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Apoptosis, a form of the programmed cell death, is an indispensable defense mechanism
regulating cellular homeostasis and is triggered by multiple stimuli. Because of the
regulation of apoptosis in cellular homeostasis, viral proteins with apoptotic activity are
particular foci of on antitumor therapy. One representative viral protein is the open reading
frame 3 (ORF3) protein, also named as apoptin in the Circoviridae chicken anemia virus
(CAV), and has the ability to induce tumor-specific apoptosis. Proteins encoded by ORF3
in other circovirus species, such as porcine circovirus (PCV) and duck circovirus (DuCV),
have also been reported to induce apoptosis, with subtle differences in apoptotic activity
based on cell types. This article is aimed at reviewing the latest research advancements in
understanding ORF3 protein-mediated apoptosis mechanisms of Circoviridae from three
perspectives: subcellular localization, interactions with host proteins, and participation in
multiple apoptotic signaling pathways, providing a scientific basis for circovirus
pathogenesis and a reference on its potential anticancer function.
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INTRODUCTION

The Circoviridae family, whose members are considered to cause fatal diseases in birds and pigs, is
composed of two recognized genera: Circovirus and Cyclovirus (Rosario et al., 2017). Chicken
anemia virus (CAV), the only bird virus member of the Cyclovirus family, leads to atrophy of bone
marrow hematopoietic tissue and lymphatic tissues in young chickens (Taniguchi et al., 1983). The
Circovirus genus contains pathogenic viruses of vertebrates, such as beak and feather disease virus
(BFDV), goose circovirus (GoCV), duck circovirus (DuCV) (Hattermann et al., 2003), and porcine
circovirus (PCV) (Ha et al., 2020). The presence of Circovirus in invertebrates has also been reported
(Wang et al., 2018). Infections with any of these viruses can potentially cause fatal diseases (Todd,
2000; Soike et al., 2004; Todd, 2004; Raidal et al., 2015; Palinski et al., 2016; Dennis et al., 2018;
Klaumann et al., 2018; Fatoba and Adeleke, 2019), which are characterized by damage to lymphoid
tissues and immunosuppression (Todd, 2000).

The members of the Circoviridae family are small, nonenveloped viruses with circular single-
stranded DNA genomes. The length of genome is approximately 2000 bp, and it contains two
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major open-reading frames (ORFs)—ORF1 and ORF2,
encoding Cap and Rep proteins, respectively. Cap is the sole
structural protein of the virus and has a highly conserved basic
amino acid sequence, indicating that Cap contains the major
antigenic determinant (Nawagitgul et al., 2000; Hattermann
et al., 2003). Rep is mainly associated with rolling circle
replication (RCR) (Hamel et al., 1998; Luo et al., 2018).
Adjacent to two Cap and Rep, the origin of replication with a
stem loop structure is located in the intergenic region (Faurez
et al., 2009). Especially for PCV, a Rep’ protein can be generated
by alternative transcript splicing of ORF1, and the Rep-Rep’
complex is required for promoting virus replication by RCR
system (Steinfeldt et al., 2002). In addition to the Rep and Cap,
ORF3 of Circovirus encodes a protein that can participate in cell
death during viral infection. In PCV, the ORF3 protein plays an
important role in the pathogenesis of the virus due to its
apoptotic activity in vitro and in vivo, although it is not
essential for virus replication (Liu et al., 2005; Liu et al., 2006;
Lin et al., 2011). In other kinds of Circoviruses, such as DuCV,
the ORF3 protein is thought to induce apoptosis as well (Xiang
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
et al., 2012). In Cyclovirus, reports have implicated that ORF3
encodes a nonstructural protein and participates in the
induction of apoptosis and viral cytotoxicity in host cells
(Kucharski et al., 2016) (Figure 1A).

