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Abstract  

Background 

Psychosis poses substantial social and healthcare burdens. The analysis of speech is a 
promising approach for the diagnosis and monitoring of psychosis, capturing symptoms like 
thought disorder and flattened affect. Recent advancements in Natural Language Processing 
(NLP) methodologies enable the automated extraction of informative speech features, which 
has been leveraged for early psychosis detection and assessment of symptomology. However, 
critical gaps persist, including the absence of standardized sample collection protocols, small 
sample sizes, and a lack of multi-illness classification, limiting clinical applicability. Our study 
aimed to (1) identify an optimal assessment approach for the online and remote collection of 
speech, in the context of assessing the psychosis spectrum and evaluate whether a fully 
automated, speech-based machine learning (ML) pipeline can discriminate among different 
conditions on the schizophrenia-bipolar spectrum (SSD-BD-SPE), help-seeking comparison 
subjects (MDD), and healthy controls (HC) at varying layers of analysis and diagnostic 
complexity. 

Methods: 

We adopted online data collection methods to collect 20 minutes of speech and demographic 
information from individuals. Participants were categorized as “healthy” help-seekers (HC), 
having a schizophrenia-spectrum disorder (SSD), bipolar disorder (BD), major depressive 
disorder (MDD), or being on the psychosis spectrum with sub-clinical psychotic experiences 
(SPE). SPE status was determined based on self-reported clinical diagnosis and responses to 
the PHQ-8 and PQ-16 screening questionnaires, while other diagnoses were determined based 
on self-report from participants. Linguistic and paralinguistic features were extracted and 
ensemble learning algorithms (e.g., XGBoost) were used to train models. A 70%-30% train-test 
split and 30-fold cross-validation was used to validate the model performance. 

Results:  

The final analysis sample included 1140 individuals and 22,650 minutes of speech. Using 5-
minutes of speech, our model could discriminate between HC and those with a serious mental 
illness (SSD or BD) with 86% accuracy (AUC = 0.91, Recall = 0.7, Precision = 0.98). 
Furthermore, our model could discern among HC, SPE, BD and SSD groups with 86% accuracy 
(F1 macro = 0.855, Recall Macro = 0.86, Precision Macro = 0.86). Finally, in a 5-class 
discrimination task including individuals with MDD, our model had 76% accuracy (F1 macro = 
0.757, Recall Macro = 0.758, Precision Macro = 0.766). 

Conclusion: 

Our ML pipeline demonstrated disorder-specific learning, achieving excellent or good accuracy 
across several classification tasks. We demonstrated that the screening of mental disorders is 
possible via a fully automated, remote speech assessment pipeline. We tested our model on 
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relatively high number conditions (5 classes) in the literature and in a stratified sample of 
psychosis spectrum, including HC, SPE, SSD and BD (4 classes). We tested our model on a 
large sample (N = 1150) and demonstrated best-in-class accuracy with remotely collected 
speech data in the psychosis spectrum, however, further clinical validation is needed to test the 
reliability of model performance.  
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Introduction 

 
Alterations of speech in psychiatric disorders has been proposed as an objective, reproducible, 
and time-efficient biomarker (1-3) given its high prognostic value for onset, course, chronicity, 
and treatment response (4-16) across numerous conditions. Objective and scalable speech 
markers have gained special interest in psychosis where they can be combined with machine 
learning (ML) algorithms to detect illness, gauge symptom severity or predict relapse from 
speech (13,16-21).The putative predictive power of speech for psychotic disorder prognosis and 
development of psychosis from at risk state has received particular attention, as this opens up 
the premise of early, objective detection and targeted prevention (9,10,21-23). Importantly, 
speech and language were directly linked to key symptoms of psychosis, including formal 
thought disorder, changes in vocal expression, and flattened affect (24-29). Several speech 
features, including pitch, rhythm, and connectivity could signal changes in motor control function 
and neural connectivity, which correlate with psychotic symptom severity (30-34). These 
connections provided a neurobiological and phenomenological basis for why speech-based 
assessment can be useful in psychosis. 

Despite these advancements, several critical gaps remain in the existing literature, limiting the 
application of speech analysis and assessment in clinical settings. Firstly, there is no 
standardized speech sample collection procedure. Speech elicitation methods hugely vary 
across research, with varying lengths and protocols. Prior studies often used speech recordings 
from laboratory settings with intense human involvement in terms of recording and transcription 
which limits the comparability of findings. Secondly, partly driven by the burden of recruitment 
and assessment procedures, previous studies have been conducted with relatively limited 
sample sizes and relatively narrow clinical scope (e.g., patients with acute psychotic episodes). 
This limits the complexity of applicable computational modelling of speech data and does not 
address the translation of findings to more heterogenous clinical populations. Thirdly, research 
to date has focused on primarily binary classifications between “healthy” individuals and 
individuals with one specific disorder, like bipolar or schizophrenia. This does not translate to 
the discriminatory diagnosis or detection of subtle changes that clinicians perform routinely. 
Moreover, the focus on binary discrimination provides limited insight into whether speech-based 
ML models can capture disorder-specific alteration in speech rather than learning the difference 
between healthy and unhealthy speech patterns. 

