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Abstract: Preeclampsia is a complex hypertensive disorder in pregnancy which can be lethal and is
responsible for more than 70,000 maternal deaths worldwide every year. Besides the higher risk of
unfavorable obstetric outcomes in women with preeclampsia, another crucial aspect that needs to be
considered is the association between preeclampsia and the postpartum cardiovascular health of the
mother. Currently, preeclampsia is classified as one of the major risk factors of cardiovascular disease
(CVD) in women, which doubles the risk of venous thromboembolic events, stroke, and ischemic
heart disease. In order to comprehend the pathophysiology behind the linkage between preeclampsia
and the development of postpartum CVD, a thorough understanding of the abnormal uteroplacental
vascular remodeling in preeclampsia is essential. Therefore, this review aims to summarize the
current knowledge of the defective process of spiral artery remodeling in preeclampsia and how the
resulting placental damage leads to excessive angiogenic imbalance and systemic inflammation in
long term CVD. Key molecular factors in the pathway—including novel findings of microRNAs—will
be discussed with suggestions of future management strategies of preventing CVD in women with a
history of preeclampsia.

Keywords: preeclampsia; spiral artery remodeling; cardiovascular disease

1. Introduction

Preeclampsia is a subtype of hypertensive disorders of pregnancy (HDP), defined
as hypertension (systolic blood pressure ≥ 140 mmHg and/or diastolic blood pressure
≥ 90 mmHg) newly developed at or after 20 weeks of pregnancy with at least one of
following conditions: proteinuria (≥1 + dipstick; ≥30 mg/mmol protein:creatinine ratio; or
≥300 mg/24 h), maternal organ dysfunction (hepatic, renal, hematological, or neurological
conditions), or uteroplacental dysfunction (such as abnormal umbilical artery Doppler
wave form analysis, fetal growth restriction, or stillbirth) [1]. The incidence of preeclampsia
is reported to be 5–7% of all pregnancies, which can cause fatal conditions in the mother
and the newborn [2].

Besides the higher risk of unfavorable obstetric outcomes in women with preeclampsia,
another crucial aspect that needs to be considered is the association between preeclampsia
and the postpartum cardiovascular health of the mother. According to the American
Heart Association, preeclampsia is classified as one of major risk factors of cardiovascular
disease (CVD) in women [3]. In fact, according to a large scaled meta-analysis, a history of
preeclampsia doubles the risk for subsequent venous thromboembolic events, stroke, and
ischemic heart disease over five to 15 years postpartum in women [4]. While some of the
maternal systemic damage by preeclampsia returns to normal after delivery, it has become
apparent that the vascular dysfunction by several molecular factors persists beyond the
acute disease in pregnancy. Therefore, in order to comprehend the pathophysiology behind
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the linkage between preeclampsia and postpartum CVD, a thorough understanding of the
abnormal uteroplacental vascular remodeling is essential.

2. Uteroplacental Vascular Development in Normal Pregnancy

The development of placental vasculature begins from the beginning of pregnancy as
the blastocyst implants into the decidua. The cytotrophoblasts which originate from the
extra-embryonic membranes of the fertilized ovum mediate this process by differentiating
into endothelial cells as they invade into the uterine wall to form primary capillaries of
placental vasculature [5]. As the implanted embryo develops, trophoblast cells continue to
branch into the inner third of the myometrium and reach the maternal spiral arteries at
the intervillous space where maternal-placental circulation occurs. Uterine spiral arteries
are nonbranching end arteries of uterine arteries which penetrate the inner part of the
myometrium and the endometrium with a corkscrew shape [6]. During pregnancy, the
spiral arteries are responsible for providing adequate perfusion of uteroplacental blood
flow. Therefore, the spiral arteries are physiologically modified in order to change from
high-resistance vessels to dilated low-resistance vessels with a thin wall [7]. The process of
so-called “spiral artery remodeling” has been suggested to have five stages according to
Pijenborg et al. [8]. Stage 1 involves the swelling of individual smooth muscle cell in the
uterine spiral artery along with endothelial vacuolation. Stage 2 begins with interstitial
trophoblasts invading the perivascular tissues and disorganizing the vascular smooth
muscle layer. It is followed by the appearance of endovascular trophoblasts (stage 3) and
the trophoblast becomes embedded into the vessel wall, becoming intramural trophoblasts
in stage 4. In stage 5, the re-endothelialization with newly built endothelium and the
thickening of subintima containing myofibroblasts occur. During the process, several
regulatory factors are involved; the high oxygen concentration in the spiral artery initiates
the endovascular trophoblast invasion and activation of maternal decidual natural killer
cells and platelets enhance their invasion [9]. Therefore, eventually the spiral arteries are
physiologically altered to exhibit low vascular resistance and enhanced vasodilation, and
this is specifically designed to provide sufficient uteroplacental circulation, which is critical
for a successful pregnancy.

3. Defective Uteroplacental Vascular Remodeling in Preeclampsia

The association with failed spiral artery remodeling in development of preeclampsia
was first brought up in 1972 by Brosens et al. [7]. Subsequent studies have revealed that due
to a failure in the process of endovascular trophoblast invasions, spiral arteries fail to go
through the physiological alteration process which results in relatively narrow, thick-walled
and tortuous vessels in preeclampsia. Moreover, unlike in a normal pregnancy in which
the transformation of the spiral artery extends from the decidual segment to one-third of
the myometrial segment, in preeclampsia trophoblasts fail to invade into the myometrial
segment of spiral arteries [10]. As a consequence, deep placentation fails and the blood
flow to the placenta is restricted leading to inadequate uteroplacental perfusion. This
phenomenon is found in various adverse pregnancy outcomes along with preeclampsia,
such as fetal growth restriction, placental abruption, preterm labor, preterm premature
rupture of membranes, and intrauterine fetal death [11–14].

