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Identifying the pathways that are significantly impacted in a given condition is a crucial step in understanding the
underlying biological phenomena. All approaches currently available for this purpose calculate a P-value that aims to
quantify the significance of the involvement of each pathway in the given phenotype. These P-values were previously
thought to be independent. Here we show that this is not the case, and that many pathways can considerably affect each
other’s P-values through a ‘‘crosstalk’’ phenomenon. Although it is intuitive that various pathways could influence each
other, the presence and extent of this phenomenon have not been rigorously studied and, most importantly, there is no
currently available technique able to quantify the amount of such crosstalk. Here, we show that all three major categories
of pathway analysis methods (enrichment analysis, functional class scoring, and topology-based methods) are severely
influenced by crosstalk phenomena. Using real pathways and data, we show that in some cases pathways with significant
P-values are not biologically meaningful, and that some biologically meaningful pathways with nonsignificant P-values
become statistically significant when the crosstalk effects of other pathways are removed. We describe a technique able to
detect, quantify, and correct crosstalk effects, as well as identify independent functional modules. We assessed this novel approach on
data from four experiments involving three phenotypes and two species. This method is expected to allow a better un-
derstanding of individual experiment results, as well as a more refined definition of the existing signaling pathways for
specific phenotypes.

[Supplemental material is available for this article.]

The correct identification of the signaling and metabolic pathways

involved in a given phenotype is a crucial step in the interpretation

of high-throughput genomic experiments. Most approaches cur-

rently available for this purpose treat the pathways as indepen-

dent. In fact, pathways can affect each other’s P-values through

a phenomenon we refer to as crosstalk. This crosstalk may be due to

the regulatory interactions among different pathways or to the

gene overlap among pathways. In this work, we will use the term

crosstalk to refer to the effect that pathways exercise on each other

due to the presence of overlapping genes. Although it is intuitive

that various pathways could influence each other, especially when

they share genes, the presence and extent of this phenomenon

have not been rigorously studied and, most importantly, there is

no currently available technique able to quantify the amount of

such crosstalk. There are three major categories of methods that

aim to identify significant pathways: enrichment analysis (e.g.,

Fisher’s exact test–hypergeometric) (Tavazoie et al. 1999; Draghici

et al. 2003); functional scoring (e.g., GSEA) (Mootha et al. 2003;

Subramanian et al. 2005); and topology-based methods (e.g., im-

pact analysis) (Draghici et al. 2007; Tarca et al. 2009). Another

classification of gene set analysis methods is based on the defini-

tion of the null hypothesis and divides the methods into com-

petitive and self-contained (Goeman and Bühlmann 2007; Nam

and Kim 2008). In this work, we focus on competitive methods,

and in particular on the Fisher’s exact test, although the problems

identified likely apply also for self-contained methods.

Here we show that the results of all these methods are af-

fected by crosstalk effects and that this phenomenon is related

to the structure of the pathways. We propose the first approach

that can (1) detect crosstalk when it exists, (2) quantify its mag-

nitude, (3) correct for it, resulting in a more meaningful ranking

among pathways in a specific biological condition, and (4)

identify novel functional modules that can play an independent

role and have different functions than the pathway they are

currently located on. This method is expected to allow a better

understanding of individual experiment results, as well as a

more refined definition of the existing signaling pathways for

specific phenotypes.
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Crosstalk effects
In order to demonstrate the existence and assess the extent of

crosstalk effects, we conducted a systematic exploration of this

phenomenon. We constructed a reference set of genes from all

genes present in at least one KEGG signaling pathway (2963 genes

at the time). Then, each pathway was used as a ‘‘bait,’’ choosing

from it a number of genes that would make it significant at a cho-

sen significance level (a = 0.01 after Bonferroni correction). Other

random genes were selected up to a constant number (n = 100) of

‘‘differentially expressed’’ (DE) genes (see Supplemental Material

for details). Under these circumstances, the research hypothesis is

true for the bait, while the null hypothesis is true for all other

pathways. We repeated this selection 1000 times for each pathway

Pi, and each time, we computed the Fisher’s exact test P-value

(Tavazoie et al. 1999), SPIA (impact analysis) (Tarca et al. 2009), and

GSEA (Subramanian et al. 2005) P-values for all pathways from the

KEGG database (Kanehisa et al. 2004). With these results, we

constructed the empirical distributions of the false discovery rate

(FDR)-corrected P-values corresponding to each prey Pj. The dis-

tributions of the P-values for all three methods are severely skewed

toward zero, showing that all methods produce a significant

number of false positives due to crosstalk effects (Supplemental Fig.