To address these gaps, we collected speech data with various elicitation procedures remotely, 
online, from a large cross-diagnostic sample of individuals (N = 1140). Participants included 
those at different points on the schizophrenia-bipolar continuum - people who have been 
diagnosed with schizophrenia spectrum disorders (SSD), people who have been diagnosed 
with bipolar disorder (BD) and people who have sub-clinical psychotic experiences (SPE) 
suggesting some vulnerability to psychosis but without meeting the diagnostic criteria of full-
blown psychotic conditions and healthy control subjects, who might experience some distress 
regarding their mental health but have not received any psychiatric diagnosis or experience 
SPE (HC). Based on significant biological, genetic, neurological and phenomenological overlap, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.03.24313020doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.03.24313020
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

the schizophrenia-bipolar continuum can be understood as spanning the psychosis spectrum, 
where one dimension represents the affective nature of the condition (from affective to non-
affective psychosis) and another dimension represents the severity and clinical nature of the 
symptoms (from sub-clinical experiences to full-blown, clinical conditions) (30,35-38). Studies 
that aimed to identify biomarkers and intermediate phenotypes found that there is an 
unexpectedly high overlap in the biological characteristics of psychotic diseases across the 
schizophrenia and bipolar spectrum and clear distinctions based on biomarkers are not 
apparent which underlines the continuum interpretation (37,38). However, within the current 
diagnostic system and at current level of scientific understanding, it is still worthwhile to 
distinguish between BD and SSD as they have different prognoses and may require different 
treatments, therefore we wanted to test whether speech markers can capture these differences. 

In addition to the primary clinical focus on the schizophrenia-bipolar spectrum, we collected 
speech data from people with major depressive disorder (MDD) to serve as a non-psychotic 
comparison sample. MDD is a highly prevalent condition which overlaps with psychosis both 
with regard to comorbid patients and shared clinical presentations (e.g., anhedonia, 
amotivation) (30,39-41). Also, MDD has been also connected to speech alterations that can 
overlap with speech changes observed in the psychosis spectrum, posing a potential challenge 
to speech-based discriminatory diagnosis (39,40). Lastly, we collected speech from healthy 
individuals (HC) to provide a control condition and help to evaluate the discriminatory power of 
speech further by adding additional layering to out analyses.  

We created a ML pipeline adopting state-of-the-art text-based and paralinguistic approaches 
and tested its ability to perform classification tasks across multiple conditions. In brief, our study 
aimed to: 

1. Identify an optimal assessment approach for the online and remote collection of speech, 
in the context of assessing the psychosis spectrum. 

2. Evaluate whether our ML pipeline can discriminate among different conditions on the 
schizophrenia-bipolar spectrum (SSD-BD-SPE), help-seeking comparison subjects 
(MDD), and healthy controls (HC) at varying layers of analysis. 
 

Methods 

Participants 

Participants from the United States of America or the United Kingdom were recruited via the 
online platform Prolific (https://www.prolific.co). Potential participants were screened via self-
report for the inclusion and exclusion criteria (N = 10,000) Diagnostic group was determined 
based on self-reported prior clinical diagnosis and responses to the 16-item prodromal 
questionnaire(42,43) and the 8-item Patient Health Questionnaire (44-46). Inclusion criteria 
included age of 18 years or above, native speaker of English, capability to record voice on a 
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digital device, and ability to provide informed consent. We labelled participants into the following 
groups: 

� Healthy control (HC): no history of a diagnosed mental disorder and scored less than 3 
on both the PQ-16 symptom scale (prodromal psychotic symptoms) and PHQ-8 
(depression symptoms) (42,43,46) 

� Sub-clinical psychotic experiences (SPE): no history of any diagnosed psychiatric 
disorder and scored more than 6 on the PQ-16 symptom scale (prodromal psychotic 
symptoms), a proxy for clinical at-risk mental state (42). 

� Bipolar disorder (BD): reported clinical diagnosis of bipolar disorder (type I or II) but did 
not report diagnosis of schizophrenia or schizoaffective disorder. Participants who 
reported co-morbid conditions other than schizophrenia and schizoaffective disorder 
were included, e.g., generalized anxiety, substance use disorders. Notably, participants 
in BD group have not necessarily experienced psychotic symptoms. 

� Schizophrenia-spectrum disorders (SSD): reported clinical diagnosis of schizophrenia 
or schizoaffective disorder but did not report diagnosis of bipolar disorder. Participants 
who reported co-morbid conditions other than bipolar disorder were included, e.g., 
depression, anxiety. 