4. Two Step Model of Preeclampsia

In order to understand how the defective spiral artery remodeling leads to preeclamp-
sia, a thorough comprehension of the two step model is crucial. Preeclampsia manifests
differently depending on the onset of the disease where the early onset form (develops
before 34 weeks of gestation) is highly related to complications associated with placental
dysfunction, such as a higher rate of fetal growth restriction, reduced placental volume,
and low birth weight [15], while the late onset form of preeclampsia (develops at or after
34 weeks of gestation) is considered as a maternal syndrome without poor placentation,
which rarely results in fetal growth restriction or low birth weight [16]. In fact, incomplete
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spiral artery remodeling is mostly seen in the early onset type of preeclampsia which
serves as the ‘extrinsic’ cause of poor placentation. On the other hand, the late onset
preeclampsia exhibits normal physiologically transformed spiral arteries with ‘intrinsic’
cause of placental malperfusion, caused by overcrowding of terminal villi as placental
growth exceeds its functional limit. Overall, the abnormal intervillous blood flow results in
ischemic-reperfusion injury and generates synciotrophoblast hypoxia stress [17]. Hence,
although the pathways differ in their origin they both eventually lead to the maternal
syndrome of preeclampsia resulting in high blood pressure and organ dysfunctions.

Therefore, the updated two-step model describes how the different two types of
pathways lead to the development of clinically recognized preeclampsia [16]. As described
in Figure 1, stage 1 represents the placental dysfunctional stage with syncytiotrophoblast
stress which results either from extrinsic or intrinsic cause as described earlier. In order for
the disease to manifest as clinical syndrome of preeclampsia (stage 2), inflammatory factors
produced by syncytiotrophoblast stress in stage 1 activates the maternal endothelium
resulting in generalized vascular inflammation and endothelial dysfunction leading to
maternal clinical signs of hypertension and organ failure.
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5. Atherosis

Nevertheless, impaired spiral artery remodeling alone is insufficient to explain the
diverse maternal clinical syndromic signs of preeclampsia and how it actually increases
the risk of cardiovascular disease after the pregnancy. In women with preeclampsia, in-
travascular inflammation and dysfunctional lipid metabolism is commonly found, charac-
terized by increased low-density lipoprotein and triglycerides, and decreased high-density
lipoprotein [18,19]; these factors lead to lipid deposition in walls of spiral arteries which
resemble early stages of atherosclerosis and the vascular lesions are named as ‘atherosis’.
Acute atherosis is characterized by the presence of subendothelial lipid-filled foam cells,
perivascular lymphocytic infiltration and vascular fibrinoid necrosis, which result from
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inflammatory stress and arterial damage (Figure 2) [20]. These evidence of vascular in-
flammation are similarly found in transplant vasculopathy and atherosclerosis in patients
with ischemic heart disease [21]. Once present in pregnancy, atherosis lesions can lead to
placental dysfunction by narrowing the lumen of spiral arteries which leads to inadequate
uteroplacental perfusion [22]. In fact, the prevalence of atherosis is higher in preeclampsia
compared to normotensive pregnancies which has been reported as 10–52% and 0.4–11%,
respectively [23–26]. Therefore, atherosis in the maternal vascular system serves as a major
risk factor for both early and late onset preeclampsia which eventually leads to stage 1 in
the previously mentioned 2-stage model. Moreover, several molecular factors involved
in placental dysfunction can also cause acute atherosis, which will be discussed in greater
detail below [27].

6. Molecular Factors Resulting from Inadequate Uteroplacental Perfusion Leading
to Preeclampsia
6.1. Inflammatory Factors

Placental ischemia due to reduced uteroplacental perfusion pressure (RUPP) increases
the release of proinflammatory cytokines. TNF-α is increased in plasma of women with
preeclampsia as compared to normal pregnant women [28], which increases vascular
permeability and lymphocyte activation and disrupts mitochondrial function leading to
oxidative stress [29].

Interleukin-6 (IL-6) is elevated in patients with preeclampsia compared to women
with normal pregnancy [28]. IL-6 dislocates the tight junctions in endothelial cells which
leads to increased vascular permeability and endothelial dysfunction [30]. This has been
confirmed in rats with reduced uteroplacental perfusion which showed increased plasma
levels of IL-6 with high CD4+ T cell production of inflammatory cytokines [31]. Also,
chronic infusion of IL-6 in pregnant rats caused hypertension and proteinuria along with
reduced vascular relaxation [32].

Interleukin-10 (IL-10) is an anti-inflammatory cytokine which is reduced in the pla-
centa of rats with reduced uteroplacental perfusion and in serum of women with preeclamp-
sia [33,34]. A recent meta-analysis of 56 studies on the circulating IL-10 levels in preeclamp-
tic women revealed that the serum IL-10 levels were not significantly different before the
onset of preeclampsia; however, once the clinical syndrome of preeclampsia occurs, IL-10
levels were significantly lower in preeclamptic women compared to normotensive controls
(standardized mean differences, −0.79 [95% CI, −1.22 to −0.35]; p = 0.0004). Moreover, the
decreased level of IL-10 was present in all forms of preeclampsia regardless of its onset
and severity [35]. This suggests that IL-10 levels may not be a suitable marker for early
detection of preeclampsia, but increasing IL-10 may be a potential therapeutic target of
preeclampsia, which could lead to future studies.

