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Cardiomyocyte glucagon receptor signaling
modulates outcomes in mice with experimental
myocardial infarction
Safina Ali 1,2,7, John R. Ussher 2,7, Laurie L. Baggio 2, M. Golam Kabir 2, Maureen J. Charron 5,
Olga Ilkayeva 3,4, Christopher B. Newgard 3,4, Daniel J. Drucker 1,2,6,*
ABSTRACT

Objective: Glucagon is a hormone with metabolic actions that maintains normoglycemia during the fasting state. Strategies enabling either
inhibition or activation of glucagon receptor (Gcgr) signaling are being explored for the treatment of diabetes or obesity. However, the cardio-
vascular consequences of manipulating glucagon action are poorly understood.
Methods: We assessed infarct size and the following outcomes following left anterior descending (LAD) coronary artery ligation; cardiac gene
and protein expression, acylcarnitine profiles, and cardiomyocyte survival in normoglycemic non-obese wildtype mice, and in newly generated
mice with selective inactivation of the cardiomyocyte Gcgr. Complementary experiments analyzed Gcgr signaling and cell survival in car-
diomyocyte cultures and cell lines, in the presence or absence of exogenous glucagon.
Results: Exogenous glucagon administration directly impaired recovery of ventricular pressure in ischemic mouse hearts ex vivo, and increased
mortality from myocardial infarction after LAD coronary artery ligation in mice in a p38 MAPK-dependent manner. In contrast, cardiomyocyte-
specific reduction of glucagon action in adult GcgrCM�/� mice significantly improved survival, and reduced hypertrophy and infarct size
following myocardial infarction. Metabolic profiling of hearts from GcgrCM�/� mice revealed a marked reduction in long chain acylcarnitines in
both aerobic and ischemic hearts, and following high fat feeding, consistent with an essential role for Gcgr signaling in the control of cardiac fatty
acid utilization.
Conclusions: Activation or reduction of cardiac Gcgr signaling in the ischemic heart produces substantial cardiac phenotypes, findings with
implications for therapeutic strategies designed to augment or inhibit Gcgr signaling for the treatment of metabolic disorders.

� 2014 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. INTRODUCTION

Glucagon is a 29 amino acid peptide hormone secreted from
pancreatic islet a-cells that plays a critical role in maintenance of
euglycemia, predominantly by increasing hepatic glucose output.
Activation of glucagon receptor (Gcgr) signaling promotes glycogen-
olysis and enhanced gluconeogenesis, and regulates pathways con-
trolling hepatic lipid oxidation and lipid secretion. Although the actions
of glucagon are classically viewed as essential for prevention of hy-
poglycemia in the face of limited nutrient availability or excess insulin
action [1], Gcgr signaling also controls cell survival pathways, as ge-
netic interruption of Gcgr signaling increases the susceptibility to he-
patic injury [2].
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A single Gcgr is expressed not only in liver, but in extrahepatic tissues
including the central and peripheral nervous system, pancreatic islets,
adipose tissue, kidney, blood vessels and heart [3,4]. In the pancreas,
glucagon potentiates glucose-dependent insulin secretion, whereas
activation of Gcgr signaling in the brain regulates hepatic glucose
production, control of appetite and body weight [5]. Glucagon actions in
adipose tissue and kidney are less understood, but have been linked to
control of fatty acid and glucose metabolism.
Although glucagon levels normally decrease during a meal, glucagon
secretion is inappropriately increased in many subjects with type 2
diabetes (T2D) [1,6]. Over the last several decades, experimental
studies attenuating glucagon action using glucagon immunoneutral-
izing antisera, Gcgr antagonists, antisense Gcgr oligonucleotides and
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Gcgr�/� mice have demonstrated amelioration of hyperglycemia in
experimental models of diabetes [1,7]. Collectively, these findings have
raised enthusiasm for glucagon antagonism as a potential therapeutic
strategy for T2D. Indeed, GCGR antagonists and antisense oligonu-
cleotides targeting hepatic GCGR expression robustly lower glucose in
clinical trials of human subjects with T2D. However, mechanism-based
toxicities noted in preclinical studies, including dyslipidemia, and
transaminase elevations [2,8], have also been reported in clinical
studies. Hence, the risk:benefit proposition for partial attenuation of
GCGR signaling in diabetic humans requires further evaluation.
Complementary efforts are exploring whether partial enhancement
of glucagon action, together with agonism of the glucagon-like
peptide-1 receptor (GLP-1R), may be useful for the treatment of
diabetes and/or obesity [9,10]. Oxyntomodulin, a naturally occurring
proglucagon-derived peptide, contains the 29 amino acid sequence
of glucagon plus a carboxyterminal extension and exerts potent
glucoregulatory and anorectic actions in rodents and humans
through activation of the GLP-1 and glucagon receptors [11,12].
More recent studies have demonstrated that simultaneous activa-
tion of the glucagon and GLP-1 receptors using synthetic balanced
co-agonists produces potent glucoregulatory activity and greater
weight loss than observed with GLP-1R agonists alone [13]. Hence
there is also considerable interest in understanding the metabolic
consequences and therapeutic potential arising from partial selec-
tive activation of GCGR signaling.
The increasing interest in development of drugs that reduce or activate
GCGR signaling for the treatment of metabolic disorders such as
diabetes and obesity raises important questions about the cardiovas-
cular actions and safety of such agents. Current understanding of
glucagon action in the heart is limited, and activation of Gcgr signaling
in this organ has been reported to be either beneficial or harmful,
depending on the experimental or clinical context [14e17]. We have
now examined the consequences of manipulating Gcgr signaling in the
non-diabetic ischemic mouse heart. Our findings reveal that exoge-
nous glucagon impairs survival following ligation of the left anterior
descending (LAD) coronary artery, actions requiring p38 MAP kinase.
In contrast, GcgrCM�/� mice with cardiac-specific inactivation of the
Gcgr display a cardioprotective phenotype, associated with reduced
accumulation of incompletely oxidized fatty acid metabolites in the
heart. These findings have implications for pharmaceutical efforts
directed at manipulating GCGR signaling for the treatment of human
disease.