� Major depressive disorder (MDD): reported diagnosis of major depression and did not 
report a diagnosis of bipolar disorder, schizophrenia, schizoaffective disorder and 
scored less than 3 on the PQ-16. Participants who reported co-morbid conditions other 
than BD or SSD conditions were included. 

Exclusion criteria included diagnosis with autism spectrum disorder or other developmental 
disorders which affect speech and language, history of cognitive impairment or dementia. 
Written, informed consent was collected from all participants. 

Online Assessment of Speech 

Speech was collected from eligible participants using an online experiment platform where 
participants provided secure voice samples in response to standardised prompts. Participants 
were instructed to record in a quiet environment, alone, and explicitly asked to avoid conditions 
that can reduce the quality of the audio recording. After an initial microphone test, each 
participant underwent five different speech-based tasks (detailed in Table 1), taking between 
16- 20 minutes to complete. We selected the five tasks based on use in previous research 
(17,22,47,48). Participants were allowed to stop and resume the testing procedure within a 1-
week window. 

Participants were compensated for their time. For screening, participants were paid 3 GBP, and 
for the speech recording task, participants were paid 9 GBP, via Prolific. 

Data Pre-processing 

Incoming data was uploaded to a secure Cloud server. Audio data was automatedly transcribed 
into text using Amazon Transcribe API. Files that contained less than 5 words/task were 
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excluded from analyses, and stop and filler words (e.g. hm, ahmm, uhmm, hmm) were removed 
before analysing the text, using a predefined list of targeted words that suited our Amazon ASR 
system. Audio files that contained stereo WAV formats were converted to mono format. 

Feature Extraction 

Following pre-processing, both raw audio data and text transcripts went through a feature 
extraction pipeline. Features were selected to complement each other and reflect abnormalities 
at different levels of language. 

Text-based features 

NLP techniques were applied to extract features of abnormal language across semantics, 
morphology and syntactic levels. 

Semantic coherence was captured with 7 features. We first applied word-embedding 
methodology: each word was represented as a vector, such that words used in similar contexts 
(e.g. ‘desk’ and ‘table’) were represented by similar vectors. Vector representations were 
generated by using word embeddings from the pre-trained word2vec Google News model (49) . 
Based on word representations as vectors, sentence embedding was calculated using Smooth 
Inverse Frequency (SIF), to produce a single vector for each sentence (29).We used word2vec 
and SIF embeddings because they previously gave the greatest group differences between 
patients with schizophrenia and control subjects and have been widely applied in psychosis 
research (22,29,47,49,50). Finally, cosine similarities between adjacent sentences and words 
were calculated to represent coherence at several levels. Coherence features included mean 
coherence score of the sentences, mean coherence per every 10 tokens, changes in sentence 
coherence score over the text, repetition, repetition divided by number of tokens in the speech 
sample, mean sentence coherence divided by the number of tokens in the speech sample and 
mean number of tokens per sentences. 

Speech connectivity was measured by 30 features. Speech connectivity captures both semantic 
and syntactic information, measuring both the semantic coherence, syntactic complexity, 
grammatical complexity and correctness of language use. Overall, connectivity measures are 
considered to provide a proxy of narrative planning(51) as they can determine markers of short-
range and long-range recurrence of a subject in the text (52). To measure speech connectivity, 
we generated speech graphs from the text, where all of the words represented as nodes in a 
graph while the grammatical connections between words were represented as edges in the 
graph, following the procedure of Mota et al(51). Graphs were generated using three different 
types of text pre-processing, and different parameters of the graphs (e.g., the largest connected 
component, number of repeated edges, diameter) were used as connectivity features, to 
capture the relation of syntactic and semantic information. 

Syntactic complexity was measured by 6 features. These metrics were based on automated 
part-of-speech tagging using NLTK (Natural Language Toolkit) Python package. Our features 
measured the frequency of tags compared to a number of tokens and the frequency of tags 
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compared to each other (e.g., Number of Wh-determiners compared to all tags, number of 
unique types of tags in the text)(2). 

Paralinguistic features 

Paralinguistic features were designed to capture changes in emotional state (like flattened 
affect) and articulation (proxy of changes in motor control). A unique, proprietary combination of 
116 paralinguistic parameters was extracted from audio files, both at the level of task and in 10-
second frames with 5 seconds overlap. Our feature set is comprised of temporal parameters 
(e.g. average syllable and pause ratio), prosodic parameters (e.g. glottal pulse period, jitter, 
shimmer), frequency parameters (e.g. F1 frequency mean), spectral parameters (e.g., Mel-
frequency cepstral coefficients) and amplitude parameters (e.g., loudness). 