6.2. Reactive Oxygen Species (ROS)

Reactive Oxygen Species (ROS) such as superoxide, hydrogen peroxide, and the
hydroxyl ion contains highly reactive oxygen. Pregnancy itself is a state of oxidative stress
resulting from placental metabolism and increased maternal metabolic activity, which is
counterbalanced by abundant antioxidants [36]. In preeclampsia, decreased expression of
antioxidants such as heme oxygenase-1 (HO-1), HO-2, copper/zinc superoxide dismutase
(SOD), glutathione peroxidase (GPx) and catalase fails to counterbalance the increased
ROS production, leading to lipid peroxidation, increased thromboxane A2 and loss of GPx
activity in the placenta [37]. The impaired blood flow in the spiral arteries due to RUPP also
mediates an ischemia/hypoxia-reperfusion injury, leading to oxidative changes in placental
proteins and lipids, mitochondrial injury, and increased ROS production [38]. In women
with preeclampsia, decreased serum levels of the antioxidant ascorbate were shown to
be associated with decreased brachial artery flow-mediated dilation, and administration
of ascorbic acid improved flow mediated dilation, supporting an association between
endothelial dysfunction and oxidative stress in preeclampsia [39].
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Moreover, oxidative stress results in reduced bioavailability of nitric oxide (NO), a
major vasodilator which regulates blood pressure in placenta [40]. Oxidative stress inhibits
nitric oxide synthase (eNOS) which is required for biosynthesis of NO, and the radical
anion superoxide (O2

•−) reacts with NO to form peroxynitrite (ONOO–), which is a strong
pro-inflammatory factor [41].

6.3. Angiotensin II (AngII) and Angiotensin II Type 1 Receptor (AT1R) Autoantibodies (AT1-AA)

Angiotensin II (AngII) is an important regulator of blood pressure and electrolyte
homeostasis. About 40% of AngII is produced locally in the placenta by chymase, a
chymotrypsin-like serine protease, which is a non-angiotensin converting enzyme found
mainly in the syncytiotrophoblast of the placenta. AngII via the AngII type 1 receptor
(AT1R) promotes vasoconstriction, vascular growth, and inflammation, and increases
intracellular free Ca2+ concentration and Rho/Rho-kinase activity in vascular smooth
muscle. AngII via the endothelial angiotensin II type 2 receptor (AT2R) activates eNOS,
and increases production of NO and prostacyclin (PGI2) which oppose AngII-induced
vasoconstriction. Although increased plasma levels of renin and AngII is observed in
normal pregnancy, the response to AngII is decreased due to decreased expression of
AT1R, possibly by AT2R. However, hypoxia in RUPP has been shown to increase the
AT1R expression and plasma levels of AngII in rabbits, as well as in human preeclamptic
placentas [42,43].

In preeclampsia, AT1R forms a heterodimer with the bradykinin B2 receptor (B2R)
called AT1R-B2R protein complex and becomes hyper-responsive to AngII; AT1R-B2R
formation is increased in preeclampsia since down-regulation of the protein complex
expression is inhibited due to beta-arrestin1 (ARRB1) dysfunction [44]. Therefore, AT1R-
B2R has become an emerging treatment target of preeclampsia. The beta-arrestin-biased
AT1R agonist, TRV027, is expected to stimulate the AT1R-B2R downregulation—which is
impaired in preeclampsia—and recent experiments have shown that it actually lowered
blood pressure and prevented symptoms of preeclampsia in animal models [44,45].

AT1-AA are agonistic autoantibodies to the AT1R that mediates vascular signaling via
protein-1, calcineurin, and nuclear factor kappa B (NFκB). AT1-AA induces the secretion of
plasminogen activator inhibitor-1 (PAI-1) which inhibits trophoblast invasion, increases
ROS, increases intracellular free Ca2+ concentration, activates the tissue factor causing
thrombosis, and increases blood pressure [46]. Moreover, AT1-AA along with circulating
cytokines stimulate endothelial cells to produce endothelin-1 (ET-1) in preeclampsia, which
is a major endothelium-derived vasoconstrictor [47]. Infusion of CD4+ T cells obtained
from preeclamptic women in pregnant rats stimulates the immunoglobulin release from
B-cells which in turn increases AT1-AA production while inhibition of B-cells reduces
AT1-AA mediated hypertension in these rats [48]. Therefore, AT1-AA serves as a possible
therapeutic target for treating preeclampsia. Moreover, previous studies have shown that
maternal AT1-AA persisted up to 27 months after pregnancy in 17.2% of women with
preeclampsia compared to 2.9% in women with normotensive pregnancy [49]. Recently,
a follow up study on circulating AT1-AA levels at five to eight years postpartum was
published which showed that AT1-AA was persistently found in women with a history of
preeclampsia, which might relate to their future CVD risk [50].

