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ABSTRACT: Herein, we describe an efficient nanocopper-
catalyzed Alder-ene reaction of allenynamides. The copper
nanoparticles were immobilized on amino-functionalized micro-
crystalline cellulose. A solvent-controlled chemoselectivity of the
reaction was observed, leading to the chemodivergent synthesis of
pyrrolines (2,5-dihydropyrroles) and pyrroles. The heterogeneous
copper catalyst exhibits high efficiency and good recyclability in the
Alder-ene reaction, constituting a highly attractive catalytic system
from an economical and environmental point of view.
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The Alder-ene reaction has been recognized as a powerful
synthetic tool for the rapid construction of C−C bonds

with high atom economy and efficiency.1 Since the seminal
work by Trost on the palladium-catalyzed intramolecular ene
reactions of 1,6-enynes,2 the ene-type cycloisomerizations of
various 1,n-unsaturated systems, such as dienes,3 enynes,4

triynes,5 and enallenes,6 have been reported. However, the
corresponding Alder-ene reaction of allenynes is less
investigated.4f,7 In 2002, Brummond reported the rhodium-
(I)-catalyzed formal Alder-ene-type reaction of 1,6-allenynes
for stereoselective synthesis of cross-conjugated trienes
(Scheme 1a).8 Malacria, Fensterbank, and Aubert disclosed
the platinum-, gold-, and silver-catalyzed cycloisomerizations of
1,6-allenynes to provide the corresponding trienes (Scheme
1a).9 Despite the above-mentioned progress, studies on
catalytic Alder-ene reactions of 1,n-allenynes using green
synthetic protocols via nonprecious metal catalysis are still rare
and are in high demand.
Our group has a long-standing involvement in palladium-

catalyzed oxidative functionalization of allenes.10 In the case of
alkyne-assisted palladium-catalyzed oxidative carbocyclization
of allenynes,10f,i the nucleophilic attack on palladium by the
allene and the subsequent alkyne insertion lead to the
construction of a variety of 5-membered ring compounds
(Scheme 1b). However, in our initial attempts to examine the
reactivity of allenynamides, an analogous Pd(II)-catalyzed
cycloisomerization without the aid of oxidant was observed,
leading to the formation of pyrrolines (2,5-dihydropyrroles)
and pyrroles.11 The latter reaction11 may proceed via a similar
pathway as in Scheme 1b with generation of a vinylpalladium
intermediate such as Int-1. We envisioned that first-row

transition metals, such as copper could also promote such
cycloisomerizations leading to Alder-ene-type products.
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Scheme 1. Cycloisomerization and Oxidative
Carbocyclization of Allenynes: (a) [Rh], Ref 8; [Pt], [Au],
and [Ag], Ref 9. (b) Refs 10f−10i. (c) This Work
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Transition metal nanoparticles immobilized on heteroge-
neous materials have shown to be promising catalysts for a
wide range of organic transformations with good stability and
recyclability.12 Cellulose as one of the most abundant organic
biopolymers has been recognized as an excellent choice for
immobilization of various transition metal catalysts.12d,f,13 Our
group has previously employed a heterogeneous amino-
functionalized crystalline nanocellulose-based palladium cata-
lyst (Pd-AmP-CNC) in the oxidative carbonylation of allene
amide.12f In comparison to homogeneous palladium catalysts
such as Pd(OAc)2, Pd-AmP-CNC exhibits higher efficiency
with good recyclability.12d

Given the surging interest in green and sustainable
nanocatalysts, we were motivated to investigate the catalytic
activity of copper nanoparticles immobilized on microcrystal-
line cellulose (MCC) in the Alder-ene reaction of
allenynamides (Scheme 1c). Commercially available MCC as
Avicel PH-101 has a very low price14 and can serve as a
sustainable support in heterogeneous catalysis.15 We postu-
lated that this reaction can occur through a dienyl copper
intermediate (Scheme 1c, upper part) in analogy with the
palladium-catalyzed reaction shown in Scheme 1b, or via a
copper-catalyzed concerted Alder-ene reaction (Scheme 1c,
lower part). Herein, we report on a nanocopper-catalyzed
Alder-ene reaction of allenynamides 3 to pyrrolines 4 using
mixed Cu(I/II) nanoparticles immobilized on aminopropyl-
functionalized MCC (Cu-AmP-MCC). The easy handling of
this simple catalyst and its efficient recycling (6 cycles with
maintained high activity demonstrated) makes this novel
catalytic Alder-ene reaction highly practical.
A schematic overview of the synthesis of the Cu-AmP-MCC

nanocatalyst is outlined in Scheme 2. Amino-functionalized

MCC (AmP-MCC), which had been prepared by organo-
catalytic silylation,13e was subjected to an aqueous solution of
Cu(OTf)2 (pH 9) at room temperature for 24 h to furnish a
Cu(II)-precatalyst. This precatalyst was subsequently reduced
by NaBH4 in H2O at ambient temperature to generate the
mixed valence Cu(I/II) Cu-AmP-MCC nanocatalyst.16 To
obtain information regarding the oxidation state of the copper
nanoparticles, the catalyst was analyzed by XPS, and it
provided evidence for the presence of both Cu(I) and Cu(II)
in an estimated ratio of 1.1:1, respectively.17 The copper
nanocatalyst was characterized by scanning transmission

emission microscopy (STEM) to determine the size of the
supported nanoparticles. According to the STEM, the
nanoparticles of the Cu-AmP-MCC catalyst are well-dispersed
and have an average particle size of 3−8 nm (Figure 1).

