, which leads to
the deacetylation and silence of STAT1, a named gene in
promoting autophagy to exert renoprotective function
[81]. Furthermore, the administration of histone deacetylase
(HDAC) inhibitor trichostatin A reduces kidney injury
through alleviating the loss of Klotho, a well-known antiaging
protein [82]. These studies further confirm the mediating role
of epigenetic alterations in cellular senescence.

3.4. Mitochondrial Dysfunction and Cellular Senescence

3.4.1. Mitochondrial Reactive Oxygen Species (mtROS) and
Mitochondrial Dysfunction. ROS can be both a trigger and
an effector in the aging process and have been viewed as a
cause of the aging process since 1996 [83]. Mitochondrial
ROS (mtROS) could be driven by external stimuli, such as
inflammatory cytokines, growth factors, or environmental
toxins. The overproduction of mtROS increases in natural
aging and age-related diseases [84]. The production of
mtROS originates from the defects in the electron transport
chain (ETC), which promotes electron leakage to form super-
oxide radicals, a key player in cellular senescence and acceler-
ating aging [85]. The overproduced mtROS could damage
protein, lipid, and DNA, which further trigger the patholog-
ical changes [86]. It is noteworthy that in diabetic nephropa-
thy, the altered metabolic state requires extra demands of
ATP, which would accelerate electron leakage to produce
excessive ROS. The accumulative ROS in the mitochon-
drion has a detrimental effect in the integrity and content
of mitochondrial DNA (mtDNA), which encodes the sub-
units of ETC complexes. This would further induce mito-
chondrial dysfunction and increase the production of ROS
[87]. Notably, 30% of diabetic patients are suffering from
mitochondrial dysfunction as well as reduced mitochondrial
biogenesis, which is tightly associated with the severity of
kidney diseases [88].

However, the exact role of ROS in cellular senescence is
controversial. Although ROS is commonly considered as a
cause of cellular senescence, recent findings show that it also
extends Drosophila’s lifespan, especially through respiratory
complex I reverse electron transport [89]. Other reports also
show that low levels of ROS could serve as second messengers
to extent lifespan in Caenorhabditis elegans [90–92]. More-
over, chemical inhibition of glycolysis or exposure to meta-
bolic poisons that block respiratory complex I (rotenone,
paraquat, or piericidin A) or complex III (e.g., antimycin A)

also prolong lifespan in C. elegans in a ROS-dependent man-
ner [93]. Thus, the role of ROS homeostasis in cell aging
under diabetic conditions may need more studies to confirm.

It is noteworthy that the production of mtROS could
induce the mutations of mtDNA, which contributes to the
aging process. This theory is confirmed by mitochondrial
mutator mice, an early aging mice model expressing a
proofreading-deficient DNA polymerase POLGγ. In those
mice, the accumulated mutations of mtDNA significantly
accelerate aging phenotype [94]. Recently, the evidences of
mtDNA mutation are shown in DN patients. A study shows
that mtDNA mutation G13997A in ND6 gene, a key gene
encoding one of the subunits of respiration complex I
(NADH dehydrogenase), positively correlates with the devel-
opment of diabetes and related nephropathy [95]. However,
some studies show that mutations of mtDNA are not major
contributors to aging, especially in fruit flies [96]. The reason
lies in that fruit flies are less sensitive to mtDNAmutations in
adulthood than during development. Hence, more studies are
needed to prove the correlation between mtDNA mutations
and cellular senescence in renal cells.

3.4.2. Mitophagy Impairment and Early Senescence. Mito-
phagy plays an important role in preserving healthy mito-
chondria via the removal of altered mitochondria, clearance
of protein aggregates. Mitophagy exerts protective functions
in inhibiting apoptosis, reducing ROS production, and anti-
inflammation [97–99]. It is reported under diabetic condi-
tion, more than 50% of renal tubular cells exhibit fragmented
mitochondria [100], concomitant with the significant upreg-
ulation of mtROS in the renal cortex [101]. These suggest the
loss of mitophagy in DN.