S1). We hypothesized that crosstalk is mostly due to the common

genes between pathways. If this were true, we would expect to see

a strong coupling between pairs of pathways with many genes

in common and a weak coupling between pathways that do not

share any genes. In order to test this hypothesis, we calculated the

Jaccard similarity index ( Jaccard 1910) for each pair of pathways,

as well as the Pearson correlation between the Jaccard index and

the P-values of the preys (Figs. 1, 2). The data shows a very strong

correlation (Pearson correlation index of 0.87 for Fisher’s exact

test, 0.62 for GSEA, and 0.83 for SPIA), which confirms our hy-

pothesis that the crosstalk can be explained by the presence of

genes that are involved in more than one pathway.

Results

Crosstalk analysis and correction

The method we propose for correcting for crosstalk effects takes as

input a set of reference pathways and a list of genes that are DE in

the given condition. The crosstalk analysis is composed of three

steps. The first step is the computation of a crosstalk matrix, i.e.,

the analysis of pairwise crosstalk interactions between pathways in

the given condition, resulting in a heat map showing the P-value of

each pathway when the genes from each other pathway are re-

moved. This matrix allows the visualization of various cases of

crosstalk effects and provides information on the extent of cross-

talk effects in the condition analyzed. The second step is the

module detection that allows the identification of subpathways

that appear to be involved in the specific condition, studied in-

dependently of the pathway they belong to. The final step is the

maximum impact estimation, where the biological impact of each

gene is assigned to only one of the pathways to which the gene

belongs, for those genes that belong to more than one pathway.

The result of the last two steps is essentially a new set of pathways

that can include (1) original pathways as found in the literature, (2)

novel functional modules that might be relevant to the given

condition, and (3) pathways modified by the removal of a such

a functional module. The new set of pathways is not affected by

crosstalk effects, and new P-values are computed for each pathway,

building a ranked list from which the false positives due to cross-

talk have been removed (see Methods).

Fat remodeling in mice

We include here the results of the crosstalk analysis in an experi-

ment investigating cellular and metabolic plasticity of white fat

tissue (WAT), where the classical overrepresentation analysis

(ORA) produced a number of false positives, and failed to rank

Figure 1. Pathway coupling in the Fisher’s exact test P-values. (Left panel) A number of random genes were chosen from a ‘‘bait’’ pathway i such that its
Fisher’s exact test P-value is 0.01. Other genes were chosen randomly from all other pathways (acting as preys), up to a constant number (n = 100). The
elements [i, j ], where i 6¼ j, represent the mean of the distribution of P-values for 1000 random trials using pathway i as bait and pathway j as prey. The data
show that a considerable number of pathways influence each other through a ‘‘coupling’’ of the P-values. For instance, row 3 of the matrix shows that when
pathway 3 is chosen to be significant, several other pathways (e.g., columns 57 to 70) also tend to be significant (dark shades of blue represent significant
P-values). (Right panel) Each point represents the average of the P-values of all the random trials for pairs with the same Jaccard index. The lines represent the
fitting of linear and quadratic models. Both models show a strong dependence between the P-value coupling and the Jaccard index. Similar results were
obtained for GSEA and impact analysis (see Fig. 2).
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highly the pathways that were known to be involved in the given

condition. In this experiment, the chronic activation of WAT beta-

adrenergic receptors by certain physiological and pharmacological

conditions transforms the tissue into one resembling brown fat,

a thermogenic organ (Granneman et al. 2005; Li et al. 2005;

Mottillo et al. 2007). The data set was obtained from a microarray

analysis of white fat from mice treated with low dose (0.75 nmol/h)

CL 316,243 (CL) for 0, 3, and 7 d. Here we discuss only the list of DE

genes coming from the comparison between expression levels of

genes at days 3 and 0 (for the comparison between days 7 and 0, see

Supplemental Material).