To test our hypothesis, we initially investigated the reaction
of allenynamide 3a bearing a n-pentylated ynamide and a
trisubstituted allene by using Cs2CO3 (2.0 equiv) as the base
and Cu-AmP-MCC as the catalyst (5.4 mol %). To our delight,
the cyclization reaction proceeded smoothly to give the Alder-
ene product 2,5-dihydropyrrole 4a in high selectivity in 65%
NMR yield within 24 h at 60 °C in toluene (Table 1, entry 1).
In the absence of Cs2CO3, a 61% yield of 4a was observed

Scheme 2. General Procedure for the Synthesis of Cu-AmP-
MCC Catalyst

Figure 1. STEM bright-field images of Cu-AmP-MCC catalyst, (a)
with 50 nm scale bar and (b) with 20 nm scale bar. Moire ́ fringes
given by overlapping of crystalline particles are observed.

Table 1. Optimization of Reaction Conditions for the
Nanocopper-Catalyzed Reaction of 3aa

entry catalyst solvent T (°C)
yield of 4a

(%)b
yield of 5a

(%)b

1 Cu-AmP-
MCC

toluene 60 65 (61)c 0 (<5)c

2d Cu(OTf)2 toluene 60 63 0
3d AgOTf toluene 60 48 0
4d Sc(OTf)3 toluene 60 53 0
5 - toluene 60 9 0
6 Cu-AmP-

MCC
THF 60 36 0

7 Cu-AmP-
MCC

MeOH 60 21 0

8 Cu-AmP-
MCC

CH3CN 60 18 0

9c Cu-AmP-
MCC

DCE 60 28 19

10c Cu-AmP-
MCC

CHCl3 60 18 35

11 Cu-AmP-
MCC

toluene 80 91 (88)e 0

12c Cu-AmP-
MCC

CHCl3 80 3 71 (68)e

13 - toluene 80 29 0

aThe reaction was carried out in the indicated solvent (1 mL) using
3a (0.1 mmol) and Cs2CO3 (0.2 mmol) in the presence of copper
nanocatalyst (5.4 mol %). bDetermined by NMR using 1,1,2,2-
tetrachloroethane as the standard. cWithout Cs2CO3.

d5.0 mol %
metal catalyst was used. eIsolated yield.
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together with trace amounts of the pyrrole product 5a, which
was probably generated from the isomerization of 4a.
Switching the catalyst to homogeneous copper salt Cu(OTf)2
afforded 4a in a similar yield (entry 2). Other transition metal
π-acids such as AgOTf and Sc(OTf)3 were also effective for
this transformation, leading to 4a in 48% and 53% yield,
respectively (entries 3 and 4). These results indicate that the
heterogeneous Cu catalyst displayed comparable or even
superior reactivity for this reaction, compared with that of the
homogeneous catalysts. A control experiment in the absence of
catalyst gave 9% yield of 4a (entry 5). Solvent screening
showed that significantly lower yields were observed in the
nanocopper-catalyzed reaction when it was carried out in THF,
MeOH, or CH3CN (18−36% yields entries 6−8). Interest-
ingly, by using chlorinated solvents, such as DCE and CHCl3,
we observed the formation of the pyrrole product 5a in 19%
and 35% yield, respectively, (entries 9 and 10). These results
demonstrate that solvent plays an important role in controlling
the chemoselectivity of this cyclization reaction. The relatively
acidic solvent CHCl3 favors the isomerization of 4a to 5a,
which is in accordance with previous observations.18 As the
substrate 3a was partially recovered at 60 °C, attempts were
made to improve the conversion of 3a by increasing the
reaction temperature. At 80 °C, 4a was obtained as the
exclusive product in 88% isolated yield by using toluene as the
solvent (entry 11), while in CHCl3, 5a was obtained in 68%
isolated yield as the predominant product (entry 12). A control
experiment in the absence of catalyst showed that at 80 °C the
thermal Alder-ene reaction afforded only 29% NMR yield of 4a
(entry 13).19

