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ABSTRACT
Terrestrial-based nutrient pollution has emerged as one of the most detrimental
factors to coral health in many reef habitats. Recent studies have shown that excessive
dissolved inorganic nutrients can reduce coral thermal tolerance thresholds and even
exacerbate bleaching during thermal stress, yet the effects of minor nutrient
enrichment under heat stress have not been extensively studied. In this study,
Lobactis scutaria, Montipora capitata, and Pocillopora acuta colonies under heated
conditions (~30.5 �C) were exposed to low and balanced nitrogen and phosphorous
concentrations over a 31-day heating period. Coral colonies were collected from
Kāne‘ohe Bay, O‘ahu, which has a unique history of nutrient pollution, and held in
mesocosms that allowed for environmental manipulation yet are also influenced by
local field conditions. Principal findings included delays in the bleaching of
nutrient-enriched heated colonies as compared to heated-only colonies, in addition
to relatively greater calcification rates and lower proportions of early-stage paling.
Species-specific outcomes were prevalent, with L. scutaria demonstrating no
difference in calcification with enrichment under heat stress. By the end of the
heating stage, however, many heated colonies were at least partially impacted by
bleaching or mortality. Despite this, our findings suggest that low levels of balanced
nutrient enrichment may serve as a mitigative force during thermal events. Further
field-based studies will be required to assess these results in different reef habitats.

Subjects Ecology, Marine Biology, Zoology, Environmental Contamination and Remediation,
Biological Oceanography
Keywords Thermal tolerance, Anthropogenic nutrient input, Bleaching, Coral reefs, Climate
change

INTRODUCTION
Coral reef systems are threatened globally by the pernicious effects of sea surface
temperature (SST) rise, which can expose the coral holobiont to considerable thermal
stress and potentially lead to mass bleaching events (Hughes et al., 2017). Coral bleaching,
the process of major expulsion or digestion of zooxanthellae from or by the host, is
instigated by the breakdown of the mutualistic relationship between coral and
endosymbiont. These symbionts, along with host pigments in some species, give coral their
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characteristic coloration. The diminishment of color during bleaching thus results from
the loss of these symbionts, which often then reveals the white skeleton beneath the now
transparent tissues. Although the primary cause of widespread bleaching is considered to
be heat stress (Hoegh-Guldberg et al., 2007), other large-scale chronic and acute factors
exist that can induce and exacerbate reef-wide bleaching, including ocean acidification
(Andersson et al., 2009; Jokiel, Bahr & Rodgers, 2013) and shifts in salinity, sedimentation,
or irradiance (Easterling et al., 2000; Rodgers et al., 2021). Although repopulation by
symbionts is possible under brief temperature deviations, sustained bleaching can lead to
whole colony mortality (Jokiel & Coles, 1990). Given many coral species live within only
1–2 �C of their upper thermal limits (Coles, Jokiel & Lewis, 1976; Jokiel & Coles, 1977),
observed increases in mean decadal SSTs are particularly harrowing given predictions of
continual elevations in temperature due to climate change. If global mean surface
temperature increases reach 1.5–2.0 �C above pre-industrial levels, warm-water reef
mortality is expected to reach 70–90% worldwide (Hoegh-Guldberg et al., 2019).

The physiological mechanisms that drive coral bleaching have largely focused on
photo-oxidative stress via photoinhibition of endosymbionts (Iglesias-Prieto et al., 1992;
Lesser, 2006; Weis, 2008). The buildup of excess heat energy is partially transferred to
oxygen, increasing concentrations of reactive oxygen species (ROS), which can cause
substantial zooxanthellate cellular damage (Smith, Suggett & Baker, 2005; Weis, 2008),
followed by the release of ROS into host cells (Downs et al., 2002) and eventual apoptosis
(Dunn et al., 2004). More recent studies, however, have posited that amplified
ROS-associated toxicity is at least preceded by independent host-specific immune
responses to thermal stress (Krueger et al., 2015). Rädecker et al. (2021) found that
temperature-associated increases in host energy demand may spur shifts in metabolism to
reliance on amino acid catabolism, resulting in ammonium release and subsequent uptake
by endosymbionts. This catalyzes algal growth, leading to decreased translocation of
photosynthate to host cells and, ultimately, the degradation of symbiosis. These findings
are particularly notable given that host mortality is thought to be driven at least in part by
coral starvation (Anthony, Connolly & Hoegh-Guldberg, 2007).

Many local scale environmental factors also exist that can induce coral bleaching and
mortality. Excess terrestrial nutrient input, which is commonly introduced through
anthropogenic point sources (e.g., drain and sewage pipes) and non-point sources (e.g.,
impervious surface runoff, landslides), has been increasing due to shoreline development,
agricultural activity, and storm frequency and intensity (Carlson, Foo & Asner, 2019;
Giambelluca et al., 2013). Dissolved inorganic nutrients, such as phosphate (PO−3

4 ), nitrate
+ nitrite (NO−

2 + NO−
3 ), and ammonium (NHþ

4 ), are essential components in marine
ecosystem functioning that govern biological productivity in marine environments (Smith,
1984). Most warm-water corals have evolved in nutrient-limited oligotrophic habitats, thus
even minor augmentations of nutrient concentrations can lead to a variety of direct and
indirect effects on coral health and metabolism.

Coral responses to nutrient elevation are differential, varying by species, local nutrient
history, and nutrient type, concentration, and ratio (Bongiorni et al., 2003; Burkepile et al.,
2020; Fabricius, 2005; Fox et al., 2021; Tanaka et al., 2017). A meta-analysis of historical
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nutrient research described how nitrogen enrichment oftentimes reduced calcification and
enhanced photosynthesis in corals while, in contrast, phosphorous enrichment increased
calcification with minimal effects on coral photosynthesis (Shantz & Burkepile, 2014).
The role of nutrients in complex external and internal processes of coral holobiont
metabolism, however, is not well understood.