The top 20 pathways ranked by ORA and their associated

FDR-corrected P-values are shown in Figure 3A. In this figure,

pathways highlighted in red represent pathways not related to

the phenomenon in analysis, while pathways highlighted in green

are those for which we know, with reasonable confidence, that

they are involved in the given phenomenon. The white back-

ground indicates pathways for which we do not have conclusive

information on their involvement (or lack of ) with the phenom-

enon in analysis. The three most significant pathways in the

comparison between days 3 and 0 were Parkinson’s, Alzheimer’s,

and Huntington’s diseases. The fourth pathway in the ranked list is

Leishmaniasis. The first three pathways describe degenerative dis-

eases of the central nervous system that have no connection to fat

remodeling. Leishmaniasis describes the signaling involved in

a disease spread by the bite of certain species of sand flies. Clearly,

this pathway is also unlikely to give insights about the fat remod-

eling phenomenon. While other pathways, such as Phagosome

Figure 2. Pathway coupling in the impact analysis (left panel) and GSEA (right panel). Each point represents the mean of all P-values of all random trials
for pairs with the same Jaccard index. The lines represent the fitting of linear and quadratic models. Both models show a strong dependence between the
P-value coupling and the Jaccard index.

Figure 3. The results of the ORA analysis in the fat remodeling experiment for the comparison between days 3 and 0, before (A) and after (B) correction
for crosstalk effects. All P-values are FDR corrected. The lines show the significance thresholds: (blue) 0.01, (yellow) 0.05. Pathways highlighted in red
represent pathways not related to the phenomenon in analysis, while pathways highlighted in green are those for which we know, with reasonable
confidence, are involved in the given phenomenon. The white background indicates pathways for which we do not have conclusive information on their
involvement (or lack of ) with the phenomenon in analysis. (A) The top 20 pathways resulting from classical ORA before correction for crosstalk. The top
four pathways are not related to fat remodeling. (B) The top 20 pathways after correction for crosstalk. Pathways ranked 1, 3, and 5 are modules that are
functioning independently of the rest of their pathways in this particular condition. Starred pathways are pathways edited by removing such modules.
Note the lack of any obvious false positive above the significance threshold(s).

Detection, analysis, and correction of crosstalk
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(Newman et al. 1982), PPAR Signaling (Granneman et al. 2005), and

Cell cycle (Lee et al. 2012), are definitely more related to the phe-

nomenon of fat remodeling, their presence in the middle of

a ranked list dominated by false positives (six false positives in the

10 pathways significant at 1%) illustrates how the crosstalk effects

make the classical ORA unable to find the truly relevant pathways.

In order to analyze and eliminate the crosstalk effects, we

computed the crosstalk matrix as described in the Methods section.

The analysis of the matrix illustrates some interesting examples

of crosstalk effects. Figure 4 represents a detail of the entire ma-

trix. In this figure, the high significance of Parkinson’s (bright

red in row 1, column 1) disappears when the crosstalk due to

Alzheimer’s is eliminated (green in row 1, column 2). This indicates

that Parkinson’s is a false positive, since its significance is due ex-

clusively to genes from Alzheimer’s. Furthermore, the high signif-

icance of Alzheimer’s (bright red in row 2, column 2) also disappears

when the crosstalk effect of Parkinson’s is eliminated (green in

row 2, column 1). This means that Alzheimer’s significance is also

due only to the genes in common with Parkinson’s. Essentially,

the analysis tells us that the genes in common between the two

pathways are activated independently of either pathway, which

suggests that these genes constitute an independent functional

module. The same phenomenon involves the Cardiac Muscle

Contraction and Huntington’s disease pathways. The same indepen-

dent functional module is responsible for the changes shown in

areas marked with a in Figure 4.

An inspection of these genes and their signaling mechanisms

reveals that this module is composed by genes present in mito-

chondria, organelles involved in all pathways above. The fact that

this module is strongly activated in this fat remodeling experiment

that is not related to any of the above conditions (Alzheimer’s,

Parkinson’s, Huntington’s), suggests that this should be considered

as an independent pathway, dedicated to mitochondrial activity.

Figure 5 shows a representation of this new pathway. In order to

investigate the involvement of mitochondria in this condition,

epididymal white fat of control and CL-treated (CL-7d) mice were

stained with fluorescent Alexa-555 conjugated to streptavidin and

imaged by spinning disc confocal microscopy. Figure 6 shows

a comparison between the control (left) and CL-treated mice

(right). The right panel of this figure shows a massive generation of

new mitochondria after 7 days of treatment, demonstrating in

vivo that, indeed, the mitochondrial pathway is central in this

experiment.

Another very interesting phenomenon can be observed in

Figure 4 (circle b). Here, the Toll-like Receptor Signaling (TLR) path-

way becomes more significant when the Rig-I Like Receptor Signaling

(RLR) pathway (not significant on its own) is removed. The TLR

pathway is the generic pathway involved in the immune response.