Modelling Outcomes 

Following the automated transcription and feature extraction, the speech and language features 
were used to address the stated objectives, as summarized in Figure 1. Data analyses were 
conducted in Python 3.7, Jupyter Notebook v6. 5.3. 

Performance metrics of accuracy and balanced accuracy were used to compare predictive 
power. We choose these metrics because accuracy is a standard, common metric used in ML 
applications that makes our results comparable with previous findings, and balanced accuracy 
accounts for the sensitivity of each class, making it a particularly useful metric when the dataset 
is imbalanced. Balanced accuracy prevents bias toward the majority class, providing a more 
realistic understanding of classification performance in our case. Accuracy is defined as the 
ratio of correctly predicted instances to the total number of instances in the dataset. 
Mathematically, accuracy can be expressed as Accuracy = (TP + TN)/(TP + TN + FP +FN) * 
100 where TP = True Positives, TN = True Negatives, FN = False Negatives, FP = False 
Positives. Balanced accuracy evaluates classification performance in multiclass problems by 
calculating the arithmetic mean of sensitivity (true positive rate) of each class. Sensitivity for 
each class is the number of true positive predictions for that class divided by the total number of 
actual instances of that class. The formula of balanced accuracy is Balanced Accuracy = 
(((TP/(TP+FN)+(TN/(TN+FP))) / 2where TP = True Positives, TN = True Negatives, FN = False 
Negatives, FP = False Positives. 

Objective 1: Identify an optimal assessment approach for the online and remote collection of 
speech, in the context of assessing conditions on the psychosis spectrum 

We first evaluated the predictive power of different types of speech tasks. We separated speech 
data per task and then fed each group of speech data corresponding to a given type of speech 
task into four types of ML algorithms (Random Forest, XGBoost, CatBoost, Extra Trees). Then, 
we compared the predictive power of the algorithms on the task of multiclass classification 
among the HC, SPE, BD, SSD groups. The four types of tested algorithms (Random Forest, 
XGBoost, CatBoost, Extra Trees) are types of ensemble learning, which combines the 
predictions of multiple individual models to create a stronger, more accurate, and robust model. 
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This approach has shown outstanding performance in speech and healthy applications, even 
when compared to more complex modelling approaches (e.g., Deep Neural Networks).  

In this scenario, we aggregated data per file and per participant, taking the mean of different 
features at the level of the audio file and participant. ML algorithms were trained on 70% of the 
dataset using leave-one-out cross-validation and validated on the stratified, remaining 30% of 
the dataset.  

Objective 2: Evaluate whether our ML pipeline can discriminate among different conditions on 
the schizophrenia-bipolar spectrum (SSD-BD-SPE), help-seeking comparison subjects (MDD), 
and healthy controls (HC) at varying layers of analysis. 
In the second part of our analysis, we wanted to test the discrimination ability of online collected 
speech at increasing levels of diagnostic complexity (Figure 1, Objective 2). Therefore firstly, we 
used the relatively simple task of binary classification when our speech-based machine learning 
pipeline had to discriminate between HC and serious mental illness (SSD and BD), modelling 
discrimination between relatively distinct conditions. Then, to increase complexity, we tested our 
speech-based ML pipeline in multiclass classification problem (4 classes) when it the model had 
to discriminate among different conditions on the psychosis spectrum (SPE, BD, SSD) and HC 
simultaneously. In addition to reducing the random chance of correct classification this task 
tested the model’s ability to discriminate between conditions that are less distinct, show 
overlapping symptom profile and challenging to separate using other biomarkers compared to 
the binary classification task. Lastly, we tested our speech-based ML pipeline in multiclass 
classification problem (5 classes) when the model also had to discriminate a help-seeking 
psychiatric controls (MDD) in addition to previous psychosis continuum classes, adding another 
layer of diagnostic complexity to the task.  

We then tested whether our ML pipeline, based an optimised 5-minute speech battery, could 
discriminate between healthy controls and people with serious mental illness, defined as the 
combination of our SSD and BD groups). Basic demographic variables of age, gender and 
ethnicity were added to the pipeline as additional predictive features. Demographic and speech 
features were used to train an ensemble learning algorithm, XGBoost, as this algorithm 
overperformed other ensemble methods (Random Forest, CatBoost, Extra Trees) in the 
previous experiment. XGBoost was optimised for Area Under the ROC Curve (AUC), using 
leave-one-out cross-validation in the training set. A 70-30% train-test split ratio was applied to 
validate performance on the test set. 