Mitophagy depends on the signaling cascade of kinases.
The most important kinase is the PTEN-induced putative
kinase 1 (PINK1). Upon damage, PINK1 transduces signals
to the cytosolic E3 ubiquitin ligase Parkin. Parkin then
amplifies the signals of mitophagy by facilitating PINK1-
mediated recruitment of optineurin (OPTN) and NDP52
[102, 103]. Optineurin (OPTN) contains an ubiquitin-
binding domain with the ability of binding polyubiquitinated
cargo and transporting cargo to form autophagosomes [104].
The loss of expression in Parkin correlates with lifespan
shortening [105], while the overexpression of Parkin extends
longevity [106]. Similarly, the knockdown of PINK1 shortens
lifespan and accelerates aging [89]. Interestingly, recent report
shows that OPTN is involved in high glucose-induced senes-
cence in renal tubular epithelial cells [25].

A large body of studies show that mitophagy is defec-
tive in diabetic kidneys [100], concomitant with mitochon-
drial abnormalities, overproduced mitochondrial ROS, and
reduced expression of PINK and Parkin [107]. Indeed, podo-
cytes show a high rate of baseline autophagy with aging.
However, under diabetic status in vivo and high glucose con-
ditions in vitro [108], the high basal level of autophagy in
podocytes is flawed, which facilitates cell injury, glomerular
damage, and the progression of kidney diseases. Hence, it
can be presumed that in a diabetic setting, defects in mito-
phagy could induce early senescence in different renal cells
and further promote the progression of kidney diseases.
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3.5. Falling Levels of Klotho and Dysfunction of the Klotho-
FGF-23 Axis. Klotho is an antiaging protein and is predomi-
nantly expressed in normal tubular cells. Klotho could act on
multiple signals such as insulin and Wnts [109–111] and
exerts important protection in kidney function [112]. The
decline of Klotho could be seen in an early stage of kidney
diseases, and this deficiency is linked to accelerated aging, cel-
lular senescence, vascular calcification, and oxidative stress
[113]. However, the underlying mechanisms remain poorly
understood. Some reports show Klotho protects against cel-
lular senescence through activating the forkhead transcrip-
tion factor FOXO, a negative regulator of mtROS
generation [114]. Furthermore, Klotho also has endogenous
anti-inflammatory effects [115, 116] and antifibrotic proper-
ties [109, 117, 118]. Klotho also plays a role in mineral metab-
olism disorders, which would further affect renal aging.
Klotho promotes calcium absorption and phosphate excre-
tion in kidneys [119] and serves as a permissive coreceptor
of fibroblast growth factor 23 (FGF-23), the hormone reg-
ulating phosphate and vitamin D [120]. This is called the
Klotho-FGF-23 axis. The loss of Klotho promotes hyper-
phosphatemia, a risk factor of senescence process [121]
and longevity [122].

Diminished expression of Klotho is a common feature of
DN and is observed at the earliest stage of the disease [123,
124]. The loss of Klotho could be associated with multiple
mechanisms such as hypermethylation of Klotho gene [125,
126], NF-κB-induced falling level of Klotho gene [127].
Recent studies show that increasing activity of integrin-
linked kinase protein (ILK) reduces Klotho gene expression,
which leads to cellular senescence in renal cells [128]. Large
amounts of studies show that the loss of Klotho links to life-
span shortening, skin and muscle atrophy, osteoporosis, and
calcification [129]. Under uremia condition, Klotho retards
epithelial cell senescence through decreasing oxidative stress,
NF-κB activity, etc. [118]. A survey in humans further con-
firms that the serum level of Klotho declines with age, and
Klotho gene displays single nucleotide polymorphism which
correlates with reduced longevity and the pathophysiology
of age-related disorders [111].

3.6. Wnt/β-Catenin and Cellular Senescence. Despite being
relatively silent in normal adult kidneys, Wnt/β-catenin sig-
naling is reactivated in a wide range of chronic kidney dis-
eases (CKD), such as diabetic nephropathy, obstructive
nephropathy, adriamycin nephropathy (ADR), polycystic
kidney disease, and chronic allograft nephropathy [130–133].
The canonical Wnt/β-catenin signaling involves β-catenin
dephosphorylation in serine/threonine residues, which leads
to its translocation to the nucleus, where it binds to transcrip-
tion factor T-cell factor (TCF)/lymphoid-enhancer binding
factor (LEF) to induce the expression of downstream target
genes [134–136]. However, in diabetic status, the accumulated
intracellular ROS might divert the limited pool of β-catenin
from TCF/LEF to forkhead box O- (FOXO-) mediated tran-
scription [137, 138] that leads to insulin deregulation. Notably,
the latter plays a pivotal role in the aging process.