The RLR pathway is the antiviral innate immunity pathway, which

includes the mechanisms specifically aimed at the detection of

exogenous DNA or RNA. In essence, the crosstalk analysis tells us

that, in the fat remodeling experiment, the immune system has

been activated, but this immune response is not due to the presence

of foreign genetic material. This is exactly what happens here. The

CL treatment causes the death of some white fat cells (Granneman

et al. 2005). In turn, this causes an immune response in which

macrophages are required to dispose of the dead cells (Li et al.

2001). Such subtle distinctions between various triggers that acti-

vated the immune response are not possible with any classical

analysis methods, and it is remarkable that a data analysis method

was able to provide this type of insight.

We then applied the proposed maximum impact estima-

tion described in the Methods section to the data. The corrected

P-values are shown in Figure 3B. The ranking based on these

crosstalk corrected P-values is greatly improved. The most signifi-

cant pathway is now the newly discovered mitochondrial pathway

shown in Figure 5 and validated by the in situ hybridization shown

in Figure 6. The new P-values also indicate the Phagosome pathway

as one of the pathways related to this phenomenon (Newman et al.

1982). Third in the list is an independent module shared by Cell

Cycle and Oocyte Meiosis. This can be thought of as a pathway re-

lated to the creation of new cells. Finally, the true involvement

of the PPAR signaling pathway in the phenomenon of fat remod-

eling has been previously demonstrated (Granneman et al. 2005).

After removing the influence of the mitochondrial crosstalk, the

Parkinson’s, Alzheimer’s, and Huntington’s pathways are not signif-

icant anymore (now ranked 60th, 61st, and 54th, respectively) (data

not shown). Also, after removing the crosstalk from Phagosome,

Leishmaniasis is not significant anymore (now ranked 62nd) (data

not shown).

Cervical ripening

The second data set analyzed was obtained from a recent study that

investigated the transcriptome of uterine cervical ripening in hu-

man pregnancy before the onset of labor at term (Hassan et al.

2009). The tissue analyzed is the human uterine cervix, the lower

part of the uterus extending from the isthmus of the uterus into the

vagina. It is mainly composed of smooth muscle and extracellular

matrix, which consists of collagen, elastin, proteoglycans, and

glycoproteins (Uldbjerg et al. 1983b; Leppert 1995). The uterine

cervix has an essential function in the maintenance of pregnancy

and also in parturition (Hassan et al. 2006, 2009, 2010). Cervical

ripening is a critical component of the common terminal pathway

of parturition, which includes the extensive remodeling of the

cervix (Hassan et al. 2009). Disorders of cervical ripening can lead

to premature or protracted cervical change, complicating term

(e.g., protracted dilatation or arrest of dilatation) or preterm ges-

tations (e.g., premature cervical dilation in the second trimester)

(Hassan et al. 2009). The state of cervical ripening has traditionally

been assessed by clinical examination (Bishop score or its modifi-

cations) (Bishop 1964), which includes the digital examination of

Figure 4. Detail of the crosstalk matrix: comparison between days 3
and 0 in the CL treatment. Areas marked with a correspond to functional
modules that are activated independently from the pathways they belong
to. The cell marked with b corresponds to a specific part of the TLR
pathway that is responsible for the immune response to host genetic
material. Cells on the diagonal contain the P-values of the classical ORA,
ordered from the most significant one to the least significant one. The cell
Pi,j contains the P-value of pathway Pi after the effect of Pj is removed. The
color of each cell represents the P-value: bright red for P-values close to
zero, bright green for P-values close to 1.
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the cervix for its consistency, dilatation, effacement, and position.

This method has also been used to predict the likelihood that

a patient would go into spontaneous labor. The goal of this ex-

periment was to examine the relationship between human cervical

ripening and the cervical transcriptome, aiming to improve our

understanding of the biology of cervical ripening at term. This

study included pregnant women who underwent elective C-sec-

tion at term with an unripe (n = 11) or ripe cervix (n = 11). Cervical

biopsies were obtained from these women transvaginally, from the

anterior lip of the uterine cervix following C-section. Microarray

analysis was performed on RNA isolated from these cervical tissue

specimens using Affymetrix GeneChip Human Genome U133 Plus

2.0 Arrays (Hassan et al. 2009).

On this data set, we performed the comparison between gene

expression levels from cervical tissues obtained from women with

an unripe or ripe cervix using the classical ORA. The results are

shown in Figure 7A. Pathways with a P-value smaller than 0.05

after FDR correction were Focal adhesion, ECM-receptor interaction,

Amoebiasis, Cell adhesion molecules (CAMs), Small cell lung cancer,

and Dilated cardiomyopathy.

