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Abstract: In the recent decade, deep eutectic solvents (DESs) have occupied a strategic place
in green chemistry research. This paper discusses the application of DESs as functionalization
agents for multi-walled carbon nanotubes (CNTs) to produce novel adsorbents for the removal
of 2,4-dichlorophenol (2,4-DCP) from aqueous solution. Also, it focuses on the application of
the feedforward backpropagation neural network (FBPNN) technique to predict the adsorption
capacity of DES-functionalized CNTs. The optimum adsorption conditions that are required for
the maximum removal of 2,4-DCP were determined by studying the impact of the operational
parameters (i.e., the solution pH, adsorbent dosage, and contact time) on the adsorption capacity
of the produced adsorbents. Two kinetic models were applied to describe the adsorption rate and
mechanism. Based on the correlation coefficient (R2) value, the adsorption kinetic data were well
defined by the pseudo second-order model. The precision and efficiency of the FBPNN model was
approved by calculating four statistical indicators, with the smallest value of the mean square error
being 5.01 × 10−5. Moreover, further accuracy checking was implemented through the sensitivity
study of the experimental parameters. The competence of the model for prediction of 2,4-DCP
removal was confirmed with an R2 of 0.99.

Keywords: water quality; deep eutectic solvents; carbon nanotubes; feedforward back propagation
neural network; adsorption
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1. Introduction

1.1. Background

Phenolic compounds are easily found in industrial wastewater and they are discharged in
large amounts into rivers and other natural water sources [1,2]. One common phenolic compound
example is 2,4-dichlorophenol (2,4-DCP), which is recognized as one of the recalcitrant regular
by-products generated from aerobic degradation of the antifungal and antibacterial agent “Triclosan
(TCS, 5-chloro-2-(2,4-dichlorophenoxy)phenol)” that is usually added to healthcare products [3–5]. It is
familiar for its strong odor, carcinogenic adverse effects, and its inability to decompose [6–8]. Different
industries dispose of 2,4-DCP into water bodies, such as the industries of fungicides, disinfectants,
insecticides, pesticides, and pharmaceuticals [9,10]. The presence of phenolic compounds in the
environment, even at low concentrations, causes high toxicity and undesirable tastes and odors, thus
their removal from water is considered a great preference. The world health organization (WHO)
established a maximum allowable concentration of 1 µg/L of total phenolic compounds in drinking
water [11]. However, phenolic compounds are well known for their high solubility and stability,
which further complicates their removal from water [12–15]. Based on this, many researchers are
still attempting to remove phenolic contaminants from polluted water by developing new competent
cost-effective techniques. The adsorption process is the most favored, simple, and effectual method for
phenolic compounds’ removal [16,17]. A variety of adsorbents have been reported in the literature,
such as chitosan [18], carbon fibers [19], carbon nanotubes (CNTs) [20], activated carbons [21–25], and
biosorbents [26].

CNTs have been used as efficient adsorbents for different types of inorganic pollutants [27–31] and
organic pollutants [32–36], and they possess significant efficiency against radioactive compounds [37].
Carbon nanotubes (CNTs) have a distinctive chemical structure, large surface area, and exhibit a
significant adsorption capacity and high binding affinity for a wide range of toxic pollutants [38–42].
However, the applications of CNTs in aqueous solutions are restricted due to their poor dispersion
and agglomeration, which lead to a reduction of CNTs’ surface area, affecting their capability to
remove particular compounds [43,44]. These limitations can be solved by the CNT functionalization
process, which is an auspicious step to eliminate CNTs impurities, generate new functional groups,
and eventually enhance CNTs performance in different fields [45–47].

Deep eutectic solvents (DESs) have been highlighted as a novel, prominent, and inexpensive
alternative solvent for ionic liquid and other conventional chemical solvents [48,49]. DESs are
composed of two or more of low-cost and green constituents, specifically salt and hydrogen bond
donor (HBD). Their physiochemical properties have been widely examined and their applications
in many fields have been documented, such as in chemistry, electrochemistry, biology, and more
recently, in nanotechnology-related fields [50–52]. Furthermore, the application of DESs as low-cost
functionalization agents has been lately reported for graphene and CNTs [53,54]. The potential of
using DESs as functionalization agents was confirmed by the improvement of the dispersion and
the adsorption capacity of CNTs without production of any unpleasant effects on the properties or
structure of CNTs [48].