2. METHODS

2.1. Mice and reagents
Inducible aMHCCre (stock 005657) [18] and FLPe (stock 005703)
transgenic mice in the C57BL/6 background were obtained from the
Jackson Laboratory. GcgrCM�/� mice were generated by crossing
aMHCCre mice with GcgrFlox mice [19] in the C57BL/6 background.
LAD coronary artery ligation was used to induce myocardial infarction
(MI) in 12e14-week-old male mice as described in Ref. [20]. All mice
were housed (5 per cage) under a light/dark cycle of 12 h in the
Toronto Centre for Phenogenomics (TCP) animal facility, with free
access to food and water except where noted. All procedures were
conducted according to protocols and guidelines approved by the TCP
Animal Care Committee. Genotypes were determined through anal-
ysis of genomic DNA prepared from tail snips. Tamoxifen (Sigma
Aldrich, 50 mg/kg) dissolved in corn oil was administered for 5
consecutive days to 6- or 7-week-old male aMHCCre or GcgrCM�/�

mice to induce Cre expression. Before any cardiac assessment or
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procedure, all mice were allowed 6 weeks to recover after the last
tamoxifen injection, as Cre expression in the heart often induces a
transient cardiomyopathy that dissipates 5 weeks after tamoxifen-
induced Cre expression [21]. Glucagon (Sigma) 30 ng/g body
weight or saline in 10% gelatin was administered to C57BL/6 mice as
described in Ref. [8], 3 injections daily, with or without 2 injections
daily of 1 mmol/g body weight SB203580 (p38 MAPK inhibitor,
Sigma) for 7 days. Blood pressure and heart rates were measured
using a telemetry system (DSI technology) as described in Ref. [22].
The rat Gcgr adenovirus (AdGcgr) has been described previously in
Ref. [2].

2.2. Ischemia/reperfusion
Global no-flow ischemia in Langendorff-perfused hearts was induced
as described in Ref. [23]. Hearts underwent a 30 min aerobic perfusion
with Krebs-Henseleit buffer, followed by a 30 min global no-flow
ischemia, and either a 50 or 60 min reperfusion period during which
left ventricular developed pressure (LVDP) was recorded (Biopac
Systems Canada Inc.). In a separate set of hearts 1 mg/mL glucagon
was administered 20 min prior to ischemia.

2.3. Myocardium metabolic profiling
Mass spectrometry-based metabolic profiling was performed to
determine myocardial levels of acylcarnitines and organic acids [24].
Triacylglycerol (TAG) was extracted from frozen myocardial tissue
(w20 mg) with a 2:1 chloroform-methanol solution and quantified with
a commercially available enzymatic assay kit (Wako Pure Chemical
Industry) as described in Ref. [25].