Ammonium is the preferred source of dissolved inorganic nitrogen (DIN) for corals
over nitrate and nitrite (Grover et al., 2003; Grover et al., 2008), which require reduction to
be available for myriad metabolic processes. Several seminal laboratory studies have shown
that exposure to relatively moderate concentrations of DIN (>2 µM) is associated with
increased zooxanthellae density, chlorophyll concentration, and/or gross photosynthesis
(Ezzat et al., 2019; Ferrier-Pages et al., 2000; Marubini & Davies, 1996; Muscatine et al.,
1998; Stambler et al., 1991). These responses, however, are not necessarily indicative of
healthy symbioses (i.e., reduced carbon translocation from higher endosymbiont
population, see Dubinsky & Jokiel (1994)) and are inconsistent across different studies
(perhaps due to variable experimental design), while oftentimes also accompanied by
evidence of lowered calcification rates at higher concentrations (5–20 µM) of DIN
(Fabricius, 2005). Moreover, it has been shown that dissolved inorganic phosphorous
(DIP) exposure, although leading to higher growth rates, reduced skeletal density in new
growth and thus affected structural quality (Dunn, Sammarco & LaFleur, 2012). More
recent studies have found that, in the absence of concurrent DIP increases, sustained
elevation of DIN concentrations may lead to phosphorous starvation and subsequent
reduction in photosynthetic efficiency and carbon metabolism (D’Angelo & Wiedenmann,
2014; Ezzat et al., 2015; Rosset et al., 2017). Studies such as these have led to the
development of a nutrient-response paradigm that is principally dependent on the
nitrogen to phosphorous (N:P) ratio, which, if insufficiently balanced from DIN over-
enrichment, can lead to degradation of the host-endosymbiont mutualism (D’Angelo &
Wiedenmann, 2014; Morris et al., 2019; Tanaka et al., 2017). These studies, however, only
applied nitrate as a DIN enrichment source, which is typically not as preferential as
ammonium and generally causes deleterious effects at higher concentrations as compared
to ammonium (Ezzat et al., 2015; Marangoni et al., 2020). On a community-wide scale,
elevated nutrient input can stimulate excess macroalgal growth (Fabricius, 2005), which
oftentimes leads to coral mortality via algal stressors such as overgrowth and shading
(McCook, Jompa & Diaz-Pulido, 2001), inhibition of larval viability and settlement
(Kuffner et al., 2006), and (or) allelochemical toxicity (Vieira et al., 2016). In cases of
large-scale proliferation, lasting or permanent phase shifts from coral-dominant to
algal-dominant regimes can occur, leading to shifts in community species composition and
reductions in biodiversity (Adam et al., 2021; Duprey, Yasuhara & Baker, 2016).

The combination of elevated anthropogenically-sourced DIN and increased sea surface
temperatures has long been considered as negatively synergistic with respect to coral
health. Wooldridge & Done (2009) described how excess DIN exposure during thermal
stress may preclude zooxanthellae from homeostatic growth-limitation, thus resulting in
withholding of endosymbiont carbon translocation to the host during heat stress when it is
particularly crucial, thus decreasing bleaching resiliency. Indeed, higher densities of algal

Han et al. (2022), PeerJ, DOI 10.7717/peerj.13707 3/31

http://dx.doi.org/10.7717/peerj.13707
https://peerj.com/


symbionts have been shown to escalate susceptibility to bleaching (Cunning & Baker,
2013). Empirically, several field studies have linked elevated heat and anthropogenic
nitrate to increases in bleaching susceptibility and intensity (Burkepile et al., 2020;
Donovan et al., 2020). Furthermore, when considering ratio-dependent nutrient load,
Wiedenmann et al. (2013) found that imbalanced increases in nitrate and concomitant
phosphate starvation led to both greater susceptibility of bleaching during thermal stress
and lowered thermal limits. Similarly, Chumun et al. (2013) observed more damage to
endosymbionts under imbalanced high heat and nitrate conditions, in addition to
impediment of recovery post-stress. Nitrate elevation-induced phosphate starvation may
be especially harmful during heating given the finding that phosphate uptake rate is
significantly higher during heat stress, which suggests an important role of DIP in
bleaching resiliency during heating (Ezzat et al., 2016). While several studies treated nitrate
(NO−

3 ) as the main DIN source, recent studies have found that differential nitrogen
identities (i.e., nitrate, ammonium, and (or) urea) can result in various physiological
responses (e.g., Burkepile et al., 2020; Marangoni et al., 2020). Contrasting responses of
bleaching intensity under thermal stress have indeed been found, with positive effects
under ammonium (NHþ

4 ) enrichment versus negative effects of nitrate (NO−
3 ) enrichments

(Ezzat et al., 2019; Marangoni et al., 2020).
Despite many cases of decline, there have been some instances suggesting nutrients may

have the ability to lessen or delay the effects of thermal stress under balanced ratio
conditions (Wiedenmann et al., 2013). To our knowledge, this was first observed by
McClanahan et al. (2003), where fertilizer containing high amounts of phosphoric acid,
ammonium, and nitrate reduced paling from seasonal bleaching in treated colonies. Since
then, Beraud et al. (2013) have found that balanced enrichment with ~3–3.8 µM
ammonium during thermal stress resulted in an increased rate of photosynthetic activity
and calcification when compared to heat-only treatments. More recently, when comparing
the effects of nitrate and ammonium during heating,Marangoni et al. (2020) also recorded
beneficial responses to 3 µM of ammonium with a balanced N:P ratio (~17:1) in the form
of photosynthetic activity, calcification, and gauges of oxidative damage, although nitrate
did not share these outcomes. Lastly, after minor yet chronic (~15 months) artificial
increases in nitrate + nitrite, ammonium, and phosphate (on average 0.14, 0.14, and 0.22
µM, respectively), Becker et al. (2021) found improved holobiont performance under
thermal stress, namely higher rates of maximal photosynthetic performance and oxygen
evolution in nutrient-enriched groups. Despite several articles showing the potential of low
nutrient enrichment to ameliorate various impacts of thermal stress, the type of enriched
nutrients and N:P ratios largely vary by study and thermal stress period and were all
restricted to less than 1 week. Although low enrichment under thermal stress has been
shown to cause temporary changes in coral physiology that are beneficial, under longer
periods of thermal stress these changes may be detrimental. There have been no published
studies that have investigated the long-term effects of low nutrient enrichment under
extended chronic thermal stress until this study.

To represent the prolonged duration of summer bleaching events in Hawai‘i more
closely, we exposed three species of Hawaiian reef corals (Lobactis scutaria, Montipora
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capitata, and Pocillopora acuta) to increases of <1 µM of nitrate + nitrite, ammonium, and
phosphate above ambient concentrations for 31 days under high temperature conditions.
Of the species evaluated in this study, Pocillopora acuta has the lowest temperature
threshold, followed by Montipora capitata (Jokiel & Brown, 2004; Ritson-Williams &
Gates, 2020), while the more cryptic Lobactis scutaria is more resilient to elevated
temperatures (Bahr, Jokiel & Rodgers, 2016); species that exhibit higher resistance to
bleaching can be characterized by massive growth forms, thicker tissues, and heterotrophic
feeding as in the solitary coral L. scutaria. Given these species-specific tolerances to heat
stress, we expected differential responses to nutrient and (or) thermal stress. This study
was undertaken using mesocosm tanks that create conditions comparable to the field yet
allow for manipulation of seawater input (Jokiel, Bahr & Rodgers, 2014). Colony samples
were collected from Kāne‘ohe Bay, which has a history of nutrient pollution, although
substantial reductions in anthropogenic inputs have occurred following the relocation of
sewage effluent offshore in 1979 (Smith et al., 1981). The high nutrient, anoxic, and low
light conditions prior to sewage removal led to an extreme decrease in coral cover and a
simultaneous increase in filter or deposit feeders, phytoplankton, and algae (Hunter &
Evans, 1995; Laws & Redalje, 1982). This historical exposure to nutrient stress may have
increased resilience to nutrient elevation in resident corals. Recent research has also shown
that corals in Kāne‘ohe Bay are more acclimatized to thermal stress (Coles et al., 2018; Jury
& Toonen, 2019) and may likewise be more resilient to nutrient stress. Response variables
measured by visual assessment included partial and full colony bleaching and mortality.
Calcification rates were quantified using the buoyant weighing technique and compared
before and after heat exposure. Given outcomes from previously described studies, we
expected that nutrient-enriched groups under thermal stress would show smaller decreases
in calcification rate and reduced prevalence of bleaching and mortality during or at the end
of the heating period.