One of the most potent soft-computing techniques that has been proposed for modeling the
adsorption process is the artificial neural network (ANN) technique [55]. ANN is a robust modeling
tool due to its ability to recognize and reproduce non-linear relationships between variables during the
training phase in different input–output patterns, thus mapping the relationship between variables and
output in a qualified way [56]. Recently, different applications have implemented the ANN technique
to control, filter, predict, and address many problems, such as in engineering, marketing, medicine,
defense, energy, etc. [57]. Moreover, the application of ANN for the heavy metal adsorption process
was recently reported [56,58,59]. Accordingly, use of the ANN tool has promising potential to model
and predict the adsorption processes of different organic pollutants from water.
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1.2. Problem Statement and Motivation

Many variables, including the pH of an aqueous solution, contact time, dosage of the adsorbent,
and initial concentrations of pollutants, have an inevitable effect on the adsorption capacity, which
makes the adsorption of any pollutant an intricate process that is difficult to model or predict using
conventional linear methods [60]. Artificial neural network techniques are considered a competent
tool that can learn and generalize the pattern of any complex and nonlinear process. Due to that, the
use of ANN techniques can identify the relationship between the different variables involved in the
adsorption process. Therefore, the use of ANN can successfully decrease the required time and cost for
the experimental work, as well as helping in the extraction of intricate data that cannot be observed
by a human or computer system. Other advantages of ANN modeling techniques are the ability to
formulate the knowledge, describe the process, and extend the experimental results. Consequently, it
is possible to predict the conditions and outputs required for the adsorption of phenolic pollutants
onto adsorbents similar to the one examined in this study, by only using the model generated by the
suggested ANNs technique while conserving cost, time, and effort.

2. Materials and Methods

2.1. Objectives

This work was a continuation of a wider research project, including preparation, functionalization,
characterization, and application of DES-functionalized CNTs for the removal of 2,4-DCP. The previous
work focused mainly on the production of different novel adsorbents from functionalizing CNTs with
DESs. A comprehensive study was conducted to investigate the characterizations of these adsorbents
and to examine their adsorption capacity for the removal of 2,4-DCP. Whereas, in the present work,
the foremost aim was to examine the accuracy of the feedforward ANN-based model (FBPNN) in
predicting the adsorption capacity of the most efficient adsorbent (the adsorbent with the highest
adsorption capacity) by using the actual data set prepared from the experimental work in our previous
study [48]. Briefly, the former work covered only the experimental part while the current paper
merely concentrated on the modelling approach. The prediction competence of the FBPNN model was
investigated in this work through a sensitivity study and the value of some statistical indicators.

2.2. Chemicals and Materials

The chemicals used in the experimental work were multiwalled carbon nanotubes (CNTs),
with qualifications of D × L 6–9 nm × 5 µm, >95% (carbon), and were provided by Sigma Aldrich
(Kuala lumpur, Malaysia). 2,4-dichlorophenol (2,4-DCP) from Merck (Kuala lumpur, Malaysia) was
utilized as the pollutant, with a molecular weight of 163.0 g mol−1. Moreover, sodium hydroxide
pellets, sulfuric acid H2SO4 (95%–97%), hydrochloric acid HCL (36.5%–38%), and choline chloride
ChCl (≥98%) were all supplied by Sigma Aldrich, while ethylene glycol (EG) (≥98%), acetonitrile, and
methanol were supplied by Merck.

2.3. Preparation of DES

Choline chloride salt (ChCl) was mixed with ethylene glycol (EG) as HBD at a molar ratio of
[1:2] to produce [ChCl: EG] DES [48]. Both salt and HBD were mixed for 80 min at 70 ◦C, until the
development of a consistent, clear deep eutectic solvent (DES) [61]. The synthesized DES was kept in a
moisture-controlled environment in order to be used later for CNT functionalization.

2.4. Functionalization of CNTs

Initially, the pristine CNTs were dried at 100 ◦C for a whole night. The dried CNTs were refluxed
with 50% H2SO4 for 1 h at 140 ◦C to produce H2SO4–CNTs, which were washed with distilled
water using a vacuum filtration system until the washed water became neutral, with a pH value of 7.
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The H2SO4–CNTs were then dried under vacuum at 100 ◦C for 24 h. Afterward, 200 mg of H2SO4–CNTs
was mixed with 7 mL of [ChCl: EG] DES at 60 ◦C for 3 h to produce DES–CNTs. A vacuum filtration
system was used to wash the DES–CNTs and then they were dried at 100 ◦C for 24 h under vacuum.