 
Next, we tested how our ML pipeline, based on the optimised 5-minutes speech battery, 
performed on the multiclass classification problem of discriminating between HC, SPE, BD and 
SSD groups. The same feature set was used, but we applied stratified SMOTE (Synthetic 
Minority Over-sampling Technique) on the training data to maximise the model’s training 
capabilities on the unbalanced dataset. The same ensemble learning algorithm, XGBoost, was 
applied on the feature set to train the model using leave-one-out crossvalidation. A 70-30% 
train-test split ratio was applied to validate performance on a stratified test set. 
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Evaluate whether our ML pipeline can further discriminate across the psychosis spectrum and 
major depressive disorder (HC-SPE-BD-SSD-MDD) 

Finally, we evaluated whether our ML pipeline could discriminate across all 5 groups 
simultaneously: HC, SPE, SSD, BD, and MDD, where the latter is a purely affective condition. 
We designed this testing procedure as a proxy to evaluate whether our ML architecture is able 
to learn disorder-specific alterations, in contrast to discriminating between different severity and 
symptomology of the psychosis spectrum. Given our brief speech battery was optimised for 
psychosis spectrum, we used all 16- 20 minutes of speech samples available in order to 
evaluate predictive power of speech independent from the speech elicitation method. Like in 
previous steps, an ensemble learning algorithm, XGBoost, was trained and tested using speech 
and demographic features. 30-fold cross-validation was applied to measure performance.  

 

Results 

Sample 

The sample consisted of 1140 individuals and 22,650 minutes of speech. The groups were 
imbalanced, due to the feasibility constraints of recruiting individuals with serious mental illness. 
The SSD group consisted of 84 participants, the BD group consisted of 227 participants, the 
SPE group consisted of 343 participants, the MDD group consisted of 156 participants and the 
HC group consisted of 330 participants. Demographic characteristics of the sample are 
displayed in Table 2. 

Comparing assessment approaches  

Using all of the 20 minutes of speech recordings without demographic information, the 
predictive power of different tasks ranged between 52.8- 66.9% accuracy for discriminating 
among HC, SPE, BD and SSD groups (Table 4). Best performing models were consistently 
XBoost algorithms. The neutral text reading task had the lowest predictive power, and the 
picture description task had the highest. Sample duration did not show a strong connection with 
predictive power. For example, 8 minutes of picture description could achieve a slight 
improvement in performance compared to the dream recall task (1 minute), and in some 
metrics, underperformed the condition when we only considered the description of four pictures. 
 
Considering time constraints and predictive power, we optimised our short speech task as 4 
minutes of picture description and one dream recall task. 
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Discriminating between healthy control and serious mental illness: HC vs. 
SSD/BD 

Using computational features derived from the optimised 5 minutes of speech data and basic 
demographic information, our machine learning model could discriminate between HC group 
and individuals with serious mental illness (SSD and BD) with 86% accuracy (AUC: 0.91, 
Recall: 0.7, Precision: 0.98) in the test set. 

Discriminating among the schizophrenia-bipolar spectrum and healthy controls: 
HC vs. SPE vs. BD vs. SSD 

Using the same, 5 minutes of speech from this optimised speech task and demographic 
variables, our machine learning model could discriminate between HC, SPE, BD and SSD 
groups simultaneously with 86% accuracy (F1 macro = 0.855, Recall Macro: 0.86, Precision 
Macro: 0.86) in our testing set. 
 

Discriminating among 5-classes: HC vs. MDD vs. SPE vs. BD vs. SSD 

Using all of the speech data available (around 16 mins), our machine learning model could 
discriminate between HC, SPE, BD, SSD and MDD groups with 76% accuracy (F1 macro: 
0.757, Recall Macro: 0.758, Precision Macro: 0.766) (Figure 3). 

 

Discussion 

Principal findings 

In this study, we demonstrated the feasibility of using online-collected, self-recorded speech 
data to classify different conditions on the psychosis spectrum and MDD. The results 
demonstrate a fully automated, scalable approach that requires only 5 minutes of speech. More 
specifically, our findings highlight that speech, even when collected remotely and online, has a 
sufficient degree of between-group variability to discriminate between different forms and stages 
of psychosis spectrum conditions, as well as to discriminate between affective and psychotic 
conditions. 

Our first objective was to compare the predictive power of different online speech-based tasks 
to discern different conditions on the psychosis spectrum. The results yielded showed that each 
task had different predictive power, and that increasing the length of a speech sample does not 
necessarily translate to better predictive power. Tasks which included the generation of speech 
– rather than the recitation of prewritten text - were more informative. We speculate that this 
observation might stem from the additional variation in the textual information yielded by the 
response-based tasks, relative to reading tasks that only generate variance in paralinguistic 
parameters. While affective changes and motor control deviations can be clearly captured from 
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acoustic information, thought disorder, one of the key symptoms of psychotic conditions, is more 
connected to language alterations (22,50,51,53-57) It’s reasonable then that the tasks leading to 
variance in language suitable for capturing these conditions. Our findings are consistent with 
previous research that showed the suitability of a dream recall task(58) and picture description 
tasks(47), particularly when compared against interview settings of wakening reports. 