MATERIALS AND METHODS
Experimental design
The study period in this experiment spanned from June 21st to August 12th of 2019. A total
of 360 coral colonies were collected, comprised of 120 individuals from three local species:
Lobactis scutaria (Ls), Montipora capitata (Mc), and Pocillopora acuta (Pa).

All coral collections were authorized under the Division of Aquatic Resources Special
Activities Permit SAP 2019-16. The reference to Pocillopora colonies as P. acuta, as
opposed to their ostensible historical identification as P. damicornis, was implemented
based on recent findings that P. acuta are commonly misidentified as P. damicornis in our
study site of Kāne‘ohe Bay (Johnston, Forsman & Toonen, 2018). Colonies from each
species were separated into four distinctive thermal and nutrient groups (Fig. 1), hereafter
referred to by their abbreviations: a control group of ambient heat and nutrient levels
(“A”), an ambient heat and elevated nutrient group (“N”), an elevated heat and ambient
nutrient group (“H”), and an elevated heat and nutrient group (“NH”). As such, this led to
a nested study design with mesocosm tank nested within treatment group and species.
Target temperature increases in heat-treated groups were set at 31 �C. Ambient
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temperature and nutrient levels were representative of Kāne‘ohe Bay field conditions due
to direct seawater influx.

The study period was separated into consecutive acclimation and heating phases
(Fig. 2). The initial acclimation phase lasted for 22 days (21 June–12 July 2019) with the
intention of acclimating corals to mesocosms and, for nutrient-treated colonies, elevated
nutrient concentrations. Following the acclimation phase, temperature was raised in
heat-treated groups for 31 days (13 July–12 August 2019), which was defined as the heating
phase. Nutrient elevation in treated groups was continuous throughout all phases.

Figure 1 Experimental design with sample sizes, and representative photograph of mesocosms.
Graphic nested study design (above) showing sample size of each treatment species and treatment
group, with photograph of mesocosm system (below) depicting designated tanks by treatment
(A = ambient heat and nutrients, N = ambient heat and enriched nutrients, NH = elevated heat and
enriched nutrients, and H = elevated heat and ambient nutrient).

Full-size DOI: 10.7717/peerj.13707/fig-1
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Measured temperatures and nutrient concentrations during each phase are shown by
treatment group in Tables 1 and 2, respectively.

Sample site and colony collection
Kāne‘ohe Bay is located in northeast O‘ahu, Hawai‘i (21�24′49.799″N and 157�47′ 39.146″
W). It is the largest sheltered body of water in the Main Hawaiian Islands (MHI),
approximately 28 km2 in size with a maximum depth of 12 m. Several reef structures can
be found within the embayment. A fringing reef runs along the shoreline with over 50
patch reefs located within the lagoonal waters. The outer reef is composed mainly of
limestone with a basalt foundation and is not a true barrier reef but is referred to as one.

Colonies of similar size and morphology of the three study species were collected from
the Moku o Lo‘e shallow reef flat located adjacent to the research site at the Coral Reef
Ecology Laboratory on the eastern point of the island (Fig. 3). All samples were collected
from a depth of approximately one-half meter with colony size approximately 15 cm and
limited to 200 g in weight. Colonies with partial damage or that showed signs of the disease
were not collected. Conspecifics were gathered several meters apart to avoid genetic
redundancy by fragmentation. Selected colonies were placed on underwater trays for
transport and remained submerged during the transfer to laboratory tanks, where they
were held for 1 week in gradually reduced shaded conditions to remediate any

Figure 2 Timeline of study period. Timeline of study period denoting phase periods and dates of data
collection. Full-size DOI: 10.7717/peerj.13707/fig-2

Table 1 Mesocosm water temperature by treatment group and experimental phase. Water tem-
perature (�C) measured from mesocosm water every 30 min. Mean ± SE temperature is shown by
treatment group and experimental phase in addition to percentage of time tank temperature was ≥29 �C
and ≥30 �C. Treatment group abbreviations: A (ambient heat and nutrients), N (ambient heat and
enriched nutrients), NH (elevated heat and enriched nutrients), and H (elevated heat and ambient
nutrients).

Temperature (�C) A N NH H

Acclimation 28.03 ± 0.35 28.02 ± 0.39 28.03 ± 0.39 28.01 ± 0.35

≥29 �C 10.2% 9.7% 9.5% 9.5%

≥30 �C 0.3% 0.4% 0.2% 0.3%

Heating 28.52 ± 0.51 28.48 ± 0.46 30.70 ± 0.52 30.73 ± 0.51

≥29 �C 26.0% 25.6% 99.8% 100.0%

≥30 �C 4.0% 3.8% 83.4% 87.7%
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transfer-related stress. Following this respite period, 10 randomly selected colonies of each
species were assigned to each of the twelve 660-L (1 m × 1 m × 0.5 m) fiberglass
flow-through mesocosms for a total of 30 colonies per tank (Fig. 1).

Mesocosm flow-through system
The mesocosm tank system in this study modeled that of tanks originally designed by
Jokiel, Maragos & Franzisket (1978) in order to closely replicate the environmental
conditions (e.g., depth, light level, irradiance, etc.) of the reef flat collection site in Kāne‘ohe
Bay. To limit fouling, water inflow was alternated through two intake pipes monthly.
Additionally, the two separate lines transporting water from the intake pipe to the
mesocosm system were reamed and switched monthly. Mesocosm water turnover (flow)
rate was determined by closing the tail box drain and recording the time for water outflow
to reach 10 L. Turnover rate was measured at least twice per day to ensure that all tanks
had rates lower than 55 s/10 L (<60 min per complete turnover) to meet previously
determined flow rate requirements described by Jokiel et al. (2008). To maintain water
circulation, two Marineland� Maxi-Jet� 1200 multi-use water pump and powerheads
were placed diagonally in the top corners of all tanks and set at the max rate of 295
gallons/hour. Tank oxygenation was sustained through an aeration stone that was centered
at the bottom of the mesocosm. Water quality factors such as salinity, dissolved oxygen,
and pH were monitored daily using a YSI-556 Handheld Multiparameter Water Quality
Meter, although no anomalous conditions were detected over the course of the study
period.

Table 2 Mesocosm nutrient concentrations by treatment group and phase. Nutrient concentrations
(µM) measured from tank water every ~1 week. Above: comparisons of mean nutrient concentrations
between aggregated enriched and ambient tanks (mean ± SE). Below: mean ± SE temperature by
treatment group and experimental phase. Pairwise statistical comparisons of nutrient concentrations
between treatment groups by phase are shown in Table S1.