The characterization of the developed DES–CNTs adsorbent using Fourier transform
infrared (FTIR), Raman spectroscopy, zeta potential, Thermogravimetric analysis (TGA), and
Brunauer–Emmett–Teller (BET) was thoroughly covered in our previous work [48].

2.5. Batch Adsorption Studies

The prepared DES–CNTs were applied as a new adsorbent to remove 2,4-DCP from the water
solution. The experiments were performed using different dosages of DES–CNTs (i.e., 5, 10, and
15 mg), different values of the solution pH (2, 5.14, 6, and 10), and a range of 2,4-DCP concentrations
(10–80 mg/L) [48]. Next, 50 mL of stock solution was poured into a 250-mL flask, and a mechanical
system was used to shake the flask at 180 rpm at room temperature. The 2,4-DCP concentration
was checked at different time intervals during the adsorption process using ultra high-performance
chromatography (Waters ACQUITY UPLC System, Milford, MA, USA) at a wavenumber of 285 nm.
Moreover, the contact times used to determine the equilibrium time and the appropriate kinetic model
were 5, 10, 20, 30, 60, 120, and 180 min and 24 h). In total, 147 samples were prepared in this study.

2.6. Artificial Neural Network Model

Different types of artificial neural networks (ANNs) have been effectively applied in a wide
range of fields and they have shown great performance in the fitting of non-linear functions and
recognition of complicated patterns [62]. In the current study, the feed-forward back-propagation
neural network (FBPNN) was applied to predict the adsorption capacity of DES-functionalized CNTs
adsorbent. Generally, the structure for FBPNN consists of three main layers in a multilayer neural
network: An input layer, hidden layer, and output layer. The input variables from the source are
introduced in the input layer, then the hidden layer processes the signals sent by the input layer, and
finally, the output layer deliver the results that have been predicted by ANN to the external receptor.

It is well known that each layer has a number of neurons and the role of each neuron is to transmit
the input values and process them to the next layer. Furthermore, all layers have biases and a weight
factor from the previous layer. The weight factor (Wii) is defined as the interaction between ANN
layers and it can amend the transferred signals’ values. By adjusting the weight values of the ANN
model, the optimal parameters can be selected since the FBPNN is governed by a supervisory learning
algorithm technique [63]. Moreover, along with the weight factor, there are numerous FBPNN transfer
functions that can modify the total information, which is, in the end, combined in the output layer [64].
The most common binary logistic sigmoid transfer function was used in this work and it can be
expressed as follows:

f (x) =
1

1 + e−x (1)

In the FNPNN algorithm, the input variables are forwarded into the neural network until the end
of the network. Then, the output values are created and compared to the target values, and based
on that the error is estimated [65,66]. Therefore, FBPNN proposes random initial weight values to
find the relationship between the input data and target data, then the FBNN updates the values of
weights by comparing the results between the target values and actual values. It was found that in
the FBPNN model structure, there is no connection between the units of the same layer, while the
weighted coefficient can express the connection between the developed layers [67].

2.7. ANN Model Development

In this work, the input variables in the FBPNN model were the concentration of 2,4-DCP, adsorbent
dose, solution pH, and contact time, while the required output from the network was the adsorption
capacity of DES–CNTs. The number of experimental data used for the modeling was 147, which were
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divided into two data sets: 122 data were utilized for the training and validation step and 25 data were
utilized for the testing step. The normalization of input data was the range of (0–1) and was necessary
to accelerate the back-propagation learning process [68]. The MATLAB R2014a computational platform
(The MathWorks, Inc., Natick, Massachusetts, USA) was used in the current study to code and optimize
the structure of the used ANN model.

The FBPNN model was applied for the simulation of the adsorption capacity of DES–CNTs for the
removal of 2,4-DCP from water solution. Three parameters were defined as input variables, including
2,4-DCP concentration (10, 20, 30, 40, 50, 60, 70, and 80 mg/L), aqueous solution pH (2, 5.14, 6, and 10),
dose of adsorbent (5, 10, and 15 mg), and finally, the contact time, which ranged from 5 min until the
adsorption process reached equilibrium at 360 min. In addition, the adsorption capacity (Q) (mg/g)
was defined as an output parameter. The created FBPNN model was comprised of one input layer, one
output layer, and two hidden layers, with 10 neurons in each layer. The proposed architecture of the
FBPNN used in this study is demonstrated in Figure 1.