Once we identified the optimal speech task battery to utilise, we then trained and tested our 
machine learning algorithms to assess its classification efficacy. Our ML pipeline showed 
excellent performance in a classification task between HC and individuals with serious mental 
illness. Previous studies leveraging either acoustic or NLP-based models demonstrated varied 
performance ranging from moderate (min. AUC = 0.63) to excellent (max accuracy = 97.68%) in 
discriminating between healthy controls and patients with schizophrenia (17,51,59-65). Prior 
reports also have explored the use of AI techniques to discriminate between HC and patients 
with BD, with moderate performance reported (AUC ranges between 0.742 and 0.8)(66,67). It is 
difficult to directly compare the performance of our ML pipelines, given the differences in our 
study designs. Previous work used more homogeneous samples, had smaller sample sizes (N 
raged between 15-288) and generally collated longer speech samples in offline, laboratory 
conditions. We had a diverse, large sample and utilised online, remote speech data collection. 
Yet, the performance of our model (AUC = 0.91) was comparable and possibly improved upon 
the best-performing models in the field. Broadly, our results suggest that strong performance 
and accuracy in identifying psychotic conditions can be maintained even when using scalable 
assessment methods in a larger and more robust sample. 

In addition to this binary classification task, our ML pipeline showed relatively strong 
performance in classifying across HC, SPE (individuals with significant psychosis symptoms but 
not meeting threshold for a clinical psychotic disorder diagnosis), BD, and SSD groups. Notably, 
the overall accuracy of the model did not drop when we introduced two extra classes into the 
model compared to the binary classification (HCvs. SSD/MD), suggesting that speech has 
sufficient variance between different schizophrenia-bipolar spectrum conditions to enable high 
discriminatory power. 

To our knowledge, this is the first time that AI-based algorithms have been used for diagnostic 
classification across this range of disorders – no prior study has leveraged linguistic markers to 
evaluate classification across more than 3 conditions on the psychotic spectrum. The only 
comparable study is from Espinola et al (68) who trained a model to discriminate between major 
depression, bipolar disorder, schizophrenia, anxiety and healthy control, using paralinguistic 
parameters from speech samples recorded offline. They achieved similar performance 
(accuracy = 76%) on a small sample of 76 people. Our results reinforce and expand on this 
work, using a more robust, short sample of self-recorded, online collected speech. Spencer et 
al(22) have also experimented with discriminating healthy controls, people at clinical high risk 
and first-episode patients with automated language markers. They reported associations of 
different speech markers with specific conditions and transition to psychosis from at-risk state, 
however, their samples were limited in size, and they did not apply predictive modelling which 
makes it difficult to compare results. Studies that aimed to discriminate between bipolar disorder 
and schizophrenia, reported high performance (AUC ranged between 0.87-0.92)(66,69). 
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While these results are promising, some misclassifications did also occur. Notably, most 
misclassification occurred between the SPE and HC groups. We hypothesise that the reason 
underlying this is the relatively weak proxy of the SPE group labelled in our study. Caseness for 
this SPE group was defined as having endorsed more than 6 symptoms on the PQ-16 scale. 
Although this threshold has previously been suggested as a screening threshold for clinical at-
risk services (43), it is known to provide sensitivity at the cost of poor specificity. Consequently, 
it is reasonable to presume that a good portion of this SPE group does not meet the threshold 
for clinical high risk of psychosis, and overlaps with a “healthy” individual. It is likely that this 
broad definition of psychosis spectrum status might have blurred the threshold between our 
healthy group and the SPE group. We speculate that using a more stringent threshold may 
reduce the number of misclassifications, but that is beyond the scope of this investigation.  

There was also some misclassification between healthy individuals and the SSD group. This 
may suggest that our definition of healthy control subjects was also relatively lenient. Individuals 
were considered healthy if they did not report a clinical diagnosis of mental disorders, and were 
below the threshold on the PQ-16 and PHQ-8; however, evidently, these criteria do not 
necessarily imply that these individuals do not suffer from mental health conditions. Along 
similar lines, we speculate that the majority of the participants in the SSD group were stable and 
in remission while taking part in the study. This is a fair assumption given the proactivity, 
concentration, online presence and continuous engagement required to comply with the remote 
study. Although the composition of the group allows us to assume that the model captures trait-
related changes in speech as opposed to disorder state-related changes, it also decreases the 
observable differences between the speech of the HC group and the SSD group. Therefore, 
future studies should focus on validating and replicating current findings on clinically validated 
and labelled data. Also, future research is needed to validate the performance of automated, 
speech-based AI models to captures changes in dynamic, state-like variations like symptom 
severity. 