Nutrients (mM) by treatment Enriched Ambient Difference p-value

PO−3
4 1.05 ± 0.77 0.39 ± 0.35 0.62 ≤0.001

NO−
2 + NO−

3 0.75 ± 0.45 0.09 ± 0.05 0.67 ≤0.001

NHþ
4 1.16 ± 0.64 0.23 ± 0.19 0.93 ≤0.001

Nutrients (mM) by phase

Acclimation

A H N NH

PO−3
4 0.207 ± 0.044 0.346 ± 0.294 0.784 ± 0.500 0.759 ± 0.284

NO−
2 + NO−

3 0.226 ± 0.044 0.173 ± 0.019 0.524 ± 0.150 0.402 ± 0.105

NHþ
4 0.238 ± 0.084 0.099 ± 0.021 0.550 ± 0.192 0.341 ± 0.058

Heating

A H N NH

PO−3
4 0.218 ± 0.117 0.570 ± 0.433 0.938 ± 0.484 1.213 ± 1.069

NO−
2 + NO−

3 0.086 ± 0.053 0.089 ± 0.039 0.777 ± 0.435 0.721 ± 0.498

NHþ
4 0.202 ± 0.155 0.261 ± 0.219 1.181 ± 0.609 1.132 ± 0.713
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Abiotic factor manipulation and measurement
Finnex� TH Deluxe Titanium 800-Watt heating units were placed in all heat-treated
mesocosms (NH and H) and were continuously active. Additionally, BlueLine Biotherm
Titanium Aquarium 1,000-W heaters (Model IPX8) were also employed to reach target
temperatures; all 1,000-W heaters were connected to Aqua Logic, Inc. Single Stage digital
temperature controllers (model TR115SN), which activated 1,000-W heaters when
temperature fell to 30.8 �C and deactivated heaters when temperature reached 31 �C.
Heaters were placed in identical locations and orientations within each heat-treated
mesocosm. Temperature was also recorded in all mesocosms during the entirety of the
study period using calibrated Onset ProV2 HOBO automatic temperature loggers, which
collected temperature estimates at 30-min intervals. Mean temperatures in the heated
treatments (30.72 �C) (H, NH) were maintained at a level of ~2.2 �C above non-heated
treatment groups during the heating phase (Table 1).

Nutrient concentrations in modified treatment groups (N and NH) were elevated by
dissolving 39.879 grams of sodium nitrate (NaNO3), 33.465 grams of ammonium chloride
(NH4Cl), and 29.799 grams of monopotassium phosphate (KH2PO4) into 100 L of

Figure 3 Aerial image of sampling location and collection area. Aerial image of colony collection sites
near Moku o Lo‘e (red) and field nutrient sampling sites (yellow). Field site (South Bay and Intake Pipe)
nutrient concentrations were compared with ambient mesocosm concentrations to assess uniformity
between field and mesocosm conditions. Service Layer Credits: Esri, DigitalGlobe, GeoEye, Earthstar
Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.

Full-size DOI: 10.7717/peerj.13707/fig-3
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ambient seawater from the adjacent reef flat. This resulted in an N:P ratio enrichment of
approximately 1.94:1. Altered seawater was stored in a 100-L NalgeneTM cylindrical
polypropylene reservoir tank and replenished using the same seawater to nutrient
concentration ratios. To transfer nutrient-elevated seawater to selected mesocosms, a
Cole-Parmer Masterflex� L/S Digital Drive EW-7523-80 was attached to two Cole-Parmer
Masterflex� L/S Multichannel (model 7535-04) peristaltic pumps set at 5 mL/min.
The peristaltic pump moved seawater through six 16″Masterflex� Pump Tubings (model
96400-16), which were then connected to six less-flexible black polyethylene drip irrigation
tubes (width 1.5 cm) that extended to the mesocosms.

Nutrient concentrations were measured weekly in each tank for the duration of the
study period. Prior to sampling, twelve 1-L opaque NalgeneTM bottles were acid-washed
using an 8% acetic acid solution. Bottles were then thrice rinsed with demineralized water
and mesocosm water. To rinse, one-third of the bottle was filled then gently rotated and
agitated for at least 15 s. Following rinsing, 1-L of mesocosm water was collected from
same depth as coral colonies. A total of 100 mL of sampled water was filtered through a
GF/F 25 mm Whatman glass microfiber filter into a 125 mL NalgeneTM bottle using a 60
mL syringe. A new filter was used for every water sample. Additionally, from the onset of
the heating phase, bimonthly water samples were gathered at approximately 1 m in depth
from field sites adjacent to the mesocosm intake pipe and the South Bay location (Fig. 3).
Laboratory and field water samples were kept at −20 �C until their transport to the
University of Hawai‘i School of Ocean and Earth Science and Technology Laboratory (S-
LAB) for analysis. All nutrient concentrations were estimated using a Seal Analytical AA3
HR Nutrient Autoanalyzer. A detailed description of the instrument and specific
procedures of the analyses for each nutrient compound can be accessed at http://www.
soest.hawaii.edu/S-LAB/equipment/slab_autoanalyzer.htm.

Biotic factor measurement
Colony visual assessments were conducted every 2–3 days during the acclimation and
heating phase. Visual assessment methodology was modeled from Jokiel & Coles (1974),
which has since been used in modern studies (e.g., Coles et al. (2018)) and utilizes four
visual categories to describe the partial condition(s) of individual colonies: normal, pale,
bleached, and dead (Fig. 4). Colonies were carefully handled underwater to examine the
colony’s entire surface, from which partial percentages of each condition were recorded
(e.g., 0% normal, 40% pale, 40% bleached, 20% dead). If distinction between bleached and
dead condition was unclear, a magnifying glass was used to determine polyp presence or
absence. Other notable changes in condition were also documented, such as the percent of
surface area tissue loss by disease, predation (Protestomia flatworms), or other parasitic
organisms (e.g., algae, sponge, crab). 8% of M. capitata colonies were removed due to
severe predator infestation that resulted in >20% tissue loss. Colonies with afflictions such
as these were not included in any results or analyses.

The calcification rate of each coral colony was evaluated at the end of the acclimation
and heating phases. Calcification rate was measured using the buoyant weight technique
described by Jokiel, Maragos & Franzisket (1978). Organisms that could affect colony
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weight (e.g., sponges, crabs, algae) were recorded then gently removed with seawater using
a plastic syringe before measurement. Any broken coral fragments were also recorded and
weighed with the colony. The measured colony weights were then converted to dry skeletal
weights following procedures developed in Jokiel, Maragos & Franzisket (1978). Final
calcification rate (mm/day) for a given phase was calculated as the cube-root of the
difference in dry weights from initial to final measurements. From this method,
calcification rate was expressed as a change in colony radial length as opposed to a simple
change in weight, which allows for assessment of colony calcification differences
irregardless of corallum size and morphology (Maragos, 1978).

Statistical approach
R (Version 3.6.2) and the integrated development environment, R-Studio Desktop
(Version 1.1.453, RStudio PBC, Boston, MA, USA), were used for all data analyses (R Core
Team, 2013). Significance level was set at a = 0.05 for all analyses. Graphs depicting coral
survivorship, partial mortality, and partial bleaching were created using Microsoft Excel.
All other graphs were created using R. Tank 8 (NH) was excluded from all abiotic and
biotic data analysis due to malfunctioning of its temperature control systems.
Furthermore, a total of 10 colonies with >30% predation of surface area were also removed
from data analysis: A (6), N (1), NH (1), and H (2). A summary of sample sizes used in
each biotic analysis are shown by phase, species, and treatment in Table S1.