Molecules 2019, 24, x FOR PEER REVIEW 5 of 18 

 

25 data were utilized for the testing step. The normalization of input data was the range of (0–1) and 
was necessary to accelerate the back-propagation learning process [68]. The MATLAB R2014a 
computational platform (The MathWorks, Inc., Natick, Massachusetts, USA) was used in the current 
study to code and optimize the structure of the used ANN model. 

The FBPNN model was applied for the simulation of the adsorption capacity of DES–CNTs for 
the removal of 2,4-DCP from water solution. Three parameters were defined as input variables, 
including 2,4-DCP concentration (10, 20, 30, 40, 50, 60, 70, and 80 mg/L), aqueous solution pH (2, 5.14, 
6, and 10), dose of adsorbent (5, 10, and 15 mg), and finally, the contact time, which ranged from 5 
min until the adsorption process reached equilibrium at 360 min. In addition, the adsorption capacity 
(Q) (mg/g) was defined as an output parameter. The created FBPNN model was comprised of one 
input layer, one output layer, and two hidden layers, with 10 neurons in each layer. The proposed 
architecture of the FBPNN used in this study is demonstrated in Figure 1.  

 
Figure 1. The proposed feed-forward back-propagation neural network structure. 

The back-propagation training function (trainbr) was applied to update the values of the weight 
and bias in regard to the momentum [69]. Furthermore, the training algorithm adopted for this model 
was the Levenberg–Marquardt (LM) training algorithm. The LM algorithm was essentially designed 
to overcome the limitations of the Gauss–Newton (GN) algorithm and the steepest-descent method 
by blending their premium attributes, and serves as a hybrid optimization algorithm [70]. The LM 
algorithm is more robust and has more stable convergence than thee GN algorithm; on the other 
hand, it is faster than the steepest-descent method, and therefore it can be considered as a bridge 
between the GN algorithm and the steepest-descent method. Based on that, the LM algorithm is 
conveniently used for a wide range of real-world applications and it is employed for training of 
medium- and small-sized problems in the artificial neural network field [71]. 

The selected function used to transfer the functions for the ANN networks was the tangent 
sigmoid transfer function (tansig). The stopping criterion is one of the main elements in the FBPNN 
model, which is developed by specific given patterns that allow the network to learn to its maximum 
potential by enabling it to identify its minimum acceptable error rate [72]. In this study, the stopping 
criterion for the FBPNN model was established based on setting up two important parameters: MSE, 
which was set to 0.00001 as a performance goal, and the epoch number, which was determined to be 
1000. The stopping criteria are the main elements. The selection of the node number at each hidden 
layer was based on the training and testing of the network by using various neuron numbers upon 
examination of the value of the mean square error (MSE) for the testing data set. 

Figure 1. The proposed feed-forward back-propagation neural network structure.

The back-propagation training function (trainbr) was applied to update the values of the weight
and bias in regard to the momentum [69]. Furthermore, the training algorithm adopted for this model
was the Levenberg–Marquardt (LM) training algorithm. The LM algorithm was essentially designed
to overcome the limitations of the Gauss–Newton (GN) algorithm and the steepest-descent method
by blending their premium attributes, and serves as a hybrid optimization algorithm [70]. The LM
algorithm is more robust and has more stable convergence than thee GN algorithm; on the other hand,
it is faster than the steepest-descent method, and therefore it can be considered as a bridge between the
GN algorithm and the steepest-descent method. Based on that, the LM algorithm is conveniently used
for a wide range of real-world applications and it is employed for training of medium- and small-sized
problems in the artificial neural network field [71].

The selected function used to transfer the functions for the ANN networks was the tangent
sigmoid transfer function (tansig). The stopping criterion is one of the main elements in the FBPNN
model, which is developed by specific given patterns that allow the network to learn to its maximum
potential by enabling it to identify its minimum acceptable error rate [72]. In this study, the stopping
criterion for the FBPNN model was established based on setting up two important parameters: MSE,
which was set to 0.00001 as a performance goal, and the epoch number, which was determined to be



Molecules 2020, 25, 1511 6 of 17

1000. The stopping criteria are the main elements. The selection of the node number at each hidden
layer was based on the training and testing of the network by using various neuron numbers upon
examination of the value of the mean square error (MSE) for the testing data set.