2.4. Heart histology
Animals were anesthetized using avertin (250 mg/kg body weight ip
injection). The chest cavity was opened to expose the heart and 1 M
KCl was injected into the apex to arrest the heart in diastole. The heart
was perfusion-fixed with 4% buffered formalin at physiological pres-
sure, post-fixed in formalin, embedded in paraffin, and sectioned at
6 mm, and stained with Masson’s Trichrome or processed for Terminal
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). TUNEL
staining was performed using the ApopTag peroxidase kit for apoptosis
(EMD Millipore). Cardiac morphometry was performed on mid-
ventricular cross-sections using Aperio ImageScope Viewer software
(Aperio Technologies). The infarcted area was calculated as a % of
total LV area. Cardiac hypertrophy was quantified as the heart weight-
to-body weight ratio.

2.5. Glucose tolerance
12e14-week-old male mice were fasted overnight (16e18 h), and
glucose (1.5 mg/g body weight) was administered orally (through a
gavage tube) or via injection into the peritoneal cavity (intraperitoneal
glucose tolerance test). Blood samples were drawn from the tail vein at
0, 15, 30, 60, 90, and 120 min post-glucose administration, and blood
glucose and insulin levels were measured as described in Ref. [26].

2.6. Western blotting
Hearts were collected from fasted mice (5 h) 30 min following ischemia
or sham surgery, washed in Krebs buffer containing 11 mM glucose
and frozen. Frozen hearts were powdered and homogenized in buffer
containing 50 mM Tris HCl, pH 8, 1 mM EDTA, 10% glycerol, 0.02%
Brij-35. Western blotting was carried out as described in Refs. [27,28]
and blots were visualized using an enhanced chemiluminescence
Western blot detection kit (Perkin Elmer) and quantified with Care-
stream Molecular Imaging Software (Kodak).
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2.7. RNA analyses
RNA was isolated from cardiac extracts using TRI reagent (Sigma).
First-strand cDNA was synthesized from total RNA using the Super-
Script III reverse transcriptase synthesis system (Invitrogen). Real-time
polymerase chain reaction was performed with the ABI Prism 7900
Sequence Detection System using TaqMan Gene Expression Assays
and TaqMan Universal PCR Master Mix (Applied Biosystems). Relative
levels of mRNA transcripts were quantified using the 2-DCt method
and normalized to levels of peptidyl-prolyl isomerase A (Ppia-cyclo-
philin) RNA.

2.8. Cell culture
Atrial cardiomyocytes were isolated as described in Ref. [22]. HL-1
atrial cardiac myocytes were provided by Dr. William Claycomb
(Louisiana State University, New Orleans), and cultured in Claycomb
Media (SigmaeAldrich) with 10% FBS, 1% penicillin/streptomycin,
0.1 mM norepinephrine, and 2 mM L-glutamine. Cells were seeded
onto 6-well plates (BD Falcon) coated with 0.02% gelatin/0.5%
fibronectin. Confluent cells were serum-starved and supplemented
with Claycomb Media without FBS and norepinephrine prior to infection
with Adb-Gal or AdGcgr at 10� multiplicity of infection. 24 h following
infection, cells were treated with either PBS or glucagon for 3 h in
supplemented Claycomb Media without FBS and norepinephrine.
Cellular injury was induced by H2O2 [29].

2.9. Statistical analysis
Results are presented as mean � SEM. Statistical significance was
determined using 1- or 2-way analysis of variance with Bonferroni post
hoc tests (as appropriate) using GraphPad Prism 4.0 (GraphPad Soft-
ware Inc). Statistical significance was noted when p < 0.05.