Temperature data from 30-min intervals during the heating phase were compared
between treatment groups to assess the effectiveness of artificial heating. Data were
natural-log transformed to meet the assumption of normality and differences by treatment

Figure 4 Photographs of coral conditions for each study species. Representative photographs of coral
colony conditions used in visual assessments. Left to right: normal, pale, bleached, and dead. Top to
bottom: L. scutaria, M. capitata, and P. acuta. Full-size DOI: 10.7717/peerj.13707/fig-4
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assessed using a one-way Analysis of Variance (ANOVA). Post hoc comparisons between
treatment groups were subsequently evaluated by comparing Bonferroni-adjusted model
estimated marginal means (EMMs) using the R package emmeans (Lenth et al., 2020).

The mean concentrations of nitrate + nitrite, phosphate, and ammonium from field
sites (Intake Pipe and South Bay) were compared to those of the ambient nutrient group
(A) over the entire study period (acclimation + heating phase). Homogeneity of variance
for each nutrient was determined using Levene’s tests via the R package car (Fox &
Weisberg, 2019). One-way standard or Welch’s ANOVAs, depending on the presence of
homoskedasticity, were then used to compare differences in means between field sites and
ambient mesocosm concentrations. Equivalent techniques were applied for pairwise
comparisons between all mesocosm treatment groups during each phase. The mean
concentrations of every nutrient type were also compared between aggregated ambient
(A + H) and nutrient enriched (N + NH) treatment groups during the heating phase to
confirm nutrient elevation during the experimental period. Unpaired two-tailed t-tests
were used to compare these differences in means, with homoscedasticity assessed prior via
Levene’s tests.

Flow rate data were averaged by tank over the entire study period and were found to be
heteroskedastic. As such, analysis of flow rate differences between tanks was performed
using a Welch’s one-way ANOVA, which does not assume equal variance between study
groups (Welch, 1951). A Games-Howell (GH) post hoc test was utilized to compare
individual contrasts in flow rate between tanks using the R package rstatix (Kassambara,
2021). Peristaltic pump rate over the entirety of the study period was also compared
between tanks using a Welch’s one-way ANOVA, although post hoc comparison was not
required.

Colonies were classified as dead when partial mortality was ≥95%. Binary survivorship
data (1 = alive, 0 = dead) from the end of the heating phase and recovery phases were then
compared using binomial generalized linear models (GLMs) with cloglog link functions
and bias-reduced adjustments. The bias-reduced adjustment method is useful for binary
data that show total or near complete uniformity in one or more factor levels, which
occurred for some treatment groups with 100% or 0% survivorship and is available
through the R package brglm2 (Kosmidis, 2017). Model factors used in binomial GLMs
were coral species and treatment group, with post hoc contrasts between treatment groups
compared among species using Bonferroni-adjusted EMMs. Model viability as compared
to null models was assessed using Likelihood Ratio tests from the R package lmtest
(Hothorn et al., 2020).

Colony partial bleaching and partial mortality proportion data at the end of the heating
phase were modeled by beta regressions with logit link functions using coral species and
treatment group as model factors. Proportion data were transformed using Eq. (1)
(Smithson & Verkuilen, 2006) in order to account for zero and one data points, which
cannot be incorporated into beta regressions. Equation variables n and y represent sample
size and an untransformed proportion value, respectively.
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t yð Þ ¼ y � n� 1ð Þ þ 0:5
n

(1)

Model viability as compared to null models were assessed using Likelihood Ratio tests
and post hoc contrasts between treatment groups evaluated among species using
Bonferroni-adjusted EMMs.

Days to bleaching (DTB) was determined as the number of days from the beginning of
the heating phase to when colony partial bleaching reached ≥95%. No colonies from A and
N treatment groups surpassed this threshold during the heating phase, thus DTB was only
compared between NH and H. Unpaired Wilcoxon Rank-Sum tests were used to compare
ranked DTB data between treatments among each species. Days to mortality (DTM),
which was defined equivalently but instead in terms of partial mortality (≥95% cutoff), was
also assessed using these statistical techniques.

Colony calcification data for all coral species were evaluated as the difference in mean
calcification rate from the end of acclimation phase to the end of heating phase (referred to
as “calcification-d”). Colonies with ≥50% partial mortality were excluded from statistical
calcification comparisons due to the potential of dissolution. Mean calcification-d was
compared between treatment groups using a linear mixed effect model with species as a
fixed effect and treatment as both fixed and random. Viability of models were confirmed
through assessment of residual plots. Post hoc differences between treatments were
compared among species using FDR-adjusted EMMs.

Visual assessment data were assessed during Day 12 to examine corals near the
experimental mid-point and reassessed at the end of the heating phase (Day 31). Individual
colonies were assigned a single visual condition (i.e., normal, pale, bleached, or dead)
determined by their most prominent visual condition. The proportions of specific visual
assessment levels were assessed between pairs of treatment groups for each species. These
comparisons were executed using a Chi-Squared Test of Proportions with Yates’
continuity correction, which is available through base R. To accompany quantitative and
statistical analyses of visual assessment data, Multiple Correspondence Analyses (MCAs),
which, similar to Principal Component Analyses, organize categorical variables in
multidimensional factor space, were used to compare the explanatory contribution of
different factor levels to spatial variation in data. MCAs were created and plotted using the
R package FactoMineR (Lê, Josse & Husson, 2008).

RESULTS
Environmental and abiotic parameters
Mean temperature varied by phase and treatment group (Two-way ANOVA,
F(3, 51,213) = 13,208, p ≤ 0.001). Temperature in heat-treated groups exceeded 30 �C for
>83% of the entire heating phase, as compared to only ~4% in ambient heat groups. After
excluding heat-treated groups from the heating phase, temperature increased by an
average of 0.48 �C from the acclimation phase to the heating phase. This nearly half degree
C elevation in ambient water temperature over summer months coincided with seasonal
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changes in temperature associated with prolonged daylight and irradiance. It also occurred
just prior to the 2019 bleaching event that peaked two months following the termination of
this study. The island of O‘ahu experienced the lowest degree heating weeks (0.5 �C)
during 2019 (Winston, 2022). Ambient temperatures did not exceed coral thermal
thresholds during the experiment as evidenced by the lack of bleaching for corals under
ambient conditions.

There were no observed differences in the mean concentrations of any nutrient type
between field sites (South Bay and Intake Pipe) and the ambient mesocosms (A) over the
entirety of the study period (Table S2), suggesting successful alignment of field and
mesocosm nutrient conditions. When aggregating mesocosm nutrient treated (N + NH)
and non-treated (A + H) groups, phosphate, nitrate + nitrite, and ammonium
concentrations were on average 0.61 mM (t-test, T = 4.42, df = 48, p ≤ 0.001), 0.56 mM
(t-test, T = 7.59, df = 36, p ≤ 0.001), and 0.75 mM (t-test, T = 6.74, df = 37, p ≤ 0.001) higher
in enriched tanks, respectively, over the entirety of the study period. Comparisons of mean
concentrations between all individual treatment groups are shown in Table S3.