Apoptosis causes a non-lytic and typically immunologically
silent form of cell death (Jorgensen et al., 2017). The extrinsic
pathway and intrinsic pathway in host cells, also known as the
death receptor pathway and mitochondrial pathway,
respectively, are regarded as the two classic apoptotic ways to
initiate cell death, as both culminate in the activation of the
effector caspases 3 (Elmore, 2007; Jorgensen et al., 2017).
Activation of the intrinsic pathway causes mitochondrial
outer-membrane permeabilization (MOMP) (Green and
Kroemer, 2004; Kroemer et al., 2007) and the release of
mitochondrial contents to the cytoplasm (Dewson and Kluck,
2009; Zheng et al., 2016), where cytochrome C forms an
apoptosome (Cain et al., 2002; Jiang and Wang, 2004; Taylor
et al., 2008; Jorgensen et al., 2017). In the extrinsic pathway,
apoptosis is triggered by the binding of a specific ligand and its
cognate death receptor, featured with the activation of caspase 8
A

B

D

C

FIGURE 1 | Schematic diagram of the CAV, PCV and DuCV gene structures. (A) The relative localizations of three major ORF proteins in CAV, PCV, and DuCV differ
from each other. In particular, the ORF3 proteins of PCV and DuCV are oriented in the direction opposite that of Rep gene, in contrast to the ORF3 protein in CAV.
(B) The ORF3 protein structures between DuCV1 and DuCV2 differ. The DuCV2 ORF3 (99 aa) is 20 aa longer than that of DuCV 1, in which an NLS has been
identified. (C) The ORF3 structures between PCV1 and PCV2 differ. The length of the ORF3 is 315 bp in PCV2, while in PCV1, it is approximately 612 bp. The NES
has been identified in the N-terminus of PCV2 ORF3 protein at residues 1–35, and a bipartite NLS was found at residues 53–68 and 85–104. (D) The primary
structures of the CAV ORF3 protein (Los et al., 2009). The following main domains are shown in color: leucine-rich region (blue), phosphorylation site (red), bipartite
nuclear localization sequences (green), and nuclear export sequence (yellow).
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and caspase 3, which ultimately causes cellular DNA cleavage
(Tummers and Green, 2017). Moreover, an endoplasmic
reticulum (ER) pathway can elicit cell apoptosis (Kaufman,
2002) by regulating the concentration of Ca2+ and activating
the inositol-requiring enzyme 1 (IRE1), protein kinase-like
endoplasmic reticulum kinase (PERK), and activating
transcription factor (ATF) pathways, which are connected to
the mitochondrial pathway (Verma and Datta, 2012). Upon
activation of the different intermediate molecules in a signaling
cascade, each of these pathways comes across at the same
terminal caspase activation step and generally leads to cleavage
of various proteins (Ghobrial et al., 2005). The viral ORF3
protein is considered to possess potential apoptotic activity
because it interacts with proteins in these apoptosis pathways
to induce cell death.
THE STRUCTURE OF THE ORF3
PROTEINS IN THE CIRCOVIRIDAE FAMILY

In different viruses, such as PCV, DuCV, and CAV, ORF2 is
commonly located on the sense strand, and ORF1 and ORF3 are
located on the antisense direction. Specifically, for PCV and
DuCV, ORF3 is oriented in the opposite direction of ORF2,
which is different from CAV (Figure 1A). In PCV2, the ORF3
protein was first described as nonstructural (Liu et al., 2005).
Moreover, the length of ORF3 is 315 bp in PCV2 and
approximately 612 bp in PCV1, which means that the ORF3
protein in PCV2 is truncated (Figure 1C). In contrast, the CAV
ORF3 protein, specifically termed as apoptin, is a compact
polypeptide consisting of 121 amino acids (Leliveld et al.,
2004). In addition, the amino acid identity of ORF3 in PCV1
and PCV2 is only about 61.5% (Finsterbusch and Mankertz,
2009). The results of sequence comparison analyses revealed that
DuCV can be divided into two genotypes: DuCV1 and DuCV2
(Wang et al., 2011; Zhang et al., 2013; Wen et al., 2014) (Figure
1B), and within the same genotype, the ORF3 homology reaches
95.8%–100%. Due to a T/A difference at nucleotide 236 in
DuCV1, ORF3 protein (78 aa) is truncated by a premature
stop codon. In other words, similar to PCV1 and PCV2, ORF3
protein of DuCV1 is 20 aa shorter at C-terminus than that of
DuCV2 (Wu et al., 2018).