There is plenty of experimental evidence that biological

processes described by the pathways Focal Adhesion, ECM-Receptor

Interaction, and Cell Adhesion Molecules are related to cervical rip-

ening. The relation between these pathways and the phenomenon

in analysis was revealed by studies on humans and animals

showing the involvement of extracellular matrix metabolism and

cell adhesion molecules in cervical ripening (Uldbjerg et al.

1983a,b; Leppert et al. 1986; Leppert 1995; Mahendroo et al. 1999).

However, the pathway Amoebiasis describes the biological process

of infection from a parasite that invades the intestinal epithelium.

Amoeba infection involves the parasite attachment to the in-

testinal mucus layer, followed by disruption and death of host

epithelial cells. This process is completely unrelated to the physi-

ological condition of cervical ripening in term pregnancy. The

same is true for the Small Cell Lung Cancer pathway. Clearly, the top

ranked pathways include some describing complex phenomena

that are unrelated to the studied condition. Also, the significant

pathways known to be involved in the process of cervical ripening

are somewhat general pathways describing cellular interactions.

The analysis of the crosstalk matrix (see Supplemental Fig. S6)

shows that there is an independent functional module among the

top three pathways in the ranking. This novel module includes the

genes present in the interaction between the cellular trans-

membrane protein integrin and three important ECM compo-

nents—collagen, laminin, and fibronectin. The KEGG pathways

involved in the identification of this path-

way are Focal adhesion, ECM-receptor inter-

action, and Amoebiasis. Henceforth, we

will refer to this pathway as the Integrin-

Mediated ECM Signaling (Fig. 8).

Very interestingly, the independent

functional module found in this condi-

tion is, in fact, the exact same module

found in the hormone treatment experi-

ment described in the Supplemental Ma-

terial. Interestingly, the KEGG pathways

involved in the identification of this

functional module are slightly different

between the two phenotypes. While in

this phenotype this module was found

from the interaction of Focal adhesion,

ECM-receptor interaction, and Amoebiasis,

in the hormone treatment the last pathway is replaced by Pathways

in Cancer. The fact that the same module was found to be activated

and statistically significant in two different phenotypes, from the

interaction of different sets of canonical pathways, further sup-

ports the idea that this module describes an independent mecha-

nism and should therefore be considered as an independent

pathway.

Further analysis of the crosstalk matrix shows that the Small

Cell Lung Cancer loses significance when the crosstalk effects of

the first three pathways are removed (bright green loss of sig-

nificance in first three columns of row 5 in Supplemental Fig.

S6). This allows us to conclude that it is a false positive in the

classical ORA, with its ORA significance due exclusively to

crosstalk effects.

The ranking of pathways with the P-values corrected for

crosstalk by our analysis is shown in Figure 7B. The first pathway is

Integrin-mediated ECM Signaling with an FDR-corrected P-value of

2.9 3 10�13. Cell Adhesion Molecules is now the second in ranking,

with an FDR-corrected P-value of 0.004. The false positives in the

classical ORA results, Amoebiasis and Small Cell Lung Cancer, are not

significant anymore. The biological significance of the pathway

Dilated Cardiomiopathy may be linked to the fact that 10%–15% of

the uterine cervix is constituted of smooth muscle, and cervical

ripening involves alterations of this component. The last signifi-

cant pathway at the 5% significance threshold is Leukocyte Trans-

endothelial Migration. Although human and animal studies (Hassan

et al. 2009) have shown that cervical ripening does not require

activation of a typical inflammatory response and influx of in-

flammatory cells into the cervix, the significance of this pathway

may reflect the beginning of later inflammatory events typical of

parturition (Word et al. 2007; Timmons et al. 2009).

Figure 5. Mitochondrial activity pathway. This independent functional module is responsible for the
incorrect identification of the pathways Parkinson’s disease, Alzheimer’s disease, Huntington’s disease,
and Cardiac Muscle Contraction by the classical ORA.

Figure 6. Epididymal white adipose tissue of a control mouse (left) and
a mouse treated with CL for 7 d (right). Treatment with CL for 7 d triggered
massive mitochondrial biogenesis, demonstrating in vivo that indeed, the
mitochondrial pathway is central in this experiment. White bar, 20 mm.