Few differences in nutrient concentrations among nutrient enriched and ambient
treatment groups were observed during specific phases. Mean ammonium concentration
during the acclimation phase was greater in A than in H (t-test, T = 2.74, df = 7, p = 0.03) as
well as in N than in NH (t-test, T = 2.49, df = 6, p = 0.05). During the heating phase, mean
phosphate concentration was higher in H than in A (t-test, T = −2.79, df = 19, p = 0.01).
Mean concentrations of all nutrient types by phase and treatment groups are shown in
Table 2.

Mean flow rates (sec/10 L) were compared between individual tanks over the entire
study period. The only significant differences in mean flow rates were between Tank 7 and
Tanks 1 (Games-Howell, p = 0.01), 2 (Games-Howell, p = 0.004), and 12 (Games-Howell,
p ≤ 0.001), although the mean increase in flow rate by Tank 7 only ranged from 8.4–9.8 s/
10 L (Welch’s One-way ANOVA, F(10, 297) = 3.96, p ≤ 0.001). All tanks had mean flow rates
lower than 60 s/10 L (<60 min per complete turnover) in accordance with methods
stipulated by Jokiel et al. (2008) (Table S4).

The peristaltic pump rate (mL/min) of nutrient input into individual mesocosm tanks
was also assessed over the entire study period. There were no differences in pump rate
between any tanks, as mean rates ranged from only 3.17–3.24 mL/min (Table S5).

Survivorship and partial mortality
Coral survivorship and colony partial mortality did not differ by treatment group at the
end of the heating phase. The lowest observed survivorships were P. acuta (84%) and
L. scutaria (85%) in NH treatment groups (Table S6); mean partial mortality also reached
as high as 22.4% and 21.3% in H and NH P. acuta colonies, respectively, although these
changes were not significantly different from other conspecific treatments groups
(Table S7).
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Partial bleaching
Partial bleaching was assessed over the course of the heating phase as a more sensitive
measure than total and partial mortality due to low mortality at the end of the heating
phase (Fig. 5). Partial bleaching at the end of the heating phase varied by treatment group
(Beta Regression Model, pseudo-R2 = 0.74, Z(13, 314) = 215.74, p ≤ 0.001) but not by species.
For all species, partial bleaching was higher in NH and H treatments than in A and N
treatments (EMMs, see Table S8). There were no differences in partial bleaching among
unheated groups (A and N) and heated groups (NH and H), except for L. scutaria, which
showed higher partial bleaching in H than in NH (EMM, p ≤ 0.001, Table S8).

Days to bleaching/mortality
DTB was not assessed in A and N treatment groups as no colonies reached the ≥95%
partial bleaching threshold that was selected to constitute full colony bleaching. Among
heat treated groups, however, DTB was lower in H than it was in NH for all species
(Wilcox Test, p < 0.05 for all comparisons, Table S9). On average, bleaching began 3.4 days
earlier in H treatment group colonies as compared to those of NH across all species.

No coral mortality occurred in the ambient nutrient group (N) and only one colony
(M. capitata) died under ambient conditions (A), thus DTM was not evaluated for N and
A treatment groups. No significant differences in DTM were found between NH and H
treatment groups among any species (Table S10).

Calcification rate
The change in calcification rate (calcification-d) from the end of the acclimation phase to
the end of the heating period was also assessed between treatment groups among species.
Minor changes at the end of heating period were observed for ambient heating groups,
although overall decreases in calcification rate occurred for both NH and H (Fig. 6).
Calcification-d in A and N treatment groups was higher than calcification-d in H
treatment groups among all species (EMMs, p < 0.05 for all comparisons, Table S11), with
no differences detected between the A and N control groups. Calcification-d differences
between both control groups (A and N) and NH were found in M. capitata colonies
(EMMs, p < 0.05 for both comparisons, Table S11), as calcification-d in the NH treatment
group was only marginally greater than that of the H treatment group. There were no
significant differences between H and NH treatment groups for L. scutaria and
M. capitata, although calcification-d was lower in H than in NH for P. acuta colonies
(EMM, p ≤ 0.001, Table S11). These findings placed NH as an intermediate treatment
group between ambient heat groups and H with respect to calcification-d despite the
overall decrease in calcification rate at the end of the heating period in all species (Fig. 6).

Visual assessments
By Day 12, the proportion of paled colonies in H treatment groups were greater than those
in all other treatment groups across every species (Chi-Squared Tests, p < 0.05 for all
comparisons, Table S12), except between NH and H treatment groups of P. acuta. Despite
this, however, 83% of P. acuta H colonies were either paled, bleached, or dead, as
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compared to 53% in NH colonies. For all species, the percentage of normal colonies did not
differ between A and NH treatment groups, whereas normal colony percentage was greater
in N than in A and NH treatment groups excluding P. acuta (Chi-Squared Tests, p < 0.05
for all comparisons, Table S12). Percentages of visual assessments by treatment and species
are shown in Fig. 7.

Figure 5 Partial bleaching and mortality during the heating phase. Mean ± SE partial bleaching and
mortality (%) during the heating phase for NH (black lines) and H (red lines) treatment groups shown by
species. Dotted lines depict partial bleaching whereas solid lines represent partial mortality.

Full-size DOI: 10.7717/peerj.13707/fig-5
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The Multiple Correspondence Analysis of visual assessments from Day 12, which
explained 35.3% of total variation, demonstrated several of the same quantitative patterns
in Euclidean space. Treatment groups N and H were distinctly separated in first
dimensional space (x-axis), whereas A and NH were located at an intermediate distance
(Fig. 8, see Table S13 for exact coordinates). These spatial trends were driven by normal
and pale colonies, which explained 21.7% and 21.0% of first-dimension variation, with the
normal condition centered negatively and the pale condition centered positively. Coral
species contributed minimally to variation and was centered similarly for each species.

At the end of the heating period (Day 31), the bleached colony percentage of L. scutaria
was lower in NH than in H (Chi-Squared Test, χ2 = 10.09, df = 1, p ≤ 0.001), whereas no
differences in the M. capitata and P. acuta colonies of these treatment groups were
observed (Table S14). The percentage of paled colonies of L. scutaria was also lower in the
N than the A treatment groups (Chi-Squared Test, χ2 = 8.42, df = 1, p = 0.004), although
this was again not observed for other species. Altogether, there were no recorded bleached
or dead colonies in the A and N treatment groups (Fig. S1).

The MCA of visual assessments from the end of the heating period well represented data
in two-dimensional space (41.3% cumulatively, Fig. S2) and visualized similar trends as
were described above. The model’s first dimensional space showed separation of heated
and non-heated treatment groups, which was driven predominantly by the normal and
bleached conditions (see Table S15 for exact coordinates). Alternatively, the variation in
second-dimensional space was primarily determined by the pale condition, with the A and
NH treatment group centered more positively. This may be concomitant with the lower
percentage of bleached corals in NH than in H of L. scutaria colonies (Fig. S1), which may

Figure 6 Calcification rate by treatment group and species. Mean change in calcification
rate (mm/day, “calcification-d”) from the end of acclimation phase to end of heating phase by treatment
and species. Pairwise comparisons of calcification-d between treatment groups are shown using brackets:
NS = not significant, (�) = p ≤ 0.05, and (���) = p ≤ 0.001). Full-size DOI: 10.7717/peerj.13707/fig-6
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instead only have paled, suggesting this trend may be driven only by L. scutaria. Indeed,
there were differences in species position in second-dimensional space, with L. scutaria
more positively centered in comparison with other species.