3. RESULTS

3.1. Glucagon impairs outcomes during experimental MI in a p38
MAPK-dependent manner
As recent studies of the related Glp1r revealed issues with receptor
localization and surprising chamber-specific receptor expression
[22,30,31], we first assessed Gcgr expression in the mouse heart
using both regular PCR and primers corresponding to the full length
open reading frame, as well as quantitative real-time PCR
(Supplementary Figure 1A,B). Consistent with a previous report in Ref.
[32], Gcgr expression was most abundant in RNA from the right atria
but easily detectible in RNA from both right and left ventricle. In
contrast, Glp1r expression was restricted to the atria as previously
described in Refs. [22,32]. The expression of the Gipr was much less
atrial-biased, relative to the Glp1r, whereas Glp2r mRNA transcripts
were not detected in the mouse heart (Supplementary Figure 1A,B).
To determine the effects of glucagon treatment on cardiovascular
outcomes during MI, we treated mice with glucagon (3� daily, via
subcutaneous injection, 30 ng/g body weight) prior to and following
LAD coronary artery ligation (Figure 1A). No significant changes in
random glycemia or body weight were observed with glucagon in-
jections (Supplementary Figure 1C,D), however, glucagon signifi-
cantly reduced survival following MI and was associated with a
significant increase in TUNEL-positive apoptotic cardiac myocytes
(48 h post-MI), although no effect on adverse LV remodeling or infarct
scar formation was observed (Figure 1BeD). These negative car-
diovascular outcomes required p38 MAPK; glucagon increased p38
MAPK phosphorylation in both the aerobic and ischemic heart
(Figure 1E), and co-treatment with SB203580 (p38 MAPK inhibitor)
prevented the glucagon-mediated reduction in MI survival
134 MOLECULAR METABOLISM 4 (2015) 132e143 � 2014 The Authors. Published by
(Figure 1B), as well as the increase in TUNEL-positive cardiac myo-
cytes (Figure 1D).

3.2. Glucagon activates PPARa in a p38 MAPK-dependent manner
in cardiac myocytes, and increases cardiac myocyte apoptosis
in vitro
As glucagon increases hepatocyte PPARa activity in a p38 MAPK-
dependent manner [8], we examined whether similar regulation oc-
curs in the heart. Treatment of HL-1 atrial cardiac myocytes (which do
not express the endogenous Gcgr) with an adenovirus encoding the rat
Gcgr (AdGcgr) followed by treatment with glucagon (20 nM) for
24 h increased the expression of PPARa target genes (Figure 2A). In
contrast, no such changes were observed in HL-1 cells treated with a
control adenovirus (Adb-Gal, Supplementary Figure 1E). Furthermore,
glucagon (20 nM for 24 h) increased luciferase activity directed by a
PPARa response element in AdGcgr-infected HL-1 cells (Figure 2B),
but not in Adb-Gal-infected HL-1 cells (Supplementary Figure 1F).
Furthermore, SB203580 abolished the glucagon-mediated increase in
PPARa luciferase activity in AdGcgr-infected HL-1 cells, illustrating the
dependency on p38 MAPK activity (Figure 2C). We also observed an
increase in nuclear PPARa translocation in both glucagon-treated adult
cardiac myocytes (Figure 2D) and AdGcgr infected HL-1 cells
(Figure 2E), which was abolished by pre-treatment with SB203580
(Figure 2E).
We next determined whether pyruvate dehydrogenase (PDH, the rate-
limiting enzyme of glucose oxidation) activity was altered in hearts and
HL-1 cells treated with glucagon. Glucagon increased PDH phos-
phorylation (indicative of reduced PDH activity) in both the aerobic/
ischemic heart (Figure 2F), and in HL-1 cells infected with AdGcgr
(Figure 2G), but not in cells infected with Adb-Gal (Supplementary
Figure 1G). Glucagon also increased hydrogen peroxide (H2O2)-
induced caspase-3 cleavage, an effect negated via pretreatment with
the PDH kinase inhibitor, dichloroacetate (DCA) (Figure 2H). Pre-
treatment with DCA also reduced expression of the pro-apoptotic
protein, Bax, but had no effect on expression of the anti-apoptotic
protein, Bcl-2, in AdGcgr-infected HL-1 cells treated with H2O2 and
glucagon (Supplementary Figure 2).

3.3. Glucagon regulates acylcarnitine profiles in the heart
Although myocardial ischemia reduces fatty acid oxidation rates due to
the reduction in oxygen supply, we observed a robust increase in long
chain acylcarnitines in ischemic hearts 24-h post-glucagon and
30 min post-MI (Figure 3). The most likely interpretation of this profile
is that glucagon triggered an increase in b-oxidation, but that flux
through the TCA cycle, electron transport chain, and oxidative phos-
phorylation was limited by ischemia, resulting in accumulation of
incompletely oxidized fats. Interestingly, Krebs cycle intermediates
were not altered in glucagon-treated hearts (Supplementary Figure 3),
suggesting that the increase in fatty acid oxidation may have provided
acetyl CoA for the Krebs cycle to offset the apparent decrease in PDH
activity.