Notably, the ORF3 protein of CAV has a short hydrophobic
leucine-rich sequence (LRS) at the N-terminus (aa 33-46)
mediating self-association and binding of promyelocytic
leukemia (PML) protein (Heilman et al., 2006; Janssen et al.,
2007) and multiple other cellular partners (Figure 1D). Upon
their formation, PML nuclear bodies (PML NBs) recruit the
anaphase-promoting complex/cyclosome (APC/C) to these
subnuclear structures (Heilman et al., 2006), which takes
part in the process of apoptosis. In addition, through the
interaction of the proline-rich hydrophobic regions in the N-
terminus (aa 1-69), this ORF3 protein forms globular
complexes composed of 30-40 monomers (Leliveld et al.,
2003a; Leliveld et al., 2003b), which may play important roles
in apoptosis regulation.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
THE NUCLEAR LOCALIZATION SIGNALS
OF ORF3 PROTEINS

Nuclear localization signals (NLSs) contribute to the
understanding of protein subcellular localization. NLSs are
classified as either monopartite, characterized by a cluster of
basic residues, or bipartite, characterized by two clusters of basic
residues separated by several other residues (Canela-Pérez
et al., 2019).

A bipartite NLS in CAV ORF3 is composed of NLS1 (aa 82-
88) and NLS2 (aa 111-121) (Figure 1D). Due to the recognition
of the NLS by members of the importin (IMP) family, the ORF3
protein undergoes active nuclear import. Therefore, in both
normal and transformed cells, the ORF3 protein can shuttle in
and out of the cell nucleus owing to its NLS and central nuclear
export signal (NES) at residues 97-105 (Wang et al., 2004; Poon
et al., 2005; Heilman et al., 2006). Moreover, the NLS activity of
the CAV ORF3 protein was also found to be regulated by
intramolecular masking (Wagstaff and Jans, 2006). For PCV1,
an LRS at residues 42-49 and a strong probability of an NES at
residues 134-149 in ORF3 were predicted (Hough et al., 2015)
(Figure 1C). Interestingly, compared with the sequence of CAV
ORF3, the sequence alignment of PCV1 showed an additional
NES sequence overlapping a region just upstream of the
predicted area for the C-terminal NES (residues 127-136)
(Hough et al., 2015). For PCV2, the NLS was confirmed to be
in two halves of the C-terminal region at residues 53–68 and 85–
104 (Lin et al., 2011). In the N-terminal of the ORF3, an NES
motif is located at residues 1–35 (Gu et al., 2016). Furthermore, a
variant monopartite type of NLS has been identified at the C-
terminal 77–91 residues in the DuCV 2 ORF3, which is essential
for its nuclear localization (Wu et al., 2018) (Figure 1B).
THE REGULATION OF ORF3-INDUCED
APOPTOSIS

In the genome of Circoviridae family members, ORF3s have been
recognized as encoding functional proteins connected to
apoptosis (Liu et al., 2005; Liu et al., 2006; Karuppannan et al.,
2009; Karuppannan and Kwang, 2011; Lin et al., 2011; Xiang
et al., 2012; Kucharski et al., 2016). It appears that the subcellular
localization of ORF3 proteins and their interactions with specific
signaling proteins play crucial roles in selective toxicity prior to
the induction of apoptosis.