This misclassification pattern was replicated in our final analyses, where we trained and tested 
our algorithms to discriminate across all five groups, including MDD. This reinforces the notion 
that the definition of these groups were a relatively lenient proxy. Nevertheless, the best-
performing ML models still achieved acceptable performance on the discrimination task. 
Notably, the model performed well in discerning between serious mental illness, HC and MDD, 
as well as between MDD and BD. Differential diagnosis across these conditions is a challenge 
in clinical settings, particularly in primary care settings (60,70). As such, the capability of our ML 
pipeline to distinguish between these conditions suggests that there is a strong potential 
translational benefit of our technology into clinical care, complementing clinical decision-making.  

Strengths & Limitations 

This study possesses several strengths. We included multiple psychiatric conditions across the 
psychosis and affective spectrum, rather than focusing solely on binary algorithmic 
classifications. Furthermore, our sample is, to our knowledge, the largest to date, reinforcing the 
robustness of our findings across a heterogeneous population. As study participants were not 
recruited during the acute stage of their illness, our results are more likely to rely on trait 
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variations in speech specific to each disorder rather than “state” related alterations. In addition, 
the online nature of all data collection and assessments improves the ecological validity of our 
findings, reflective of real-world situations. 

It is also important to acknowledge the limitations of this study. Firstly, our study does not 
comprehensively consider cognitive measures, which could potentially confound our results. 
Cognition has previously been connected to speech changes and is a predictor of psychosis 
severity (71). However, the magnitude of cognition’s effects is ambiguous: some studies 
suggest that cognition has a strong effect on some features (especially connectivity-based 
ones), though it appears independent of other features (52,55,71-73). While we included several 
demographic variables in our analyses, it was beyond the scope to consider cognitive-related 
measures. Future research should consider certain cognitive variables and their impact on the 
predictive power of speech-based models; for example, education can be used as a proxy. 

Secondly, this study utilizes self-report questionnaires and self-reports of clinical diagnosis as a 
proxy for having a certain condition. This is particularly pertinent to our definition of the SPE, 
which was defined using the self-report PQ-16 questionnaire. Though we employed a previously 
used cut-off, the reliance on self-reports might have introduced biases into our analyses. It is 
feasible that more stringent or strictly clinical labels would improve the performance of our 
models, given this would reduce the potential overlaps between classes. It is therefore 
imperative to further validate in additional clinical samples. 

Thirdly, it is important to underscore the unbalanced nature of our sample (e.g. SSD groups was 
underrepresented compared to HC or SPE), which might well skew results, particularly when 
comparing different conditions. However, we employed analytical methods (specifically SMOTE, 
comparing balanced accuracy, and macro F1 scores) to mitigate the effects of this unbalanced 
sample. 

Fourthly, the current research was designed as a proof-of-concept study for a fully automated, 
remote, short, speech-based assessment of different conditions on the psychosis spectrum. 
Accordingly, we kept our ML models lean and comparable to each other. However, it is likely 
that deploying more complex ML architectures (such as Deep Neural Networks) and 
experimenting with a wider range of models and hyperparameter optimisation of such models 
would lead to better performance. Therefore, we interpret the reported model capabilities as 
promising findings rather than an upper marker of the potential capabilities of fully automated, 
remote, short, speech-based assessment technologies. 

Fifthly, the current study had certain exclusion criteria that may restrict our findings’ 
generalisability. The sample only included native English speakers and excluded people with 
neurodiversity. Further research should be conducted in samples that include neurodiverse 
groups and non-English languages, to evaluate whether our models are as effective in more 
representative samples, a crucial step to application in clinical setting. 

Finally, the cross-sectional nature of our study restricts our ability to draw conclusions about 
causality and long-term trends. Longitudinal studies would help address this gap, allowing 
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researchers to train models for the prediction of symptom changes, and allowing for the 
continuous emergence of speech alterations. The use of remote, quick assessments, as 
demonstrated in our study, might help facilitate such longitudinal studies, by enabling a more 
convenient way to continuously collect speech samples. 

Conclusions  

This study provides valuable insights into the scalability of speech-based assessment methods 
for the identification and classification of psychosis spectrum and affective conditions. Our 
findings broadly suggest that our ML pipeline learnt disorder- and severity-specific information 
from speech. We leveraged a large and robust sample to demonstrate best-in-class 
classification accuracy across psychosis spectrum conditions, using online, self-recorded 
speech data. Furthermore, this is the first report of accurate classification across 5 psychiatric 
groups. Overall, this study showcases the huge potential of online, remote-collected speech for 
application in clinical contexts. 
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Tables and figures 

 

Speech tasks in the data collection protocol 

Name Prompts Time 

Dream recall Participants were asked to recall one of their 
recent dreams. 

1 min 

Picture description Participants were shown 8 different ambiguous, 
black-and-white images from the Thematic 
Apperception Test (TAT) and asked to describe 
each of them and how they made them feel for 
one minute each. 

8 mins 

Free speech Participants were asked to discuss 4 neutral 
topics (‘How was your last weekend?’, ‘What do 
you like about your work?’, ‘Could you describe 
your favourite food?’, ‘How and where was your 
last holiday?’ ), each for one minute. 