Recent evidence suggests that the renin-angiotensin-
aldosterone system (RAS) is mediated by Wnt/β-catenin sig-

naling. Zhou et al. reported that the promoter regions of all
RAS genes contain putative TCF/LEF-binding sites, and β-
catenin induces the binding of LEF-1 to these sites in renal
tubular cells. Ectopic β-catenin causes the upregulation of
all RAS genes [139]. Notably, RAS activation contributes to
renal aging through various mechanisms. Several studies dis-
cover that angiotensin II, a key substance of RAS, can induce
senescence in renal cells and lead to the development and
progression of age-related diseases [140–143]. Ang II induces
premature senescence via both STAT3/mTOR-regulated
autophagy and the p53/p21 pathway [140], which further
drives fibrosis and redox state [144]. Notably, ROS can also
induce the expression of p16INK4A, a trigger in cell cycle arrest
and senescent phenotype, and activate TGF-β1 and NF-κB
signaling that could trigger inflammatory reaction in acceler-
ated aging process [145]. Hence, RAS antagonism through
administration of ACEI/ARB improves mitochondrial func-
tion and exerts antioxidative effects and displays age-
retarding benefits [146].

Recently, Luo et al. reported that Wnt9a has a decisive
role in driving tubular senescence and renal fibrosis, as well
as evoking cell communication between senescent tubular
cells and interstitial fibroblasts [147]. Although not studied
in their studies, RAS activation is supposed to play a role in
Wnt9a-induced cellular senescence. Supporting the pre-
sumption, several studies point out the benefits of inhibiting
the RAS system in organ aging process. The related mecha-
nisms involve the upregulation of prosurvival nicotinamide
phosphoribosyltransferase gene (Nampt) and downregula-
tion of p16INK4A expression [148, 149], as well as the
improvement of mitochondrial function [150–152].

3.7. Inflammation and Cellular Senescence. Chronic inflam-
mation is a pathological feature of various CKD. Notably,
inflammation serves as an important factor for accelerated
aging. Unregulated inflammation has a key role in the patho-
genesis and progression of autoimmune diseases such as pre-
senile dementia, osteoporosis, and atherosclerosis [153].
Inflammation is also involved in the pathogenesis of obesity
and diabetes and serves as an important mediator of aging
[154, 155]. In addition, the senescence-associated decline of
the adaptive immune system (immunosenescence) may fur-
ther aggravate aging phenotypes at the systemic level because
of the impaired immune surveillance [156, 157]. Moreover,
senescent cells can secrete many proinflammatory factors,
such as TNF-α, IL-6, PAI-1, and MCP-1, which may further
aggravate inflammation [17, 157]. Recent studies show that
AUF1, the mRNA decay factor, links inflammation and aging
[158]. Deficiency of AUF1 induces marked cellular senes-
cence and premature aging phenotype.

In diabetic nephropathy, the prominent inflammation is
observed even in the beginning and ongoing stage of kidney
injury. The upregulation of systemic and local renal inflam-
mation occurs in the early stage of DN. In diabetic status,
high glucose, AGEs, and oxidative stress could simulta-
neously induce the activation of NF-κB, a known transcrip-
tional signature of inflammation [18]. Through recruiting
p300, NF-κB triggers the activation of downstream effector
iNOS, a promoter of oxidative stress and inflammation that
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causes extensive nitrotyrosine (NT) in proteins [159].
Genetic and pharmacological inhibition of NF-κB signaling
prevent age-associated diseases [160–162] including dia-
betic nephropathy [159] and natural aging [163, 164].