DISCUSSION
In all examined coral species, enrichment of heat-stressed colonies with low levels of
inorganic phosphorus and nitrogen concentrations resulted in improvements of coral
conditions indicative of maintaining the host and endosymbiont relationship. In this
study, we conducted mesocosm-based experiments on coral exposure to minimal balanced
nutrient enrichment (<1 µM of nitrogen and phosphorous) during a prolonged heating
event (31 days), which are becoming increasingly common in sub-tropical environments
such as the Hawaiian Islands. We assessed colony growth and various coral conditions over
the study period (i.e., survivorship, partial mortality and bleaching, bleaching progression),
finding evidence of ameliorated growth rates and delayed bleaching in colonies subjected
to thermal stress and nutrient enrichment. For all species tested, the onset of bleaching was
delayed by 3.4 days on average in nutrient-enriched and heated colonies as compared to
heated-only colonies, which was likely due to the reduction in paled individuals midway
through the heating period (Fig. 7). Relatedly, bleaching was consistently lower
proportionally in nutrient-enriched L. scutaria and M. capitata colonies during the heating
period (Fig. 5), albeit a lack of statistical difference during the final day of heating. This
study is the only published account of prolonged coral exposure (>30 days) to elevated
temperature and minimal balanced nutrient enrichment, expanding on shorter duration

Figure 7 Visual assessment on day 12 of heating between treatment groups by species. Percentage (%)
of colonies that were either normal, pale, bleached, or dead by treatment group and species on Day 12 of
the heating period. Full-size DOI: 10.7717/peerj.13707/fig-7
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studies (e.g., Ezzat et al., 2016; Hadjioannou et al., 2019; Tanaka et al., 2014) to investigate
chronic exposure, which may more closely resemble thermal events in the field.

Calcification rate, which was used as a proxy for host bioenergetic and metabolic status,
was also less affected in nutrient-enriched groups during heat stress. The enhancement of
host metabolism under enriched nutrient conditions has been recorded in previous studies
(Beraud et al., 2013; Fabricius, 2005; Tanaka, Hayashibara & Ogawa, 2007) and may help
to explain relatively lower calcification rates of NH as compared to H treatment groups
observed in this study. Altogether, these results suggest that minor and balanced nutrient
enrichments can increase the resilience of individual colonies to thermal stress during
heating events.

The implementation of Multiple Correspondence Analyses (MCA) to visualize patterns
in categorical datasets has been utilized in ecological studies (e.g., Aubert et al., 2006;
D’Onghia et al., 2011), although it remains somewhat irregular as oftentimes biological
sampling predominantly generates numerical response data. Here, however, our visual
assessments were modeled after techniques employed by Jokiel & Coles (1977) and
subsequently Coles et al. (2018), which permit the rapid and practical evaluation of the
bleached status of large numbers of coral colonies every 2–3 days, producing categorical
data. The combination of descriptive MCA plots with subsequent chi-squared
proportional tests allowed for visual and statistical interpretation of these data. This
approach revealed that nutrient enrichment decreased bleaching of heated colonies during
the intermediate stage (Day 12) of the heating period. By the end of heating (Day 31), the
nutrient-enriched heated group had higher proportions of paled colonies than did the

Figure 8 Multiple Correspondence Analysis (MCA) plot by treatment group on day 12. Multiple
Correspondence Analysis (MCA) plot of treatment, species, and visual assessment data from Day 12 of
the heating period. Treatment group centroids are shown along with corresponding 95% CI ellipses.

Full-size DOI: 10.7717/peerj.13707/fig-8
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heated group, which were instead primarily bleached or dead. These indications of
remediated health in nutrient-treated groups at the end of heating are mostly attributed to
L. scutaria, however, as paled colony proportion did not vary significantly among other
species.

The delayed decline in colony visual conditions may be tied to the qualitative
observation of greater zooxanthellate density in nutrient-enriched colonies in both heated
and unheated groups. Although over-proliferation of microalgal symbionts under high
and unbalanced nutrient enrichment has been shown to exacerbate bleaching (D’Angelo &
Wiedenmann, 2014; Rosset et al., 2017; Wooldridge & Done, 2009), the modest
concentrations of balanced nutrient enrichment in this study may have been too low to
cause overgrowth and thus minimized any associated negative effects. This aligns with
expectations expressed by D’Angelo & Wiedenmann (2014) who proposed that N/P
concentrations may only be harmful under imbalanced ratios. This interpretation is
further supported by new evidence that endosymbionts can maintain stable host-symbiont
nutrient relationships during modest fluctuations in density due to alterations in symbiont
photophysiology (Krueger et al., 2020). Although we lack measurements of causal
variables such as photosynthetic rate or cellular nutrient composition that could confirm
these conditions, the nutrient concentrations in our mesocosm experiments were
similar to measurements recorded by Becker et al. (2021) in their field manipulation study,
which observed increases in gross photosynthetic rate and maximal performance.
Our observations of mollified calcification rates may also be indicative of host metabolic
mitigation as past studies have observed greater skeletal extension of corals when enriched
with phosphate (Dunn, Sammarco & LaFleur, 2012; Shantz & Burkepile, 2014), although
the structural integrity of new growth may be compromised. As such, the presence of
phosphate in our nutrient treatments may have been the main driver of observed
improvements to visual health and calcification rate due to sufficient supply of phosphate
for prevention of P-limitation (D’Angelo & Wiedenmann, 2014), whereas the negative
effects from nitrate and nitrite may have been minimized or otherwise influenced by the
presence of ammonium (Ezzat et al., 2016; Marangoni et al., 2020). The duration of
positive effects from phosphate introduction is unclear, however, as bleaching was quite
pervasive by the end of the heating period.

Several past studies have summarized potential mechanisms for augmented coral
resiliency in response to chronic or multiple acute disturbance events (Suggett, Warner &
Leggat, 2017; Torda et al., 2017). This “ecological memory” (seeHackerott, Martell & Eirin-
Lopez, 2021; Hughes et al., 2019) approach is a leading rationale supporting current and
future individual and community-level resiliency in the context of anthropogenic stressors.
Tolerance to higher temperatures and reduced water quality, for example, have been
observed in reef habitats over generational scales (Coles et al., 2018; Tisthammer et al.,
2021), with more recent studies suggesting that rapid thermal acclimatization may occur in
response to acute environmental stresses through non-genetic inheritance, epigenetic
adaptation, and (or) microbiome plasticity (Littman, Willis & Bourne, 2011; Palumbi et al.,
2014; Putnam, 2021). Kāne‘ohe Bay, which was historically highly suitable for reef coral
growth (Edmondson, 1928), entered a period of severe coral decline after introduction of

Han et al. (2022), PeerJ, DOI 10.7717/peerj.13707 20/31

http://dx.doi.org/10.7717/peerj.13707
https://peerj.com/


major high-nutrient sewage output in 1963. After the majority of sewage flow was removed
in 1978, Kāne‘ohe Bay underwent a reverse phase-shift to a coral dominant regime over the
next several decades (Smith et al., 1981). Initial coral recovery was relatively immediate,
with reported increases in coral cover of 26% within several years of effluent removal
(Smith et al., 1981). It has also been suggested that corals in Kāne‘ohe Bay have developed
improved thermal tolerance due to the incumbent high temperatures relative to adjacent
reefs (Coles et al., 2018; Jury & Toonen, 2019) and, when considering nutrient history in
tandem, may have the potential for improved tolerance to combined nutrient and heat
augmentation. Accordingly, nutrient history has recently been shown to mediate the
response of Scleractinian corals to thermal stress (Hadjioannou et al., 2019).