3.4. Cardiomyocyte-specific deletion of the Gcgr produces a
cardioprotective phenotype in response to ischemic injury
As increased glucagon action produces negative effects on the
ischemic heart, we hypothesized that reducing glucagon action should
protect against ischemic injury. Mice with global germline deletion of
the Gcgr exhibit mild hypoglycemia, and increased levels of
proglucagon-derived peptides, Fgf-21 and bile acids [26,33e35],
complicating interpretation and mechanistic attribution of cardiac
phenotypes arising from whole body loss of the Gcgr. Indeed,
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Figure 1: Glucagon impairs survival after MI in a p38 MAPK-dependent manner. (A) Schematic of overall study design. Mice were injected with vehicle/glucagon/SB203580 for 7
days starting 1 day prior to LAD coronary artery ligation and sacrificed 15 days later. (B) Survival following LAD coronary artery ligation in C57BL/6 mice treated with saline or
glucagon (30 ng/g) with or without co-administration of the p38 MAPK inhibitor (SB203580 1 mmol/kg) for 1 week. *p < 0.05 saline vs. glucagon. Data are mean � S.E.M (LAD
n ¼ 13e15 per treatment). (C) Infarct size assessed in mice described in (B) at day 15. Data are mean � S.E.M (LAD n ¼ 5e6 per treatment). (D) C57BL/6 mice treated with
saline or glucagon (30 ng/g) with or without co-administration of the p38 MAPK inhibitor (SB203580 1 mmol/kg; SB) were subjected to LAD coronary artery ligation for 48 h to
assess TUNEL positive cardiac myocytes. *p < 0.05 saline vs. glucagon. Data are mean � S.E.M (LAD n ¼ 7e8 mice per treatment). (E) p38 MAPK phosphorylation in C57BL/6
mice treated with saline or glucagon (30 ng/g) with or without SB203580 (1 mmol/kg) 48 h post-LAD coronary artery ligation or sham surgery. *p < 0.05 saline vs. glucagon group.
Data are mean � S.E.M (n ¼ 3e5).
secondary increases in GLP-1 and Fgf-21 in Gcgr�/� mice may exert
independent cardioprotective actions [36,37]. Accordingly, we gener-
ated a tamoxifen-inducible cardiomyocyte-specific Gcgr knock out
mouse (GcgrCM�/�; Supplementary Figure 4A). Treatment with
tamoxifen (50 mg/kg IP) for 5 consecutive days decreased cardiac Gcgr
mRNA expression by w85% without affecting Gcgr mRNA expression
in the liver and kidney (Supplementary Figure 4BeD). GcgrCM�/� mice
MOLECULAR METABOLISM 4 (2015) 132e143 � 2014 The Authors. Published by Elsevier GmbH. This is an open access article u
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appeared phenotypically normal, exhibiting normal weight gain and
similar glucose tolerance relative to a myosin heavy chain-Cre
(aMHCCre) littermate controls (Supplementary Figure 5). Following
LAD coronary artery ligation, GcgrCM�/� mice exhibited a marked in-
crease in survival, reduced cardiac hypertrophy, and substantially less
adverse LV remodeling (Figure 4). A significant reduction in mRNA
levels of (a) key PPARa target genes and (b) mRNA transcripts
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encoding regulators of lipid metabolism was detected in GcgrCM�/�

aerobic hearts, with similar trends detected in ischemic hearts
(Figure 5A). PPARa protein expression was also reduced in sham/
aerobic but not in ischemic GcgrCM�/� hearts; ischemia alone reduced
cardiac PPARa protein expression (Figure 5B). In contrast, levels of Akt
and GSK3b phosphorylation were unaltered in ischemic hearts from
136 MOLECULAR METABOLISM 4 (2015) 132e143 � 2014 The Authors. Published by
GcgrCM�/� mice, but Akt phosphorylation was increased in aerobic/
sham hearts from GcgrCM�/� mice (Figure 5B). Furthermore, PDH
phosphorylation showed a trend towards reduction in both sham/
aerobic and ischemic hearts from GcgrCM�/� mice (Figure 5B),
consistent with a role for glucagon action in the control of cardiac PDH
activity and glucose oxidation.
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3.5. Acylcarnitine profiling suggests reduced myocardial fatty acid
oxidation in GcgrCM�/� mice
We observed a significant reduction in several long chain acylcar-
nitine species in sham/aerobic hearts from GcgrCM�/� mice
(Figure 6A), suggesting that eliminating glucagon action in heart
reduces substrate burden on the fatty acid oxidation pathway.
Consistent with the likelihood that this metabolic effect was specific
to fatty acid oxidation and not an overall decrease in oxidative
metabolism, we observed a decrease in medium chain acylcarnitines
in sham/aerobic hearts from GcgrCM�/� mice, whereas myocardial
C2 (acetylcarnitine) levels were similar between GcgrCM�/� and
aMHCCre mice (Figure 6B). In addition, TAG content and the majority
of Krebs cycle intermediates were similar in GcgrCM�/� and aMHCCre

sham/aerobic hearts (Figure 6CeI). Similar results were observed in
GcgrCM�/� and aMHCCre ischemic hearts 30 min post-MI, with the
exception of an increase in myocardial TAG content in GcgrCM�/�

hearts (Figure 6JeR). Ischemia itself reduces fatty acid oxidation and
results in the mobilization of myocardial TAG stores (w2.2 vs.
1.1 mmol/g wet weight in aMHCCre aerobic and ischemic hearts,
respectively), but the additional reduction in fatty acid oxidation in
GcgrCM�/� ischemic hearts likely explains their increase in
myocardial TAG content relative to ischemic hearts from their
aMHCCre littermates. Comparable results were observed in the hearts
of GcgrCM�/� and aMHCCre mice fed a high fat diet for 6 months, with
the majority of long chain acylcarnitines trending lower in GcgrCM�/�

hearts (Supplementary Figure 6).

3.6. Glucagon attenuates recovery of left ventricular developed
pressure during ischemia/reperfusion injury
We next determined whether reduced or enhanced cardiac Gcgr
signaling modulates outcomes in response to ex vivo ischemia/
reperfusion (I/R) injury. Isolated hearts from Gcgr�/� mice exhibited
enhanced recovery of LV developed pressure (LVDP) following I/R
injury, whereas glucagon treatment impaired recovery of LVDP in
isolated hearts from WT mice (Figure 7AeF).
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3.7. Glucagon fails to increase mortality or impair LV remodeling in
ischemic GcgrCM�/� mice
To determine whether the glucagon-induced increase in mortality and
adverse LV remodeling following MI (Figure 1) was due to direct
activation of the cardiac glucagon receptor, we treated GcgrCM�/�

mice and their aMHCCre littermates with glucagon (30 ng/g body
weight; 3� daily, via subcutaneous injection) prior to and following
LAD coronary artery ligation. Although glucagon increased mortality
and infarct size in aMHCCre control mice, it had no effect on these
parameters in GcgrCM�/� mice (Figure 7G,H). Hence the deleterious
effects of glucagon on the cardiac response to ischemic injury are not
indirect and require a functional cardiomyocyte Gcgr.