Additionally, Nod-like receptor 3 (NLRP3) inflamma-
some also plays a role in the development of inflammation
under diabetic setting [165]. In response to diverse damage-
associated molecular patterns (DAMPs) in aging, such as
excess glucose, ceramides, amyloids, urate, and cholesterol
crystals, NLRP3 inflammasome is intimately correlated with
age-related diseases [166]. The NLRP3 inflammasome could
activate caspase-1, which stimulates the maturation and
secretion of IL-1β and IL-18 through cleaving their pre-
cursors [167]. Consequently, these proinflammatory cyto-
kines accelerate the aging process through inhibiting
autophagy [168]. Conversely, the impaired autophagy could
trigger the accumulation of inflammasome to create a recip-
rocal activation loop [169]. Interestingly, inflammation could
also interplay with many other mechanisms of cellular
senescence such as telomere shortening, progressive DNA
damage, oxidative stress, and altered epigenetics. These cre-
ate an intricate network to induce cellular senescence in
diabetic nephropathy.

3.8. Uremic Toxins and Cellular Senescence. Uremic toxins
are endogenous waste products of metabolism. They are
cleared predominantly by the kidneys. Three subgroups
of uremic wastes are classified: (i) small water-soluble mole-
cules (MW< 500Da) such as urea, creatinine, and phos-
phate; (ii) middle (MW500~5000Da) and large molecules
(MW> 5000Da) such as parathyroid hormone (PTH), IL-
6, fibroblast growth factor 23 (FGF23), AGEs, advanced oxi-
dation protein products (AOPPs), and other peptides; and
(iii) small molecules (MW< 500Da) but with high protein-
binding abilities such as indoles, phenols, polyamine, and
cresols [170]. Notably, the regular hemodialysis could only
remove small molecules with the molecular weight lower
than 500Da. Furthermore, it is also difficult to remove
protein-bound uremic toxins such as indoxyl sulfate (IS),
p-cresyl sulfate (PCS), and 3-carboxy-4-methyl-5-propyl-
2-furanpropionic acid (CMPF), due to their high protein-
binding capability (90%) to plasma proteins [171, 172]. It is
notable that the imbalance of gut microbiome in kidney dis-
eases largely contributes to the formation and retention of
uremic toxins [173], which would create a reciprocal activa-
tion loop that accelerates the progression of kidney diseases.

Uremic toxins could trigger senescence in various types
of renal cells such as the proximal tubular cells [174, 175]
and endothelial cells [176] through multiple mechanisms.
The most commonly studied pathway is oxidative stress-
induced NF-κB signaling [177]. However, other mechanisms
are also contributed. Some reports show that uremic wastes
could induce mitochondrial dysfunction [178] and hyperme-
thylation in Klotho gene [125], the two main mechanisms of
cellular senescence in DN. As the well-known uremic toxins
in DN, AGEs account for various mechanisms of cellular
senescence. Although their detrimental role is firstly found
in the longevity of C. elegans [179, 180], AGEs show the
active role in promoting senescence phenotype in multiple

organ systems including the kidneys in humans [181]. Stud-
ies show that AGEs trigger cellular senescence via oxidative
stress-dependent p21 activation [182] and p16 expression
[13, 183], inhibition of autophagy [184] through reducing
PINK1/Parkin [185], and promotion of inflammation [186]
in renal cells and others.

Taken together, the accumulation of uremic toxins would
influence cellular senescence nearly in all aspects of mecha-
nisms, which cooperatively and reciprocally promote and
accelerate cellular senescence that contributes to the patho-
genesis of DN.

4. Therapeutic Potentials

The therapeutic methods for DN nowadays refer to anti-
RAS therapy using ACE inhibitors (ACEIs) or angiotensin
II receptor blockers (ARBs) and glucose control. However,
anti-RAS therapy only displays limited efficacy, partly
because of the compensatory upregulation of renin expres-
sion [187–189]. Due to the metabolic memory of prior
exposure to hyperglycemia, a single control of glucose fails
to prevent the progression of kidney disease [190, 191].
Notably, several theoretical approaches might be applicable
to target the aging process in DN (Figure 2).