The differential responses to heat stress by the three coral species in this study with
respect to visual assessment, calcification rate, and partial mortality and bleaching may be
due to differences in life history, morphology, and stress tolerance. P. acuta, which
declined rapidly in visual status and partial mortality, also demonstrated the greatest
decrease and variation in calcification rate when exposed to heat stress and nutrient
enrichment (Fig. 6). General trends suggest that L. scutaria may be more tolerant to
thermal stress (Bahr, Jokiel & Rodgers, 2016; Coles et al., 2018) with and without nutrient
enrichment, as these colonies exhibited less bleaching during the intermediate periods of
the heating phase and showed no statistical differences in calcification rate between the NH
treatment group and ambient groups. When considering variation in response, factors that
could contribute to species-specific performance are heterotrophic feeding plasticity and
endosymbiont regulation. Coral heterotrophic feeding has been recognized as one of the
main sources for energy acquisition during stressed conditions, especially under disruption
of endosymbiont autotrophy (i.e., bleaching) (Grottoli, Rodrigues & Palardy, 2006).
Greater reliance on heterotrophic feeding can alleviate bleaching and maintain coral
growth by fulfilling carbon demand that is lost from the breakdown of symbiosis
(Houlbrèque & Ferrier-Pagès, 2009). A recent study by Price et al. (2021) suggested that the
average contribution of heterotrophy to Hawaiian coral feeding is approximately 20–50%,
depending on the species. The level of heterotrophic feeding was likely variable among the
coral species examined in this study and may have confounded the magnitude of responses
to heat stress. Indeed, our results showed delayed bleaching (Days to bleaching, DTB) was
more pronounced in M. capitata (Fig. 5, Table S9), the species with the highest
heterotrophic feeding rate during post-bleaching recovery. This concurs with other studies
that report M. capitata was able to obtain up to 100% of the required metabolic energy
requirements from heterotrophy (Dobson et al., 2021; Grottoli, Rodrigues & Palardy, 2006).
Alternatively, the relatively poor response of P. acuta to heating in this study may have
been driven by its limited ability to regulate endosymbiont proliferation (Fox et al., 2021).
These results imply that any positive effects of balanced nutrient enrichment may be
mediated by the stress tolerance of the affected species.

Our study presents evidence for possible bleaching mitigation under low-level nutrient
enrichment. Temperature, however, was unequivocally the dominant factor that induced
bleaching, considering there were clear differences in all measured parameters between
ambient (~28.5 �C) and heated (~30.7 �C) groups regardless of their nutrient regime.
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Although not measured in this study, the Symbiodiniaceae genotype may have prompted
differences in visual conditions and calcification, as several articles have shown thermal
tolerance differences between Symbiodiniaceae genotypes (Grégoire et al., 2017; Stat &
Gates, 2011). Moreover, the variations in nutrient uptake, carbon translocation rates, and
nutrient competition between Symbiodiniaceae genotype have been found (Baker et al.,
2013), and it is plausible that the Symbiodiniaceae species competition (dominance) could
be altered under nutrient enrichment due to differing nutrient processing capacities.
The effect of nutrient enrichment on Symbiodiniaceae competition and the impact on
thermal tolerance requires further investigation.

Although the utilization of a mesocosm study system can control for many factors that
cannot be regulated in traditional field studies, there remain some limitations. Adjustment
of nutrient inputs into enriched tanks required consistent modification, as uptake and
release of measured nutrient concentrations by corals continuously alters in situ tank
concentrations. This led to higher ranges in measurements, as was reflected in the standard
error of nutrient concentrations, although this is a common issue in nutrient manipulation
studies (e.g., Fox et al., 2021) and did not preclude statistically significant differences
between enriched and ambient treatment groups. Secondly, because mesocosms rely on
proximate seawater influxes, the water temperature of ambient tanks during the heating
period rose on average to sub-lethal levels (~28.5 �C). Interestingly, however, little paling
or bleaching was observed in nutrient-enriched ambient-temperature colonies as
compared to fully ambient colonies (Fig. S1), which is consistent with observations by
McClanahan et al. (2003) that fertilizer enrichment precluded typical summer bleaching.
As such, the mitigative potential of nutrient enrichment in this study may also apply to
corals experiencing sub-lethal temperature exposure.

CONCLUSIONS
Despite clear negative feedbacks of eutrophication on reef degradation (Littler & Littler,
1984; Wooldridge, 2013), deciphering the effects of direct nutrient enrichment on coral
thermal tolerance has been a convoluted and ambiguous initiative for several decades.
Dissolved inorganic nutrients should be treated as a “double-edged sword” that can alter
coral holobiont symbioses (Wooldridge, 2013). Many studies have found that excess
nitrogen can exacerbate bleaching in field and laboratory settings (e.g., Burkepile et al.,
2020; Chumun et al., 2013; Nordemar, Nyström & Dizon, 2003). In this context, both
nutrient identity and N:P ratio have been identified as controlling factors influencing coral
response (Ezzat et al., 2015;Marangoni et al., 2020; Rosset et al., 2017;Wiedenmann et al.,
2013). Therefore, the conditions and threshold that balances beneficial and harmful
impacts of nutrients on coral is crucial to elucidate for near-shore management and
maintenance of healthy reef ecosystems in a changing ocean. Although critiques of past
studies have posited that coral exposure to large N:P ratios and (or) concentrations does
not occur in natural systems, recent studies have demonstrated that increases in N:P ratio
at tested levels can occur via anthropogenically driven nutrient enrichment or excessive
runoff (Lapointe et al., 2020), which has coincided with bleaching events (D’Angelo &
Wiedenmann, 2014; Lapointe et al., 2019). While the importance of nutrient availability
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(N:P ratio) to coral thermal bleaching has been discussed, the coral host can limit or
stabilize the algal proliferation (Baird et al., 2009) and thresholds of nutrient
concentrations and (or) N:P ratios that balance the presence of mutualism and parasitism
have not yet been ubiquitously identified. Here, we presented novel results that infer low
and balanced nutrient enrichment during thermal stress may mitigate coral bleaching
during the early stages of a heating event and help to maintain mutualism. Our findings
seemingly align with those of Becker et al. (2021) and are particularly relevant considering
many reef systems are experiencing sustained or increased anthropogenic nutrient input
from sources such as fertilizer and sewage outfall, which can lead to macroalgal
overproliferation and associated coral mortality. Determining the remediatory potential of
this approach across different spatial scales will require similar mesocosm or field studies
in other reef systems that consider local nutrient dynamics, as Kāne‘ohe Bay is unique in its
nutrient and temperature history.
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