4. DISCUSSION

Our findings demonstrate that exogenous glucagon administration has
negative actions on the ischemic heart, whereas reduction in cardiac
glucagon action in GcgrCM�/� mice results in marked cardioprotection.
In both situations, changes in fatty acid oxidation correlate with cardiac
outcomes, as multiple long-chain acylcarnitines are increased by
glucagon in the ischemic heart, whereas GcgrCM�/� mice have
reduced levels of these metabolites under ischemic conditions. Taken
together these findings strongly and independently support the
importance of both pharmacological and physiological Gcgr signaling
in the cardiac response to ischemic injury.
Previous studies have provided conflicting data on the role of glucagon
on the myocardium. Treatment with glucagon worsened the recovery
of cardiac power in the isolated working rat heart during global no-flow
ischemia/reperfusion [16] and cardiomyopathy developed in a patient
with a glucagonoma that was completely reversed upon tumor
resection [38]. In contrast, glucagon improved LV minute work and
contractility in dogs with acute MI [39]. Furthermore, glucagon
administration to 6 patients with AMI produced positive inotropic ef-
fects and temporarily improved cardiogenic shock [40], whereas
glucagon increased cardiac performance and reduced LV failure
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without altering myocardial oxygen consumption in dogs subjected to
MI [41]. Although heart rate and systolic blood pressure trended lower
in non-ischemic GcgrCM�/� mice (data not shown), these differences
were not statistically significant perhaps due to the small number of
138 MOLECULAR METABOLISM 4 (2015) 132e143 � 2014 The Authors. Published by
animals analyzed. Our results support the contention that pharmaco-
logical glucagon agonism is deleterious to the ischemic heart, as
glucagon significantly enhanced mortality following MI, whereas
GcgrCM�/� mice exhibited a cardioprotective phenotype following LAD
coronary artery ligation-induced myocardial injury. Thus, reduction of
glucagon receptor signaling in the heart should be explored as a novel
approach for the attenuation of ischemic myocardial injury. However,
whether cardiac GCGR signaling can be safely, selectively and effec-
tively targeted pharmacologically in humans without incurring addi-
tional systemic liabilities is currently unknown.
Although the mechanism(s) via which glucagon receptor signaling
modulates cardiovascular outcomes following MI remain incompletely
identified, changes in myocardial fatty acid oxidation appear to be
implicated. Acylcarnitine profiling indicated that glucagon caused
accumulation of incompletely oxidized lipids in the heart, as has also
been seen in experimental models of heart failure [42]. In skeletal
muscle, accumulation of acylcarnitines has been described in obesity
and type 2 diabetes. Relief of acylcarnitine accumulation by reducing
entry of fatty acids into the mitochondria relieves substrate overload
and enhances insulin action [24] and conversely, increasing acyl CoA/
acylcarnitine accumulation by transgenic knockout of carnitine acyl
transferase (CrAT) impairs insulin sensitivity [43]. Here, we observed
increased acylcarnitines in response to glucagon administration in the
ischemic heart, consistent with activation of the early, but not later
phases of fatty acid oxidation, whereas heart-specific deletion of Gcgr
appeared to reduce substrate pressure on the fatty acid oxidation
pathway. Consistent with the metabolic profile, glucagon treatment of
cardiac myocytes increased PPARa activity, a known activator of the
b-oxidative machinery, whereas PPARa downstream target gene
mRNA expression was reduced in hearts from GcgrCM�/� mice.
PPARa is a key regulator of fatty acid oxidation in the heart [44,45] and
cardiac-specific PPARa overexpression (a) worsens the recovery of
cardiac function during ex vivo I/R injury in the isolated working heart
[46] and (b) induces a diabetic-like cardiomyopathy [45]. Furthermore,
genetic elimination of PPARa in dominant-negative NADPH oxidase
transgenic mice reversed their increased infarct size and cardiac
myocyte apoptosis in response to in vivo I/R injury [47] and elimination
of PPARa in cardiac-specific aryl hydrocarbon nuclear translocator
deficient mice reversed their associated cardiomyopathy and lip-
otoxicity [48]. Likewise, PPARa deficient mice are protected against
both ex vivo I/R injury and streptozotocin-induced diabetic cardiomy-
opathy [46,49]. In contrast, treatment with the PPARa agonist,
GW7647, reduced infarct size in CD1 mice following temporary oc-
clusion of the LAD coronary artery [50], whereas the PPARa agonist,
fenofibrate, improved recovery following ex vivo I/R injury in hearts
from mice with diet-induced obesity [51]. While direct PPARa agonism
increases fatty acid oxidation, chronic peripheral PPARa agonism
actually increases hepatic fatty acid oxidation rates, which decreases
circulating lipids without changes in cardiac PPARa activity [51].
Acknowledging the ongoing controversy regarding PPARa agonism,
fatty acid oxidation and ventricular function, our findings with glucagon
are consistent with a negative role for Gcgr-dependent PPARa activity
in the ischemic heart.
Consistent with previous studies of glucagon action in the liver [8] we
demonstrated that glucagon activates PPARa in the heart in a p38
MAPK dependent manner. However, p38 MAPK has also been