Detection, analysis, and correction of crosstalk
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In addition to the data sets described above, we analyzed

a data set coming from the comparison of expression levels at days

7 and 0 in the fat remodeling experiment, a data set investigating

the effect of various types of hormones on the endometrium of

healthy post-menopausal women who underwent hysterectomy

(Hanifi-Moghaddam et al. 2007), as well as a data set requested by

one of the reviewers, investigating the correlation between gene

expression values ‘‘with MiniMental Status Examination (MMSE) and

neurofibrillary tangle (NFT)’’ in subjects with Alzheimer’s disease

(Blalock et al. 2004). The latter data set was analyzed to identify

significant pathways from both KEGG and Reactome databases

(see the Supplemental Results section in the Supplemental

Material).

Conclusions
These results show that the novel approach proposed for the de-

tection and correction for crosstalk effects allows not only the

elimination of most of the false positives present in the results of

the classical ORA but also the identification of novel functional

subpathways that are specifically involved in the condition stud-

ied, giving useful insights on the phenomenon in analysis that are

not captured by existing techniques.

We assessed this novel approach on data from four experi-

ments involving three phenotypes and two species. In all cases,

this approach was able to eliminate most false positives, as well as

correctly identify as significant pathways that had been bi-

ologically proven to be involved in the given condition, yet not

found to be significant by the classical analysis. We also found

several independent functional modules, including a mitochondrial

activity module active in different stages of fat remodeling in mice,

and an Integrin-mediated ECM signaling found to be involved in

hormone treatment in post-menopausal women and cervical rip-

ening in pregnant women. Interestingly, the later module was

extracted independently from the crosstalk interactions of two

different groups of pathways, in the two conditions analyzed.

This approach is a departure from

the current paradigm that considers the

pathways as static models, independent

of the phenotype. In the view proposed

here, various specific modules, or sub-

pathways, can be dynamically linked to

specific conditions. When such indepen-

dent functional modules are identified

in independent conditions, such as the

integrin-mediated ECM signaling above, these

modules could be considered as candidate

new pathways.

Methods

Pathway analysis in the presence
of overlapping pathways:
The crosstalk matrix
Our goal is to develop an approach that
can detect and quantify the crosstalk be-
tween pathways. The main issue we are
trying to address here is the fact that, in
the presence of overlapping pathways
(i.e., for all pathways databases available
today), crosstalk phenomena increase the
probability of false positives, i.e., increase

the number of pathways reported as significant but that in reality
are not interesting (borrowing terminology from Brad Efron, we
call pathways that have lesser biological significance ‘‘not in-
teresting’’ even though they might be statistically significant with
a large enough sample size). To better understand the approach we
are going to present, let us briefly review the classical Fisher’s exact
test approach described above. Figure 9A represents the contin-
gency table used for assessing the significance of a pathway Pi by
the classical overrepresentation approach. The table divides genes
as either being in the pathway or not, versus being considered DE
or not DE (NDE); ni represents the number of DE genes on Pi, while
n represents the total number of DE genes; and mi represents the
number of NDE genes on Pi, while m represents the total number of
NDE genes. It follows that ni + mi = |Pi| represents the number of

Figure 7. The results of the ORA for the cervical ripening experiment, before (A) and after (B) the
correction for crosstalk effects. All P-values are FDR corrected. The lines show the significance thresholds:
(blue) 0.01, (yellow) 0.05. (A) The top 20 pathways reported by ORA before correction for crosstalk.
Pathways such as Amoebiasis and Small Cell Lung Cancer are not related to this phenotype. (B) The top 20
pathways reported by ORA after the crosstalk analysis. After the correction, neither Amoebiasis nor Small
Cell Lung Cancer are significant anymore. At the same time, Cell Adhesion Molecules and the Integrin-
mediated ECM Signaling have an increased significance. Starred pathways are pathways edited by
removing such a module.

Figure 8. The novel Integrin-Mediated ECM Signaling. This new module
was found to be independently activated and statistically significant in two
different conditions: hormone treatment of post-menopausal women and
cervical ripening in normal pregnancies. Genes shown in red were found
to be differentially expressed in the hormone treatment experiment.
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genes on Pi, while with n + m we represent the total number of
genes.

The reasoning behind the ORA is that if the number of DE
genes on a pathway is much higher than expected by chance, then
the pathway is likely to be biologically interesting. In order to take
into account the effect of the overlap on the significance of the two
pathways, we consider the effect of the removal of the overlapping
part on the significance of the pathways. This is achieved as fol-
lows: Let us consider two overlapping pathways Pi and Pj. With the
notation Pi\j we define the set of elements in Pi excluding the in-
tersection with Pj; in the same way, with the notations ni\j + mi\j we
represent the number of genes that are in pathway Pi but not in
pathway Pj, and with ni\j the number of DE genes that are on
pathway Pi but not in pathway Pj. We then consider the contin-
gency table shown in Figure 9B, whose bottom margin is identical
to that of Figure 9A.