6.4. Angiogenic/Antiangiogenic Factors

Angiogenic factors are most highly expressed in early pregnancy and are responsible
for placental angiogenesis and increasing placental mass that follows fetal growth [51].
Previous studies have revealed that RUPP leads to altered concentrations of pro- and anti-
angiogenic factors in women with preeclampsia, which leads to endothelial dysfunction
and suggests that they are responsible for the pathology of maternal clinical manifestations
of preeclampsia [52].
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6.4.1. Vascular Endothelial Growth Factors (VEGF)

The VEGF family includes [VEGF-A, VEGF-B, VEGF-C, VEGF-D and placental growth
factor (PlGF)], and their receptors [VEGFR-1/fms-like tyrosine kinase-1 (Flt-1), VEGFR-
2/kinase insert domain receptor (KDR), VEGFR-3/fms-like tyrosine kinase receptor-4(Flt-
4)]. Vascular endothelial growth factor (VEGF) is highly expressed in decidual cells and
invading cytotrophoblasts in normal pregnancy, which leads to endothelial cell proliferation
for newly developing capillaries in uteroplacental circulation [53]. Moreover, VEGF-A
regulates trophoblast functions such as proliferation, differentiation, and invasion, mainly
through the Flt-1 and KDR receptors [54]. In preeclampsia, the circulating level of VEGF is
decreased and this has been confirmed in studies with RUPP-induced rats in which the
VEGF level is also reduced [55,56].

6.4.2. Placental Growth Factor (PlGF)

Placental growth factor (PlGF), a member of the VEGF family, is another proangio-
genic factor that binds to Flt-1 which augments the angiogenic effect of VEGF. PlGF exerts
not only direct effects on endothelial cells, but also indirect effects on nonvascular cells with
pro-angiogenic activity by altering the functioning of immune cells; it recruits monocytes
and activates macrophages which can release angiogenic factors, and encourages prolif-
eration of mesenchymal fibroblasts and attracts myeloid progenitors to develop sprouts
and collateral vessels [57]. Moreover, PlGF promotes vasodilation of uteroplacental circula-
tion [36]. However, the circulating level of PlGF is decreased in preeclampsia compared
to normal pregnancy, which leads to increased vascular resistance in preeclampsia [58].
Therefore, the National Institute for Health and Care Excellence guideline has recom-
mended that obstetricians to utilize maternal serum PlGF levels to rule out preeclampsia
in pregnant women with chronic hypertension or who are at a high risk of developing
preeclampsia [59].

6.4.3. Soluble FMS-Like Tyrosine Kinase I (sFlt-1)

As a VEGF receptor, Flt-1 is highly expressed in the invading extravillous trophoblasts
in the first trimester, which implies that VEGF-Flt-1 interactions lead to early trophoblast
invasion [60]. As gestational age develops, VEGF-Flt-1 interaction also guides trophoblast
differentiation and migration [61]. Soluble FMS-like tyrosine kinase I (sFlt-1) is a truncated
protein resulting from splicing of Flt-1 which lacks the cytoplasmic and transmembrane
domain but keeps the ligand-binding domain [62]. Therefore, sFlt-1 antagonizes and
inhibits VEGF and PlGF by binding to them and blocking their interaction with Flt-1
for proangiogenic function. In preeclampsia, placental ischemia resulting from RUPP
may stimulate upregulation of sFlt-1 by binding of hypoxia inducible factor (HIF) to the
promotor of Flt-1 gene [55]. The elevated maternal serum level of sFlt-1 in preeclampsia has
been found to be associated with severe endothelial dysfunction and inhibition of VEGF
and PlGF by sFlt-1 serves a major pathogenic role in hypertension and proteinuria [5].
VEGF is responsible for decreasing vascular tone and blood pressure by inducing nitric
oxide and prostacyclins that have a vasodilatory effect in endothelial cells, which is blocked
by sFlt-1. In addition, several molecular mechanisms of sFlt-1 found to be responsible for
renal dysfunction are related to glomerular capillary endotheliosis, dysregulation of the
glomerular filtration apparatus, and podocyte loss [63]. Therefore, excess of sFlt-1 results
in the characteristic antiangiogenic state of preeclampsia which manifests as the clinical
syndrome of endothelial dysfunction. In fact, maternal serum level of sFlt-1 to PlGF ratio
(sFlt-1/PlGF ratio) can be used as a reliable biomarker for predicting development and
severity of preeclampsia [64]. Moreover, a recent systematic review and meta-analysis
on the performance of the sFlt-1/PlGF ratio in predicting adverse outcomes in women
diagnosed or suspected of preeclampsia showed that the sFlt-1/PlGF ratio performs better
in predicting women with early onset preeclampsia in comparison to those with late
onset [65]; this relates to our previous topic in chapter 4 which described that defective
uteroplacental vascular remodeling is mostly seen in the early onset type of preeclampsia.
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6.4.4. Soluble Endoglin (sEng)

Soluble endoglin (sEng), a coreceptor for transforming growth factor-β1 (TGF-β1),
is another antiangiogenic factor released by the placenta that acts in synergy with sFlt-1.
Endoglin (Eng) is an angiogenic receptor expressed mainly on the surface of placental
syncytiotrophoblast and endothelial cells which serves as a co-receptor of angiogenic
TGF-β signaling [66]. TGF-β is known to contribute to angiogenesis and appropriate
vascular relaxation by increasing VEGF [67,68]. However, in preeclampsia sEng is released
in excessive quantity and binds to free TGF-β1 which inhibits the pro-angiogenic TGF-β1
signaling in the vasculature. The circulating level of sEng is elevated in patients with
preeclampsia two-to-three months prior to the onset of clinical symptoms and its serum
levels seem to be correlated with the severity of the disease [69].