With the optimized reaction conditions in hand, we focused
our attention on the scope of the reaction as well as the
divergent synthesis of 4 and 5 (Scheme 3). By using toluene as
solvent, allenynamide 3 with phenylethyl, phenyl, and methyl
groups in the R1 position worked equally well, furnishing 4b,
4c, and 4d in 85%, 90%, and 81% yield, respectively. The
presence of an ester substituent resulted in a lower yield of the
desired product 4e (48%), possibly due to undesired side
reactions caused by the ethoxycarbonylmethyl group in the
presence of base. Also, a substrate where the two methyl
substituents on the allene had been replaced by a cyclo-
pentylidene group worked well, affording the corresponding
product 4f in good yield (78%). Substrates bearing aryl,
cyclohexyl, trimethylsilyl, and (tert-butyldimethylsilyloxy)-
methyl groups in the R2 position of 3 were well tolerated in
the reaction, furnishing 4g−4k in 70−82% yields. The (Z)-
configuration of the exocyclic double bond in 2,5-dihydro-
pyrroles 4 was established by comparison of the NMR spectra
with those of the known products previously reported.18 By
using CHCl3 as solvent, the cascade cycloisomerization-
isomerization reaction of various allenynamide substrates
worked well to give pyrroles 5. In this way, pyrrole products
5a−5g and 5j were prepared in good yields (41−76%).
To further evaluate the efficiency of the heterogeneous

nanocopper catalyst in the reaction of 3 to Alder-ene products
4, we conducted catalyst recycling experiments using 3a as
substrate. The recycling experiments revealed that the high
efficiency of the catalyst could be maintained from the first to
the sixth run (Figure 2).20 Inductively coupled plasma optical
emission spectroscopy (ICP-OES) analysis showed that the
copper concentration in the recovered solution from the first
run was <1 ppm, which shows that leaching is neglectable.

To gain insight into the mechanism of this reaction,
deuterium-labeling experiments were conducted (Scheme 4).
When D2O (2 equiv) was added to the reaction, no deuterium
incorporation of the corresponding product 4a was observed
(Scheme 4a), which excludes the possibility that the H atom in

Scheme 3. Regioselective and Divergent Synthesis of 4 and
5 from Allenynamides 3a

aReaction conditions: 3 (0.20 mmol), Cu-AmP-MCC (5.4 mol %),
Cs2CO3 (0.40 mmol), toluene (2.0 mL) or CHCl3 (2.0 mL), 80 °C,
24 h.

Figure 2. Recycling experiments of Cu-AmP-MCC-catalyzed reaction
of 3a to Alder-ene product 4a

ACS Catalysis pubs.acs.org/acscatalysis Letter

https://doi.org/10.1021/acscatal.1c05147
ACS Catal. 2022, 12, 1791−1796

1793

https://pubs.acs.org/doi/10.1021/acscatal.1c05147?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c05147?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c05147?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c05147?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c05147?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.1c05147?fig=fig2&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.1c05147?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the newly formed alkene comes from protonation of a
vinylcopper intermediate (cf. upper part of Scheme 1c).
Moreover, when deuterated substrate d6-3a was subjected to
the reaction in the presence of H2O (2 equiv), d6-4a was
obtained as the single product (65% yield) with complete D
atom transfer (100%) from the terminal methyl group in d6-3a
to the alkenyl position in d6-4a (Scheme 4b). These results
rule out the mechanism via a dienylcopper intermediate (upper
part of Scheme 1c) and provide strong support for a concerted
Alder-ene reaction (lower part of Scheme 1c).
Based on the observed stereochemical outcome and the

deuterium-labeling experiments, a possible mechanism for the
reaction is proposed in Scheme 5. The strong electrophilic

activation of the alkyne in the ynamide moiety by coordination
to copper would trigger the cyclization process in which the
allenic double bond acts as the “ene” and generates a new
carbon−carbon bond with the enophile (activated ynamide)
with synchronous allenic H atom migration. The coordination
of copper to the polarized ynamide triple bond (Int-3 and Int-
4) is essential for lowering the activation barrier of the ene-
type cycloisomerization to give 2,5-dihydropyrrole 4. Although
a rhodium-directed metallacycle pathway was proposed in
Brummond’s work8 and a pathway via external allene attack on
an alkyne-metal complex (metal = Au, Ag) was suggested in
the work by Malacria, Fensterbank, and Aubert,9b,d the likely
pathway for the nanocopper-catalyzed carbocyclization of 3 to
4 described in the present work involves a concerted Alder-ene
reaction. Afterward, 4 can undergo further isomerization to
afford pyrrole 5. The formation of the (Z)-exocyclic double
bond of 4 together with the outcome of the deuterium
experiments to give d6-4a is in accordance with a concerted
Alder-ene reaction proceeding via π-acid catalysis.21

In conclusion, we have reported an efficient nanocopper-
catalyzed Alder-ene reaction of allenynamide for the chemo-
divergent synthesis of 2,5-dihydropyrroles and pyrroles in
which nanocopper particles are immobilized on microcrystal-
line cellulose (Cu-AmP-MCC). Experimental data support a
concerted Alder-ene reaction. The comparative studies of
various catalysts showcased the good catalytic performance of
Cu-AmP-MCC, with an efficiency similar or superior to other
homogeneous metal catalysts. The Cu-AmP-MCC displayed
excellent recyclability that enabled it to be used at least six
times without any significant loss in activity. Further studies on
the mechanism of this reaction as well as the use of the
heterogeneous Cu-AmP-MCC catalyst for other ynamide
transformations are currently underway in our laboratory
along with studies on other Cu-catalyzed transformations that
would benefit from the heterogeneous nature of this catalyst.
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