With this contingency table, we compute for every pair of
pathways [i, j ] the P-value of Pi\j. Since this computation yields
a k 3 k matrix, where k is the number of pathways, the results are
most conveniently represented using a heat map of the negative
log P-values. Each cell (i, j) of this matrix characterizes the signif-
icance of pathway Pi when we remove the effect of pathway Pj. The
rows and the columns are ordered by the original P-values of the
pathways, which are placed on the diagonal. We will refer to this
matrix as the crosstalk matrix. This matrix is useful for identifying
the effects of crosstalk among pathways.

An example of the crosstalk matrix can be found in Figure 10.
We will refer to the part of the matrix above the horizontal sig-
nificance threshold as the significance strip. The nonsignificance strip
will be the part below the horizontal significance threshold. The
significance quadrant will be the part of the significance strip to the
left of the significance threshold. Using these terms, we can
identify and discuss several interesting phenomena that are not
captured by any of the existing pathway analysis methods.

A first interesting case is when a pathway Pi is reported as sig-
nificant by the classical analysis, but it loses its significance when
the effect of another pathway Pj is removed. This is represented, in the
crosstalk matrix, by a nonsignificant P-value (green square) in the
significance strip. In this case, Pi is unlikely to be biologically mean-
ingful, since its significance is most likely due to a crosstalk from Pj.

A second interesting case is when a pathway Pi that is not
significant for the classical analysis becomes significant when the
crosstalk effect of another pathway Pj is removed. This is repre-
sented in the crosstalk matrix by a significant P-value (red square)
in the nonsignificant strip. The meaning of this is that pathway Pj

was masking the significance of Pi, indicating that a phenomenon
likely to be biologically meaningful is happening in the part of Pi

which is not in common with Pj.
A third and last interesting case is a symmetric (with respect to

the diagonal) decrease in significance of pathways in the signifi-
cance quadrant. This indicates the presence of an independent
functional submodule, common to both Pi and Pj, that is responsible

for their significance. Note that the activity
of this module is tightly related to the
condition studied.

The maximum impact estimation:
An expectation maximization technique
for the assessment of the significance
of signaling pathways in the presence
of crosstalk

The crosstalk matrix is a useful tool for
the interpretation of the effect of cross-
talk between pathways. However, the ul-

timate goal of the analysis of signaling pathways is to provide
a meaningful ranking among pathways, as well as a P-value
quantifying the likelihood that a certain pathway is involved in
the phenomenon in analysis. Here, we developed a correction
method for the ranking of pathways that takes into account the
overlaps between pathways.

The main idea is that if there is no crosstalk, then there is no
ambiguity in the ORA significance calculations. In such a case, if
genes in a pathway are overrepresented, it cannot be a false posi-
tive caused by crosstalk. Our approach is therefore to infer an un-
derlying pathway impact matrix where each gene contributes to
one and only one pathway and hence is devoid of crosstalk, and
then to perform the ORA analysis using that impact matrix. Since
this underlying pathway impact matrix is not observed directly, it
is inferred through likelihood-based methods, and estimated using
the EM algorithm. The corrected ranking is computed using ORA
analysis with the underlying pathway impact matrix, shown as
follows.

Let us consider the DE indicator vector Y, representing the
differential expression of genes, and the membership matrix X
describing the membership of each gene in each one of k pathways
P1. . .Pk. The vector Y is defined as follows:

Yi ¼
1 if gi is DE
0 if gi NDE

�

and each cell Xi,j of the matrix X is defined as follows:

Xij ¼
1 if gi belongs to Pj

0 if gi does not belong to Pj

�
:

Figure 9. A comparison of the classical overrepresentation analysis (A) with the crosstalk matrix analysis
proposed here (B ). (A) The standard overrepresentation approach contingency table: ni + mi and n + m
represent, respectively, the number of genes belonging to pathway Pi and the total number of genes. ni and
n represent, respectively, the number of differentially expressed genes belonging to pathway Pi and the total
number of DE genes. (B ) Contingency table for the overrepresentation approach, taking into account the
overlap between pairs of pathways; Pi \j represents the set of elements in Pi excluding the intersection with Pj ;
with the notations ni \j + mi \j we represent the total number of genes that are in pathway Pi but not in
pathway Pj , and with ni \j the number of DE genes that are in pathway Pi but not in pathway Pj.