2.8. Performance Indicators

The value of the mean square error (MSE) was used to calculate the error that occurs between
the desired data and predicted data by the ANN model. It was administered at the stage of data
training; it usually decreases at the beginning of the training stage, whereas the error, f, training begins
to rise when over-fitting starts to occur. The increase of the training error, as well as the return of
the minimum value of weight, results in the training stopping. The MSE value was described by the
following equation:

MSE =
1
n

n∑
i=1

(
Qa(t) −Qs(t)

)2

(2)

where Qa is the actual value of the adsorption capacity and Qs is the simulated value of the
adsorption capacity.

The accuracy of the ANN model is usually evaluated by the predicted and actual results through
the implementation and calculation of various indicators. The ANN model behavior can be described
by different indicators, for instance, the root mean square error (RMSE), mean square error (MSE),
relative error (RE), mean absolute percentage error (MAPE), and the relative root mean square error
(RRMSE). The maintained indicators were defined by the following formulas:

RRMSE =

1
n

n∑
t=1

(Qa(t) −Qs(t)

Qa(t)

)2
1
2

(3)

RMSE =

1
n

n∑
t=1

(
Qa(t) −Qs(t)

)2


1
2

(4)

MAPE =
1
n

n∑
t=1

∣∣∣∣∣∣∣
(
Qa(t) −Qs(t)

)
Qa(t)

∣∣∣∣∣∣∣× 100 (5)

RE =
Qa(t) −Qs(t)

Qa(t)
× 100 (6)

Generally, the performance of the ANN model is assessed by RRMSE, MSE, RMSE, MAPE, and
RE indicators. The calculation of all indicators depends on a comparison of the estimated error of
the simulated results and the actual results. The smallest the evaluated error, the better the model
performance achieved.

3. Results and Discussion

3.1. Characterization of DES–CNTs and Adsorption Studies

During the experimental work [48], a complete characterization was carried out for DES–CNTs
adsorbent to investigate the changes to the pristine CNTs after functionalization with [ChCl: EG]
DES. It was found that the surface area of the pristine CNTs increased from 123.54 to 193.10 m2/g and
that can be explained by the ability of DES to remove the impurities on the surface of pristine CNTs.
This was confirmed by the TGA results, which revealed that the CNTs functionalized with H2SO4 and
[ChCl: EG] DES had significantly high purity. Moreover, the DES–CNTs had low activation energy
for oxidation because of the existence of oxygen-containing functional groups on the surface of the
DES–CNTs adsorbent, which was confirmed by the FTIR results. These functional groups include
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hydroxyl groups (O−H) that appeared in the peaks around ~3460 cm−1, carboxyl groups (–COOH) at
~ 1650 cm−1, and carbonyl groups (C=O) at ~1400 cm−1. Raman spectroscopy showed that there is
an obvious increase in the ration of the D band intensity (ID) to the G band intensity (IG), which is
another indicator of the presence of new functional groups on DES–CNTs adsorbents. In addition, the
hydrophilicity of the hydrophobicity properties of these functional groups remarkably increased the
absolute value of the zeta potential for pristine CNTs from −5.5 to −24.8 mV for DES–CNTs. All of
these results proved the efficiency of DES as a functionalization agent for CNTs while conserving their
unique structure [48].

The fitting of pseudo first-order and pseudo second-order kinetic models was examined [48].
It was found that the adsorption mechanism is explained well by the pseudo second-order kinetic
model, which suggests that the rate of 2,4-DCP adsorption onto DES–CNTs adsorbents is governed
by chemisorption. Furthermore, the isotherm studies were also performed by applying four kinetic
isotherm models. Based on the R2 value of each model, it was confirmed that the Langmuir isotherm
model yielded the best fit, with an outstanding value of maximum adsorption capacity (Qmax) of
390.35 mg/g [48].