6.5. Activin A

Activin A is a dimeric glycoprotein belonging to the TGF-β family produced by
the placenta and fetal membranes [70]. In preeclampsia, the serum level of activin A is
elevated (up to 10-fold) compared to normal pregnancy and it is found to be resulting from
increased placental production triggered by oxidative stress [71,72]. In fact, circulating
levels of activin A have shown to rise months prior to the onset of the clinical manifestation
of preeclampsia, which is earlier than the elevation of sFlt-1 or sEng [73]. Recent studies
have shown that elevated activin A in preeclampsia may be responsible for the endothelial
dysfunction, which was shown as hypertension, proteiunuria, fetal growth restriction,
and preterm littering in activin administered mice [74]. An in vitro study using human
umbilical vein endothelial cells (HUVECs) has suggested that activin A up-regulates
transcription of endothelial vasoconstrictors such as ET-1 [75]. Moreover, an elevated
activin A level had been reported to be strongly correlated with myocardial dysfunction at
1 year after preeclamptic pregnancy, and a recent follow up study confirmed that the activin
A level still remained elevated with impaired cardiac function 10 years after preeclamptic
pregnancy, implying its potential use as a tool for monitoring women at risk for postpartum
CVD [76,77].

6.6. Hypoxia Inducible Factor

Hypoxia inducible factor (HIF) is a heterodimer consisting of HIF1-α and HIF2-α
subunits, which are regulated by oxygen, and a constitutively expressed HIF1-β subunit.
In a hypoxic environment, HIF-1 regulates transcription of various genes, including VEGF,
TGF-β3, and NOS, by binding at their promotor and enhancer regions [36]. HIF expression
is shown to be higher in normal pregnancy, probably due to high estrogen and progesterone
levels; however, HIF-1α and HIF-2α is overexpressed further in preeclampsia in response
to RUPP [78,79]. Moreover, HIF-1α upregulates anti-angiogenic factors such as sFlt-1,
sEng, and ET-1 expressions and AngII and AngII-converting enzyme (ACE) expressions
in the lungs and kidney which add on to the abnormal placentation and development
of preeclampsia [80]. An animal study with RUPP rats showed that inhibition of HIF-1α
using siRNA reversed the high blood pressure, renal damage, proteinuria, and elevated
serum sFlt-1 level [81]. Therefore, the efficacy of using maternal serum level of HIF-1α
as a predictive marker for preeclampsia has been questioned. A recent prospective study
showed that high serum HIF-1α level (above 1.45 MoM) in the first trimester of pregnancy
(11–13+6 weeks of gestation) was related to development of preeclampsia, which requires
further confirmation with large-scaled studies [82].

6.7. MicroRNAs

MicroRNAs(miRNAs) are small (<25 nucleotides), single-stranded, non-coding RNAs
that regulate gene expression by inhibiting translation. These molecules bind to the
untranslated lesion of a target gene and silence their expression [83]. During pregnancy,
miRNAs are profusely expressed in the placenta, mainly from villous trophoblasts, and
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play pivotal role in several processes including trophoblast proliferation, immune tolerance,
and angiogenesis [84].

Specifically, miR-210 has been reported to be overexpressed in placentas of preeclamp-
sia [85]. Studies have shown that miR-210 is strongly linked with hypoxia related to RUPP
which leads to inadequate trophoblast invasion and failure of spiral artery remodeling
in preeclampsia [86]. miR-210 is upregulated by HIF which overexpresses it in response
uteroplacental hypoxia in order to regulate genes involved in various pathways includ-
ing angiogenesis, inflammation, and cell proliferation [87]. Another miRNA involved in
preeclampsia is miR-155, which has been shown to inhibit cysteine-rich protein 61 (CYR61),
an essential angiogenic factor in pregnancy [88,89]. A crucial function of CYR61 is related
to inducing the expression of VEGF, which is a major pro-angiogenic factor as previously
mentioned [87]. Previous studies have shown that CYR61 gene expression is downregu-
lated in preeclamptic placentas compared to those of normal pregnancy, and suggested
that increased miR-155 causes inhibition of the CYR61-VEGF pathways, which leads to
reduced placental angiogenesis [90].

Additionally, miR-125b is known to be an anti-angiogenic factor which decreases
VEGF expression when it is overexpressed [91]. A recent case-control study showed that
the maternal plasma level of miR-125b at 12 weeks of gestation is significantly elevated
compared to those in normal pregnancy. Moreover, the same study revealed that miR-125b
targets trophoblast cell surface antigen-2 (Trop-2) protein in placental tissue, suggesting
miR-125b might be involved in development of preeclampsia via modulating Trop-2
expression in the syncitiotrophoblast [92].

The role of miR-21 in preeclampsia has been also newly studied, since it regulates the
forkhead box M1 protein (FOXM1), which is expressed in cytotrophoblasts for prolifera-
tion and differentiation, responsible for the early placental development [93]. In fact, a
study showed that miR-21 is elevated with reduced FOXM1 expression in patients with
preeclampsia compared to those in normotensive pregnant women, implying that miR-21
may impede the early placental invasion leading to preeclampsia [94]. These results demon-
strate that various miRNAs are involved in the pathway of preeclampsia which implies
their potential to become possible future therapeutic targets for treatment of preeclampsia.