It is well known that calorie restriction (CR) reduces
oxidative stress and proinflammatory injury. In addition,
CR modulates mitochondrial activity and increases the
autophagy activity, thereby extending health and lifespan
[192–194]. It has been shown that CR protects against cellu-
lar senescence through decreasing the expression of
p16INK4A. Consequently, renal fibrosis is alleviated [192].
Actually, CR inhibits cell senescence through various mecha-
nisms. The most studied is the mammalian target of rapamy-
cin (mTOR) signaling. CR could deactivate mTOR through
activating AMP-activated protein kinase (AMPK) [195]. Sev-
eral kinds of drugs targeting this pathway are effective in the
retardation of aging and age-related disease. Rapamycin, the
mTOR inhibitor, could protect cellular senescence [196]
and phosphate-induced premature aging [197]. While
AMPK activator metformin reduces ROS production in
podocytes and prevents DN [145]. Interestingly, long-term
treatment with rapamycin may improve the quality of
mtDNA in aging mice [198]. However, long-term CR has a
long way to achieve for clinical practice, especially in DN
patients because of the limited daily nutrition. Another
promising drug is sirtuin1 (SIRT1) agonist. As a NAD+-
dependent deacetylase, SIRT1 plays an important role in
the aging process [199] and age-related phenotypes such as
DN [200]. SIRT1 could be induced by CR. The agonists of
SIRT1 such as BF175 and resveratrol could greatly ameliorate
the pathogenesis of diabetic kidney disease [201]. And BF175
also shows less renal toxicity, suggesting the good prospects.

Theoretically, antioxidants can mitigate ROS-induced
damage, such as DNA mutations and protein modifications,
as well as delay telomere shortening. However, the advan-
tages of antioxidants are needed to be further clarified in
aging-associated diseases [202–205]. Chlorogenic acid could
attenuate oxidative stress and inflammation in diabetic
nephropathy, possibly through modulating Nrf2/HO-1 and
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NF-κB pathways. However, no direct evidences show its
effects on aging retardation under the diabetic setting
[206]. Oppositely, the administration of mitochondria-
targeted antioxidant MitoQ could dramatically ameliorate
renal tubular injury in a diabetic mouse model. MitoQ
reverses mitophagy through increasing the expression of
PINK1 and Parkin [107]. Another important study shows
that Cu/Zn-superoxide dismutase 1 (SOD1), a strong endog-
enous antioxidant, has a new role in aging. Deficiency of
SOD1 prolongs lifespan and retards the process of cellular
senescence [207]. Overexpression of SOD1 attenuates high
glucose-induced endothelial cell senescence [17]. These sug-
gest that SOD1 may act as a promising therapeutic in DN
through retarding aging. However, because of side-effects
such as tumor genesis and difficulties to control the degree
of antioxidation, the reasonable application should be closely
noticed in therapy for patients.

Another strategy to retard cellular senescence is the
removal of these cells [208] by senolytics, a new kind of drugs
with the ability to slow the aging process. Many of these
agents could induce the clearance of senescent cells through
upregulation of antiapoptosis systems such as the BCL-2
family of proteins (BCL-2, BCL-XL, and BCL-W) [209, 210].
The new senolytic molecules navitoclax and ABT-737 could
occupy the inhibitory binding grooves of BCL-2, BCL-XL,
and BCL-W, which counteract their antiapoptotic functions
and initiate apoptosis in senescent cells [211]. Furthermore,
immune surveillance [212] and genetic deletion of senescence-
associated factor p16INK4a [213] could also help to enhance
the removal of senescent cells.

SASP modulation has also been proposed as a way to
slow the aging process. SASP blockade would be another
attractive treatment option [214, 215]. However, the inter-
ventions of proinflammatory pathways such as NF-κB,
p38-MAPK, or MAPK-activated protein kinase 2 could also
influence the communications among healthy cells [216].

Notably, a recent finding shows that bromodomain-
containing protein 4 (BRD4) inhibitors could modulate SASP
with high specificity in senescent cells without influencing
healthy subjects [217]. In histones, BRD4 binds to acetylated
lysines, which results in the opening of chromatin and the
activation of SASP process [217]. BRD4 inhibitors JQ1 and
iBET are recently studied and found to be prospective in ther-
apeutic of aging [218].