3.2. ANN Model Performance

Figure 2 illustrates the process of trial and error for selecting the neural network architecture.
In this figure, the Z axis and X axis represent the number of neurons in the hidden layer one and
two, respectively, while the Y-axis represents the MSE values. Once the number of neurons in the
hidden layer two equals zero, then it refers to a single layer architecture. This figure clearly shows
the variation in the MSE results when creating various neural network architectures. The lowest MSE
presents the best architecture. It is noticeable that the architecture with 10 neurons in hidden layer
one and two has the best performance compared to the other architectures, with a recorded MSE
value of 5.01 × 10−5. Also, it can be concluded that the network with two hidden layers displayed
better prediction performance than that with one hidden layer. It is worth noting from Figure 3 that
the data predicted by the eFBPNN model obviously complies with the actual data acquired from the
experimental work, with a correlation coefficient value (R2) of 0.99.
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The validity of the trained FBNN model was further investigated by checking the values of some
other indicators, including the root mean square error (RMSE), mean absolute percentage error (MAPE),
and relative root mean square error (RRMSE). Table 1 shows the results for all the aforementioned
indicators. Moreover, one of the important error indicators for the effectiveness of the model is the
relative error percentage (RE) and it is depicted in Figure 4. It can be noticed that the highest RE
value of the FBPNN model is 5.47%. The training of the neural network model is a substantial step in
achieving good prediction performance. The key objective of this study was to obtain a benefit from
the mathematical approach in real-time experiments.

Table 1. Evaluation indicators.

Indicator FBPNN

MSE 5.01 ×10−5

RMSE 7.08 ×10−3

RRMSE 1.94 ×10−2

MAPE 1.52

Note: MAPE = mean absolute percentage error; MSE = mean square error; RMSE = root mean square error; RRMSE
= relative root mean square error.

3.3. Sensitivity Study

3.3.1. Effects of Initial Pollutant Concentration

The initial concentration effect of 2,4-DCP was explored using five different initial concentration
values of 10, 20, 30, 40, and 50 mg/L, whereas all other experimental parameters were kept constant,
including the adsorbent dosage (5 mg), solution pH (5.14), and contact time (120 min). It is clear from
Figure 5 that by increasing the initial concentration of 2,4-DCP, the adsorption capacity of DES–CNTs
increases. The adsorption capacity was increased from 60 to 92 mg/g when increasing the initial
concentration of 2,4-DCP from 10 to 20 mg/L while increasing the initial 2,4-DCP concentration from
40 to 50 mg/L increased the adsorption capacity from 135 to 168 mg/g. These remarks can be explained
by the fact that the driving force of the mass transfer is highly dependent on the concentration of
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the adsorbate; they become great at high concentrations, thus increasing the uptake capacity of
2,4-DCP from aqueous solution. However, the removal efficiency of the adsorbent was decreased when
increasing the initial concentration of 2,4-DCP due to the saturation of the adsorbent active sites [73].
The actual data was used in the training of the FBPNN model technique. It is evident from Figure 5 that
the observations for the FBPNN model outputs are compatible with that of the experimental outputs.Molecules 2019, 24, x FOR PEER REVIEW 9 of 18 
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3.3.2. Effect of Aqueous Solution pH

The adsorption process is highly dependent on the value of the aqueous solution pH. The pH value
has a significant effect on the protonation of the functional groups onto the adsorbent surface, such
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as carboxyl, phosphate, and amino functional groups, and it has been shown to display a noticeable
impact on the solubility of the adsorbate [74,75]. Examination of the pH effect was performed by using
three different values of aqueous solution pH (5.14, 6, and 10), and all other experimental parameters
were set at constant values (i.e., adsorbent dose (5 mg), 2,4-DCP initial concentration (10 mg/L), and
contact time (20 min)). The actual results and FBPNN outputs were plotted as a function of the pH
and are presented in Figure 6. It can be perceived from the figure that the adsorption capacity from
the experimental work decreased with the increase of the pH value. This decrease in the 2,4-DCP
uptake capacity can be substantiated by the broad existence of OH− in the solution deprotonating
some functional groups on the adsorbent surface, which leads to more negative-charged sites [76].
Additionally, at high pH values, 2,4-DCP molecules are more likely to dissociate into the form of
C6H3Cl2O−. Consequently, electrostatic repulsion will occur between the dissociated 2,4-DCP form
and the negatively charged adsorption sites, resulting in a low adsorption capacity [77]. The trend of
the FBPNN-predicted adsorption capacity as a function of the pH value accurately concurs with the
trend of the experimental results.Molecules 2019, 24, x FOR PEER REVIEW 11 of 18 
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3.3.3. Effects of Adsorbent Dosage