7. Preeclampsia and Future Cardiovascular Health

As discussed so far, the key mechanism of preeclampsia is disrupted spiral artery
remodeling resulting in insufficient blood flow to the placenta, which in turn leads to RUPP.
RUPP leads to a change in the level of several factors released by the placenta—mainly an
increase of pro-inflammatory and anti-angiogenic factors and a decrease of pro-angiogenic
factors—which eventually spread into the maternal circulation (Figure 2); this results in
endothelial dysfunction leading to disrupted maternal hemodynamics. Although some
aspects of maternal vascular damage return to normal after birth, it has become apparent
that the endothelial damage is evidenced to persist beyond the acute disease in pregnancy.

Cardiovascular diseases (CVD) are currently considered as the leading cause of death
globally [95]. Women with a history of HPD, including preeclampsia, have a twofold in-
creased risk of future CVD compared with women with normotensive pregnancies [96–100].
HDP, by definition, is development of de novo hypertension after 20 weeks of pregnancy
which includes the following 4 categories: (1) preeclampsia/eclampsia; (2) gestational
hypertension; (3) chronic hypertension; and (4) preeclampsia/eclampsia variants superim-
posed on chronic hypertension [101]. The epidemiologic research has reported a signifi-
cantly rising prevalence of preeclampsia and gestational hypertension (by 25 and 184%,
respectively) in the last decade. The worldwide population based increases in well-known
risk factors for preeclampsia such as pre-pregnancy overweight and obesity, diabetes, twin
pregnancy, and advanced maternal age are expected to contribute to the growing rates
of the overall HDP [102]. Although it is controversial whether gestational hypertension
and preeclampsia develop from the same pathophysiological mechanisms, they both share
similar pathway which involves placental insufficiency leading to systemic endothelial
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dysfunction [103]. In addition, the rate of progression into preeclampsia ranges from 15%
to 46% of women diagnosed with gestational hypertension, suggesting that gestational
hypertension and preeclampsia may be considered as different stages of a continuous
process with an identical pathophysiology of angiogenic imbalance rather than as separate
distinct diseases [103].
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Figure 2. (a) Normal placentation with successful spiral artery remodeling. Endovascular tro-
phoblasts become incorporated into the vessel wall and a fibrinoid layer substitutes the original
smooth muscle cell layer, resulting in a low resistance vessel with a newly built thin, flexible wall
which brings adequate uteroplacental perfusion. (b) Abnormal spiral artery remodeling in preeclamp-
sia. Failure of endovascular trophoblast invasion results in a relatively narrow, thick-walled tortuous
vessel with high resistance leading to reduced uteroplacental perfusion (RUPP). Atherosis is shown
with lipid deposition in walls of spiral arteries with lipid-filled foam cells, perivascular lymphocytic
infiltration and vascular fibrinoid necrosis. Various molecular factors resulting from RUPP are listed.
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Recently, a history of HDP has been designated as an independent risk factor for
future cardiovascular events and incorporated in guidelines for risk stratification of stroke
and CVD [104,105]. However, whether HDP serves to unmask a preexisting high CVD risk
in an individual or HDP is causally associated with vascular remodeling leading to the
development of postpartum CVD remains unclear. The former hypothesis is supported by
the fact that HDP and CVD share the preexisting risk factors in common, such as obesity,
hypertension, hyperinsulinemia, hyperlipidemia and a family history [106–110]. Therefore,
a woman with an already existing high risk of CVD is revealed by the “stress test” of
pregnancy as a clinical manifestation of HDP. On the other hand, the latter theory suggests
that pro-atherogenic stress of HDP could activate arterial wall inflammation and induce
changes in vasculature which may result in future CVD. However, the two mechanisms
are not completely exclusive of each other since they both involve endothelial dysfunction
caused from vascular maladaptation during pregnancy which we have discussed previ-
ously in chapter 4 [111]. Therefore, a history of HDP increases risk of future CVD in a
dose dependent manner which depends on how severely the uteroplacental circulation is
compromised. The clinical manifestations of HDP with earlier onset, iatrogenic preterm
delivery, fetal growth restriction and recurrence of HDP in subsequent pregnancies are
related to greater risk of future CVD [112]. In terms of timing, it has been known that
within one or two decades after delivery, women with a history of HDP are more likely
to experience premature cardiovascular events, such as symptomatic heart failure, my-
ocardial ischemia, and cerebral vascular disease [112,113]. Two systematic reviews and
meta-analyses demonstrated that the increased risk for CVD and hypertension is greater
during the first 10 years after a pregnancy affected by HDP compared to the risk past 10
years after the affected pregnancy [97,114]. Up to one third of women with a history of
HDP may develop hypertension within a decade of the affected pregnancy before middle
age, indicating that they are more likely to develop CVD at a much younger age compared
to controls [115]. Despite the previous belief that the physiological changes and the result-
ing cardiovascular stress during pregnancy return to pre-pregnancy levels shortly after
delivery, the endothelial damage in HDP and its related factors seem to persist and exert
long-term consequences on maternal cardiovascular health [116].