4 mins 

Neutral text reading Participants were asked to read a brief, 
prewritten, neutral text. The text was a short 
version of the fable, the ‘’North Wind and the 
Sun’’ (full text in Appendix 1) 

 ~ 1 min 

Emotional text 
reading 

Participants were asked to read three brief, 
prewritten, emotional bedtime stories (angry, 
happy, scared) (full text in Appendix 2-5) 

~ 3 mins 

 

Table 1: Description of different speech elicitation tasks 
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HC SPE BD SSD MDD 

N 330 343 227 84 156 
Age (mean, SD) 38.9 (13.3)* 33.9 (11.4)* 35.4 (10.8) 35.8 (10.4) 36.7 (12.6) 
Gender      
  Male (%) 188 

(56.9%)* 
201 (58.65%)* 73 (32.2%)* 38 (45.2%) 83 (53.6%) 

  Female (%) 135 (40.9%) 140 (40.8%) 118 (51.9%) 44 (52.4%) 70 (45.0%) 
  NR (%) 7 (2.1%) 2 (0.6%) 36 (15.8%) 2 (2.4%) 2 (1.4%) 
Ethnicity      
  White (%) 36 (71.5%) 235 (68.5%)* 154 (67.8%)* 66 (78.6%) 117 (75.0%) 
  Black (%) 29 (8.8%) 25 (7.3%) 8 (3.5%) 6 (7.1%) 10 (6.4%) 
  Mixed (%) 9 (2.7%) 15 (4.4%) 21 (9.3%) 6 (7.1%) 10 (6.4%) 
  Asian (%) 5 (1.5%) 9 (2.6%) 5 (2.2%) 3 (3.6%) 13 (8.6%) 
  Other (%) 44 (13.3%) 57 (16.6%) 3 (1.3%) 2 (2.4%) 6 (3.6%) 
  NR (%) 7 (2.1%) 1 (0.2%) 36 (15.9%) 1 (1.2%) - 

 

Table 2: Characteristics of the sample 

NR: Not reported 
*significant (p < 0.05) differences between groups according to Kruskal-Wallis and Dunn’s test 
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Figure 1: Overview of machine learning pipeline and modelling outcomes 
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Table 3: Predictive power of different speech tasks on the classification of HC-SPE -
BD-SSD groups 

  
 Accuracy measures the overall correctness of a classification model. It is calculated as the ratio of correctly 

predicted instances to the total instances (Number of Correct Predictions/Total number of predictions).  
 Balanced accuracy: a metric that takes into account imbalances in the class distribution. It calculates the 

average accuracy for each class and then averages those values. 
 Macro F1: The F1 score is the harmonic mean of precision and recall. The macro F1 score calculates the 

F1 score for each class and then takes the average, giving equal weight to each class. 

  

Predictive power of different speech tasks on the classification of HC - SPE - BD - SSD groups 

Task type Accuracy Macro F1 
Balanced 
accuracy 

Best model 

Dream recall (~1 min) 0.641 0.531 0.549 XBoost 

Picture description 8 pictures (~8 mins) 0.669 0.567 0.577 XBoost 

Picture description 4 pictures (~4 mins) 0.662 0.675 0.665 XBoost 

Free speech (~ 4 mins) 0.623 0.63 0.627 XBoost 

Neutral text reading (~1 min) 0.528 0.542 0.527 XBoost 

Emotional text reading (~ 3 mins) 0.595 0.548 0.565 XBoost 
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Figure 2: Confusion matrix (left) and ROC curve (Receiver Operating Characteristic 
curve) (right) of discriminating HC subjects and people with serious mental illness (SSD 

and BD) 

Left: Confusion matrix shows the true positive (TP)(right, down), true negative (TN)(left, up), false positive (FP) (up, 
right), and false negative (FN) (down, left) values on the test set. Shades reflect the number of cases in a given 
rubric.  

Right : ROC curve (Receiver Operating Characteristic curve) is a graphical representation of a classifier's 
performance. It plots the true positive rate (sensitivity) against the false positive rate (1-specificity) at various 
thresholds, showing how well the model can distinguish between classes. The area under the ROC curve (AUC) 
quantifies the classifier's overall performance - higher AUC values indicate better performance. 
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Figure 3: Confusion matrix shows the true positive (TP)(right, down), true negative 
(TN)(left, up), false positive (FP) (up, right), and false negative (FN) (down, left) values 

in the test set.  

Shades reflect the number of cases in a given rubric. 
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Figure 4: Confusion matrix shows the true positive (TP)(right, down), true negative 
(TN)(left, up), false positive (FP) (up, right), and false negative (FN) (down, left) values. 

Shades reflect the number of cases in a given rubric. 
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