Three different dosages of DES–CNTs adsorbent (5, 10, and 15 mg) were used in this study to
examine their effect on the process of 2,4-DCP adsorption. This experiment was carried out at a constant
contact time of 20 min, a constant pH value of 2, and an initial concentration of 2,4-DCP of 10 mg/L.
Figure 7 shows the trend of adsorbent dosage versus the experimental outputs and ANN outputs. It
is apparent that the adsorption capacity of DES–CNTs adsorbent decreased with the increase of its
dosage in the polluted water. The recorded adsorption capacity for the 15-mg dosage of DES–CNTs
adsorbent was 22.3 mg/g and it was increased to 33.26 and 39.9 mg/g as the adsorbent dosage decreased
to 10 and 5 mg, respectively. The possible justification for this observation is that as the dosage of the
adsorbent increases, the surface of the adsorbent will increase and more active sites will be presented.
Consequently, the 2,4-DCP uptake capacity will decrease [60,78]. The FBPNN model technique was
used to predict the effect of the adsorbent dosage by using the data obtained from the experiments
in training and prediction. Figure 7 presents the predicted data from FBPNN and the experimental
outputs as a function of the adsorbent dosage. It can be concluded that the observation of the FBPNN
outputs agrees with that of the experimental outputs.
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Figure 7. Experimental and FBPNN outputs as a function of the adsorbent dosage.

3.3.4. Adsorption Kinetics Study

The kinetic study was mainly carried out to examine the DCP removal and adsorption rate
and its adsorption mechanism onto DES–CNTs. Two well-known kinetic models were applied to
both the experimental outputs and FFBP neural network outputs, i.e., pseudo first-order and pseudo
second-order. The kinetic study was investigated by using a constant adsorbent dosage of 5 mg
and by varying the pH values (5.14, 6, and 10) with an initial 2,4-DCP concentration of 10 mg/L.
The validity of each kinetic model was confirmed by the value of the correlation coefficient (R2) for
both the predicted and experimental data. The best kinetic model that explained the adsorption of
2,4-DCP was the pseudo second-order model and it is illustrated in Figure 8 at different pH values for
the ANN outputs and actual outputs. The correlation coefficients of all studied kinetic models are
listed in Table 2. The results from the kinetic studies indicate that the adsorption mechanism involves
both the DES–CNTs adsorbent and the adsorbate and suggests that chemisorption controls the rate of
the adsorption process [48]. A similar manner was reported for various types of adsorbents in previous
studies [79,80].

The data that were acquired from the experimental work were modeled and predicted using
the FBPNN technique. The kinetic study was also performed on FBPNN outputs by applying the
same three kinetic models. By checking the correlation coefficient (R2), it was found that the pseudo
second-order model was more adequate in describing the kinetics of this adsorption study compared
to the pseudo first-order and intraparticle diffusion models. The R2 values for the kinetic study on
FBPNN outputs are listed in Table 2. It is clear that the FBPNN model shows high accuracy since its
results are sufficiently close to the results obtained from the experimental work.
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Table 2. Adsorption kinetics constants and correlation coefficient for each model.

Pseudo First Order Pseudo Second Order Intraparticle

pH C0
mg/L

Experimental
R2

ANN
Output R2

Experimental
R2

ANN
Output R2

Experimental
R2

ANN
Output R2

5.14 10 0.772 0.764 0.996 0.993 0.879 0.881
6 10 0.883 0.879 0.96 0.98 0.887 0.876

10 10 0.88 0.87 0.97 0.96 0.892 0.887

4. Conclusions

The ChCl-based DES was effectively used to functionalize CNTs while conserving their important
features and with no damage caused to their structure. The new adsorbent (DES–CNTs) successfully
adsorbed 2,4-DCP from the water, with a maximum adsorption capacity of 390.35 mg/g. The adsorption
capacity of DES–CNTs was governed by several operational parameters. The FBPNN model was
sufficiently capable of predicting the adsorption of 2,4-DCP from water and that was assured by
comparing the experimental outputs with the FBPNN model outputs. The minimum MSE value
was 5.01 × 10−5 with an R2 value of (0.9993), which depicts good agreement between the actual data
and predicted data. The accuracy of the FBPNN model was also approved by other indicators, for
instance, the RMSE (7.08 × 10−3), RRMSE (1.94 × 10−2), and MAPE (1.52). It is worth mentioning that
the FBPNN is theoretically considered the most common modeling technique in comparison to the
other methods. Despite some of the common reported limitations and shortcomings, including a slow
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learning speed, local minima, and difficulty capturing the high complexity, non-stationarity, dynamism,
and nonlinearity of time series, the performance of this method for the prediction of 2,4-DCP adsorption
on DES–CNTs was reliably satisfactory and it can be easily applied for the prediction of the desorption
process of these adsorbents, as long as no hysteresis occurred.
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