Restoration of endogenous Klotho or supplementation
with exogenous Klotho could be a substitute therapeutic
strategy for antiaging. Klotho could blockWnt/β-catenin sig-
naling and its targets such as the renin-angiotensin system
(RAS) and modulate the homeostasis of blood phosphate
and vitamin D [139, 219]. In the aging process, Klotho gene
displays hypermethylation [126]. Notably, Ang II type 1
receptor antagonist (AT1R) losartan could alter the post-
translational modifications on histones [220], suggesting a
protective role in Klotho gene stability. In addition, some
drugs such as sulodexide and osthole may enhance the
expression of Klotho to prevent the progression of DN
[221]. Considering the side-effects and toxicity of these
molecular compounds, the direct supplement of Klotho
may be the best way to provide renoprotecion. However,
the clinical application of direct Klotho supplement is very
limited because Klotho protein is with large molecular weight
and complex structure. It is still promising that scientists are
developing the small molecular peptides from the binding
sites of Klotho with Wnt3a and other Wnts [222], suggesting
the prospects for future clinical application.

The latest topics of therapeutics in aging are stem
cell therapy [223]. A study shows that the injection of plasma
from young mice into the circulation of aged mice induces a
more youthful state [224]. Furthermore, early-in-life genetic
manipulations could preserve the proliferative ability of the
gut stem cells, which leads to lifespan extension [225]. In
kidney disease, the supplement of mesenchymal stem cells
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Figure 2: Therapeutic potentials against cellular senescence in diabetic nephropathy.
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(MSC) could prompt functional recovery [226]. Even in
aged stem cells, incubation of young blood could still ame-
liorate the functional deficits [227, 228], suggesting the
important role of microenvironment in stem cell renewal.
Other studies also show that human umbilical cord-
derived mesenchymal stromal cells could ameliorate renal
fibrosis and cellular senescence and interestingly increase
the expression of Klotho [229]. Regenerative therapies by
exogenous stem cell transplantation into damaged tissues
could improve natural aging and stress-induced premature
senescence (SIPS) [230]. However, the stem cell transplan-
tation in humans is more challenging because of the unpre-
dicted disadvantages such as tumor genesis and needs to be
demonstrated repeatedly.

Removal of uremic toxins may be a fundamental resolu-
tion strategy for retarding cellular senescence in DN. Some
researchers are focusing on the improvement of protein-
bound uremic waste clearance through intravenous lipid
emulsion [231] or infusion of a binding competitor ibupro-
fen [232] in conventional dialysis therapies. Although these
strategies present benefits, they are still in the primary stage
of research. Compared with the controlling in the clearance,
to decrease the generation of uremic wastes through the
modulation of beneficial gut microbiota members may be
more important [233, 234]. It is proved in long-term safety
and presents improved removal of BUN when probiotics is
supplemented to the therapies for CKD patients [235]. Fur-
thermore, synbiotics, resistant starch, and other dietary
fiber could also help to decrease the production of uremic
toxins through modifying gut microbial dysbiosis in CKD
patients [236], thereby ameliorating oxidative stress and
inflammation [237, 238]. However, the formulation of a
probiotic bacteria and the detailed therapies in clinic need
to be further studied, and the safety is also an important
question to be resolved.

5. Conclusion

In summary, we show the multiple mechanisms underscor-
ing cell senescence network in diabetic nephropathy, which
involve telomere shortening, DNA damage, epigenetic alter-
ations, mitophagy deficiency, loss of Klotho, Wnt/β-catenin
signaling activation, inflammation, and the accumulation of
uremic toxins. These factors mutually affect and coopera-
tively promote cellular senescence in DN. Although some
therapeutic methods are promising, the practical application
in DN patients needs to be testified by large amounts of ani-
mal experiments and preclinical investigations. Notably, the
long-term observation of antiaging therapy such as senoly-
tics and stem cell transplantation could not be neglected.
Recently, genome editing is attracting the notice of scien-
tists [239, 240]. However, although with the prospective
aspects, genome editing would bring out the problems of
ethics in humanity. This should be particularly focused.
Last, precision medicine therapy for individual DN patient
should be considered in the therapeutic strategies of
nephrologists. Nevertheless, targeted inhibition of cellular
senescence provides important clues for clinical strategies
for diabetic nephropathy.
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