Figure 10. Example of a crosstalk matrix. On the diagonal, we find the
classical overrepresentation analysis, ordered by P-value. The blue line
represents the 0.01 significance level, while the black line represents the
0.05 significance level. The P-values in the matrix have been log-trans-
formed (base 10 log), and the sign of the result has been inverted. The
color of the cell represents the P-value: bright red for P-values close to zero,
bright green for P-values close to 1.
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The matrix Y|X obtained by combining the vector Y with the
X matrix is shown in the example in Figure 11.

In many analysis methods, the membership matrix X is also
interpreted as the impact matrix: If Xij = 1, then gene gi impacts
pathway Pj. In ORA, for example, each gene is considered to have
the same full impact on all pathways the gene belongs to. Crosstalk
effects result from the fact that a gene can belong to more than one
pathway, but in principle, it can potentially have a different bi-
ological impact on each such pathway. Our aim is to identify the
pathway where the biological impact of such a shared gene is
maximum. We do so by estimating the maximum impact pathway
using an expectation maximization approach (see Supplemental
Material).

Identification of independent functional modules

The maximum impact estimation procedure alone is not able to
identify overlapping modules responsible for the entire signifi-
cance of other pathways, as in the situations represented by case 3
in the section describing the crosstalk matrix. In such cases, the
overlap should be considered as a separate pathway that is more
likely to be biologically meaningful in the condition under
analysis. An additional step is needed in order to correctly deal
with this situation. In this additional step, we extract certain
significant overlaps from the list of pathways and include them in
the list as independent functional modules. An independent func-
tional module is a module for which there is evidence of an ac-
tivity independent of the pathways it resides in, for the given
condition. If an independent module is found in more than one,
possibly unrelated, condition, this module is considered as a
candidate novel pathway.

A module must satisfy certain conditions in order to be
treated as an independent functional module. Let us assume that
we are analyzing the overlap between the pathways Pi and Pj; the
first condition is that both pathways are significant (after FDR
correction for multiple comparisons) at a certain threshold a. The
threshold a is the significance threshold chosen by the user. Typ-
ical values for this threshold are 0.01 and 0.05. This condition
limits the search to the significance quadrant of the crosstalk
matrix. The second condition is that the overlap Pi\j itself must be
significant at a (after FDR correction). The third condition is that
the subpathways obtained by removing the overlap from both
original pathways, indicated by Pi\j and Pj\i, must not be significant
at a (after FDR correction). If we denote with p(P) the P-value of
a generic pathway P, then the conditions can be summarized as
follows:

1. p Pið Þ < a; p Pj

� �
< a

2. p Pi\j

� �
< a

3. p Pinj
� �

$ a; p Pjni
� �

$ a

This pairwise procedure might yield modules that are similar
one to each other, for example, in cases where a module is con-
tained in three or more pathways. That could be solved with
a three-way or n-way search, but we opted for another approach for
limiting the number of new modules. Once all interesting pairwise
modules are created, we test for similarity among modules. The
index used for similarity is a modified Jaccard similarity index mJS
defined as follows:

mJS ¼ M1 \M2j j
min M1j j; M2j jð Þ ; ð1Þ

where M1 and M2 are two modules obtained with the search cri-
teria explained above. We merge any two modules whose simi-
larity is greater than a certain threshold st. Once the modules are
merged, the similarity among all the modules (including the
newly created one) is computed again, and the merging pro-
cedure is applied again until there are no more modules that can
be merged.

These newly created modules are removed from all pathways
with which they overlap, and this list of modified pathways is used
in the EM procedure. For the data sets analyzed in this work, we
used an st threshold of 0.25. The procedure used to select this
threshold can be found in the Supplemental Material.

After applying the module discovery and the EM approach,
the result is a modified membership matrix that can be used to
perform the desired type of analysis. This matrix now includes
three types of pathways: (1) original pathways as found in the
literature; (2) novel functional modules that are impacted in the
given condition independently from the pathways they belong to;
and (3) the pathways from which such independent modules have
been removed. If the same independent module is found in several
conditions—in other words, if this module is active independently
from its parent pathways in several different phenotypes—such
a module should be considered a good candidate for a novel
pathway.

Additional aspects of the crosstalk correction, such as a de-
tailed description of the module detection step, false negative rate,
and pathway size bias, can be found in the Methods section of the
Supplemental Material (module detection step and false negative
rate), and in Supplemental Figures S11 and S12 (pathway size bias).
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