7.1. Chronic Hypertension

The nationwide register-based cohort study of 1.5 million women who had delivered
in Denmark from 1978 to 2012 has reported that women with gestational hypertension
had the highest risk of developing chronic hypertension after pregnancy, followed by
women with severe preeclampsia and moderate preeclampsia. In fact, of women in their
20 s, 14% of nulliparous women with HDP developed hypertension in the first 10 years
after pregnancy compared with 4% of nulliparous women with normotensive pregnancy.
The corresponding percentages of developing hypertension after HDP and without HDP
in their forties were higher as expected: 32% and 11%, respectively. In fact, in a year
after delivery, women with HDP had 12-fold to 25-fold higher rates of hypertension
compared to women with normotensive pregnancy—which remained high as 3 to 10-fold
in the first 10 years after pregnancy and twice higher when it passes 20 years postpartum.
The decreasing trend in the relative risk of developing chronic hypertension as time
passes from delivery (compared to controls) seem to be due to the natural behavior of
hypertension in which its baseline risk increases with age. Therefore, it can be concluded
that the risk of hypertension associated with HDP is highest shortly after an affected
pregnancy and persists for more than 20 years [115]. The PROSPECT cohort consisting
The European Prospective Investigation into Cancer and Nutrition (EPIC)-NL cohort
demonstrated that women with HDP reported a diagnosis of hypertension 7.7 years earlier
(95% confidence interval [CI] 6.9–8.5) than women with a normotensive pregnancy, and
that women with HDP have an increased risk of developing hypertension (odds ratio 2.12,
95% CI; 1.98–2.28) [117].
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The American Heart Association has reported the Heart Disease and Stroke Statistics—
2021 Update with an enhanced focus on adverse pregnancy outcomes (APO). APOs include
HDP, gestational diabetes, preterm delivery, and small for gestational age. These interre-
lated disorders are associated with long-term risk of cardiometabolic disease in maternal
and offspring [118]. While normal pregnancy without APO can be recognized as proper
maternal cardiometabolic adaptation, APOs may reflect a maladaptive response to the
“stress test” of pregnancy. According to the prospective observational cohort study named
Nulliparous Pregnancy Outcomes Study Monitoring Mothers-to-be Heart Health Study,
the incidence of APO was 22.7%, as 1017 out of 4484 females were affected (22.7%). In
this study, the overall incidence of hypertension was 5.4% (95% CI; 4.7–6.1%), with an in-
creased risk among females with any APO (defined as HDP, small-for-gestational-age birth,
preterm delivery, and stillbirth) and by subtype (any HDP: Relative risk (RR), 2.7 [95% CI:
2.0–3.6]; preeclampsia: RR, 2.8 [95% CI: 2.0–4.0]; preterm delivery; RR, 2.7 [95% CI: 1.9–3.8]).
Among APO, women with both HDP and iatrogenic preterm delivery had the highest risk
of hypertension (RR 4.3, 95% CI: 2.7–6.7) in a short-term follow-up over a mean of 3.2 years
after the first pregnancy. Under such conditions, chronic hypertension developed in 45.4%
of females [119]. A recurrence rate of developing preeclampsia in the subsequent preg-
nancy has been reported as 16% [120]. Recurrent preeclampsia is consistently associated
with a higher risk ratio of developing chronic hypertension (RR 2.3, 95% CI; 1.9–2.9) than
women with a subsequent uncomplicated pregnancy after a preeclamptic pregnancy [121].
Other longitudinal prospective studies demonstrated that women with a history of preterm
preeclampsia had a higher prevalence of hypertension compared with term preeclamp-
sia [122]. Overall, it has been postulated that HDP affects the future risk of developing
chronic hypertension in a dose-dependent manner as mentioned previously, depending on
the severity of placental insufficiency which manifests clinically; HDP with earlier onset,
severe criteria, preterm delivery, fetal growth restriction or recurrence affects the risk of
postpartum hypertension with a greater chance [112].

7.2. Altered Vascular Structure

Carotid intima-media thickness (CIMT) is a well validated, non-invasive marker of
subclinical atherosclerotic disease. It involves ultrasound evaluation of the thickness of the
intimal and medial carotid arterial wall. Data have shown that an increased CIMT confers
an elevated risk of coronary atherosclerotic lesions and future cardiovascular disease in
both histological and epidemiological studies [123]. Although an assessment of CIMT
could reflect arterial remodeling in HDP such as changes in arterial internal diameter and
wall thickness, there are only few small-scale studies demonstrating heterogenous results
of CIMT assessment in pregnancy.

A prospective study of women with late onset preeclampsia reported a significant
increase of 108 µm in CIMT compared with those in normotensive pregnancy (459 ± 95 vs.
351 ± 85 µm, p = 0.0001) [124]. While early onset preeclampsia was also characterized by
increased CIMT in another study, it reported that mean CIMT did not differ significantly
between the early onset preeclampsia group and the normotensive pregnancy group,
but it was significantly increased in the late onset preeclampsia group as compared to
controls [125]. On the other hand, another prospective cohort study has identified increased
CIMT in only pregnant women with underlying chronic hypertension rather than in women
with preeclampsia [126]. Despite the heterogenous study results and inconclusiveness,
these studies suggest the possibility that vascular structural changes may reflect vascular
remodeling as adaptive response to hypertension during pregnancy.