demonstrated to increase cardiac injury through mechanisms inde-
pendent of changes in fatty acid oxidation, such as an increase in
intracellular acidosis which decreases the efficiency of contractile
function [52], or via interaction with TAK1-binding protein 1 to enhance
cardiac myocyte apoptosis [53]. Thus, other mechanisms may also
Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Figure 5: Selective loss of Gcgr signaling in cardiomyocytes leads to reduced expression of genes and proteins regulating fatty acid metabolism. (A) Quantification of mRNA
transcript levels from sham/aerobic and ischemic hearts (30 min post-LAD coronary artery ligation) from 12-week-old aMHCCre and GcgrCM�/� mice fasted for 5 h (n ¼ 4).
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contribute to our observed phenotypes via activation of p38 MAPK
activity.
Our current studies have several important limitations. First, the ma-
jority of our experiments were performed in relatively young, healthy,
non-diabetic, non-obese mice. Perturbations of the normal metabolic
environment may greatly influence myocardial energy uptake, patterns
of fuel utilization, and potentially, cardiovascular outcomes. Moreover,
the role(s) of and pathways activated by enhanced or disrupted cardiac
Gcgr signaling in the ischemic myocardium of older mice with
established cardiovascular disease may be different. Furthermore, it
cannot be assumed that gain and loss of Gcgr signaling in the normal,
diabetic, or obese human heart will produce similar deleterious or
beneficial outcomes. Notably, we have not ascertained whether the
acute negative actions of glucagon on the mouse heart reflect
achievement of a critical Cmax or total exposure to glucagon. More-
over, whether sustained exposure to glucagon would result in partial
desensitization of the cardiac Gcgr signaling pathway has not been
examined. Of potential relevance to future studies of the Gcgr and
MOLECULAR METABOLISM 4 (2015) 132e143 � 2014 The Authors. Published by Elsevier GmbH. This is an open access article u
www.molecularmetabolism.com
related cyclic AMP-linked cardiac receptors, a recent report described
cardioprotective actions of secreted cyclic AMP metabolized to aden-
osine, which differs substantially from the classical cardiotoxic effects
of intracellular cyclic AMP [54]. Hence understanding the effects of
glucagon and GLP-1 on intracellular vs. secreted cyclic AMP in the
heart may be important. Finally, our experiments focused on the
consequences of ischemic cardiac injury, and the importance of Gcgr
signaling in experimental models of heart failure under normoglycemic
and diabetic conditions requires further elucidation.
There is currently great interest in the therapeutic potential of
glucagon/GLP-1 co-agonists and glucagon-containing tri-agonists for
the treatment of obesity and/or diabetes [7,10,55]. Our findings
demonstrate that pure unopposed acute glucagon agonism has
negative effects on the myocardium during ischemic injury, whereas
cardiomyocyte-specific elimination of glucagon receptor activity results
in robust cardioprotection against MI-induced mortality and adverse LV
remodeling. Nevertheless, we did not assess a full range of glucagon
doses in our gain of function studies, hence it may be possible to
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administer glucagon at doses that prevent hypoglycemia (type 1 dia-
betes), or achieve some degree of weight loss (diabetes and/or
obesity), without cardiotoxicity. Whether the combination of glucagon
with GLP-1 agonism in the same molecule or as a mixture of two
different agonists, will similarly mitigate the potential adverse conse-
quences of unopposed Gcgr activation on the ischemic diabetic heart is
MOLECULAR METABOLISM 4 (2015) 132e143 � 2014 The Authors. Published by Elsevier GmbH. This is an open access article u
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an important question [13]. Indeed, observations using the isolated rat
perfused heart model suggest that glucagon alone compromised the
energetic state of ischemic hearts, whereas a glucagon-GLP-1 dual
agonist exerted preferential actions on cardiac energetics without
increasing levels of cyclic AMP accumulation, thereby mitigating the
adverse effects of glucagon [56]. Furthermore, it cannot be assumed
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that administration of GCGR antagonists to diabetic subjects, at doses
resulting in partial attenuation of GCGR signaling in multiple tissues,
will produce a cardiovascular phenotype that mirrors or overlaps our
findings in non-diabetic mice with marked selective genetic reduction
of Gcgr signaling in cardiomyocytes.
Similar questions surround the doseeresponse relationships for the
cardiovascular actions of glucagon in subjects with type 1 diabetes and
pre-existing coronary artery disease. Indeed, the investigational use of
combined glucagon-insulin delivery systems for the optimized treat-
ment of type 1 diabetes [57] emphasizes the need to explore the safety
of a range of glucagon concentrations in humans at risk for cardio-
vascular events. Our data highlights the importance of understanding
the cardiovascular actions of novel peptide therapies being evaluated
for the treatment of patients with metabolic disorders associated with a
substantial concomitant risk of developing ischemic heart disease.
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