The coronary artery calcification (CAC) Score assessed by coronary computed to-
mography (CCT) is another important predictor for CVD events. Calcification is related
to arterial stiffness associated with an increased risk of CVD, and the St. Francis Heart
study determined that for a CAC score > 100 Agaston units (AU), the relative risk for
atherosclerotic CVD was 9.6 (95% CI; 6.1–13.9) [123]. Significant coronary atherosclerosis
could be identified by imaging the non-calcified coronary plaque with contrast-enhanced
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coronary CT angiography (CCTA) before calcification of plaque occurs [127]. Although
there has been no study for evaluation of CAC score during pregnancy due to the fetal
risks of radiation exposure, several studies have reported that CAC score is higher in
postpartum women with a history of HDP. In the first prospective cohort study, a history
of preeclampsia was shown to be associated with an increased risk of CAC > 30 years
after affected pregnancies, even after controlling individually for traditional risk factors.
Compared to women with uncomplicated pregnancies, it demonstrated that the odds of
having a higher CAC score was 3.54 (CI; 1.39–9.02) times greater in women with prior
preeclampsia without adjustment and 2.61 (CI; 0.95–7.14) times greater after adjustment
for current hypertension [128]. Regarding asymptomatic women aged 45 to 55 years, it
has been also reported that 30% of women with a history of preeclampsia show features
of coronary atherosclerosis on vascular computed tomography imaging as compared to
18% of women from the reference group [129]. In addition, a recent study showed that
women with previous preeclampsia developed CAC about five years earlier than women
with normotensive pregnancies [130]. Population based studies also showed that women
with a history of preeclampsia develop cardiovascular risk factors, including high blood
pressure, dyslipidemia, and diabetes, five to ten years earlier than women without such a
history [130]. Therefore, early cardiovascular screening of women with a history of HDP
would definitely benefit in reducing future CAD events.

7.3. Coronary Artery Disease and Cerebrovascular Accident

Atheromatous plaque is formed through a chronic, inflammatory progression of
atherosclerotic disease without overt symptoms. It can result in a sudden occurrence of
coronary artery disease (CAD), such as myocardial infarction, unstable angina pectoris
and cardiac death [131]. The prevalence of ischemic heart disease in women with a history
of HDP is significantly higher than compared to those with a history of normotensive
pregnancy [4,132]. As it was seen in chronic hypertension discussed previously, HDP also
affects future CAD risk depending on its severity, association with APO, and recurrence;
these associations remained significant after adjustment for confounding variables [121,133].
A previous meta-analysis published in 2017 reported that the future risk of CAD following
HDP was not significant after adjustment for pregestational hypertension [95]. However,
nine large cohort studies from various countries including Norway, the United Kingdom,
Denmark, United States, Canada, and Australia were followed, and a recent systematic
review and meta-analysis of 73 studies involving > 13 million women demonstrated that
the overall combined relative risks of CAD for women with a history of HDP compared
with the normotensive group was 1.66 (CI;1.49–1.84), along with 1.80 (CI; 1.67–1.94) for
any CVD, 2.87 (CI; 2.14–3.85) for heart failure, 1.60 (CI; 1.29–2.00) for peripheral vascular
disease, 1.72 (CI;1.50–1.97) for stroke, 1.78 (CI; 1.58–2.00) for CVD-related mortality, and
3.16 (CI; 2.74–3.64) for chronic hypertension [114,133–138].

In addition, the risk ratio of cerebrovascular disease (CD) in women with previous
preeclampsia ranged from 1.53 to 3.13 [95,117,139,140]. Regarding women with previ-
ous gestational hypertension, a prospective population-based cohort study reported that
women with a gestational hypertension had a 1.3-fold (CI; 0.9 to 1.7) higher risk of devel-
oping CD compared with women without any HDP [141]. Furthermore, a meta-analysis in
2018 found that recurrent preeclampsia was consistently related to an increased risk ratio
of stroke (RR 1.7, CI; 1.2–2.6) when compared with preeclampsia in a single pregnancy
followed by subsequent uncomplicated pregnancies [121].

7.4. Postpartum Management after HDP

Although the mechanisms still remain elusive, it is evident that the risk of CVD rises
after HDP, which can occur early in the postpartum period. As of today, various guidelines
for postpartum follow-up are suggested.

The American College of Obstetricians and Gynecologists (ACOG) recommends that
all women with HDP have an initial check with their obstetrician within three weeks post-
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partum, followed by another visit at three months postpartum, and annual cardiovascular
checkups consequently [142]. A recent recommendation by the American Heart Associa-
tion suggests initiation of screening for CVD as soon as possible after delivery in women
with HDP. The suggested strategies include: (1) an interdisciplinary approach for early
identification of CVD risk factors, (2) continuous postpartum visits starting six to eight
weeks postpartum and annually thereafter, (3) consistent monitoring of blood pressure and
biomarkers at clinic and at home, and (4) educating patients about their individual risk
and helpful lifestyle modifications to prevent CVD [143].

8. Conclusions

The key mechanism of preeclampsia is defective spiral artery remodeling resulting in
inadequate blood flow to the placenta, which in turn leads to RUPP. RUPP leads to rise
in pro-inflammatory and anti-angiogenic factors and decrease in pro-angiogenic factor in
maternal circulation which in turn results in endothelial dysfunction leading to disrupted
maternal hemodynamics. The association between HDP and postpartum CVD has become
a well-accepted fact, especially among women with a history of preeclampsia. Risk factors
of CVD mostly develop in the early postpartum period and the most vulnerable timing
for CVD events is the decade after delivery, in which the related circulating factors persist
in maternal circulation. Therefore, women with a history of HDP should be considered
for risk evaluation before the current cardiovascular screening guidelines. Although the
exact linking mechanisms between HDP and CVD are still left for further research, primary
prevention strategies to reduce cardiovascular disease in women should always include
risk stratification based on their obstetrical history.
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