The Contribution of ORF3 Subcellular
Localization to Apoptosis
The subcellular localization of ORF3 proteins is closely related to
their NLSs. For instance, in a majority of tumor and transformed
cells, CAV ORF3 proteins primarily accumulate in the nucleus
(Danen-Van Oorschot et al., 1997; Noteborn, 2009). In addition,
the nuclear accumulation of ORF3 proteins in PCV2 and DuCV2
has been confirmed (Lin et al., 2011). Nevertheless, the DuCV1
protein without an NLS is dispersed in the cytoplasm (Wu
et al., 2018).
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The CAV NES and NLS, residues 74–121 in the C-terminus
constitute tumor cell-specific nuclear targeting signals (Danen-
Van Oorschot et al., 2003; Kuusisto et al., 2008). Thus, the ORF3
protein has selective toxicity that induces apoptosis in various
transformed cells by gathering in the nucleus, whereas in normal
cells, the apoptotic activity of the ORF3 protein disappears
because of nuclear accumulation impairment (Danen-Van
Oorschot et al., 1997; Poon et al., 2005; Helck et al., 2008;
Zhao et al., 2013). There are reports of CAV ORF3 protein
toxicity towards SV40-transformed fibroblasts and UV-
irradiated cells from individuals with hereditary cancer-prone
syndromes as well (Danen-Van Oorschot et al., 1997; Zhang
et al., 1999; Guelen et al., 2004). Only one report indicates it’s
toxicity towards some non-cancerous cells, such as 1BR3 normal
human diploid fibroblasts and the early passage secondary
culture of normal human embryonal lung fibroblasts 6689,
which has no further research about it’s mechanism. And most
studies show that apoptosis induction by ORF3 proteins is
confined to a broad panel of human tumor cells (Backendorf
et al., 2008). Therefore, this study focuses mainly on the different
mechanisms of CAV ORF3 protein in cancer cells and in normal
cells. In addition, the nuclear localization of the PCV2 ORF3 is
correlated with a triggered apoptotic response in porcine
peripheral blood mononuclear cells (PBMCs) (Lin et al., 2011).
Although the cytoplasmic localization of the PCV1 ORF3 protein
does not differ in primary and transformed cells, the ability of
ORF3 protein to induce apoptosis selectively relies on the
transformation status of the cell (Hough et al., 2015). Similar
to ORF3 proteins of CAV and PCV, DuCV ORF3 protein has
also been proven to have apoptotic activity (Xiang et al., 2012),
implying that it may play a vital role in the pathogenesis of
DuCV (Wu et al., 2018). A study showed that the nuclear
localization of the DuCV2 ORF3 protein enhanced its
apoptotic activity, compared with that of DuCV1, whose ORF3
protein is dispersed in the cytoplasm (Wu et al., 2018). And the
analysis of the apoptotic activities of ORF3 proteins in DuCV1
and DuCV2 suggested that the 20 C-terminal residues in the
DuCV2 ORF3 self-inhibit the virus-induced apoptotic activity
(Wu et al., 2018); however, the mechanism of this inhibition is
unclear. In addition, there is a precise difference in the
pathogenesis of these two genotypes.

Exploring the tumor cell-specific nuclear signal of the CAV
ORF3 protein, evidence from other studies suggests that the
ORF3 protein is phosphorylated robustly in a broad panel of
tumor cells but negligibly in normal cells (Rohn et al., 2002).
Tumor - spec ifi c phosphory l a t i on depends on the
phosphorylation site threonine 108 (Thr108), which allows its
interaction with other proteins and modification by kinases.
Because Thr108 phosphorylation inhibits the activity
chromosome region maintenance 1 (CRM1), the ORF3 protein
with the NES motif, which depends on a functional CRM1,
cannot be driven out of the nucleus in tumor cells (Poon et al.,
2005) (Figure 2). Although the adjacent threonine (Thr107) was
also found to serve as a compensatory phosphorylation site in the
event of Thr108 de-phosphorylation, the activity of the ORF3
protein is diminished (Rohn et al., 2005; Lanz et al., 2012).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Further investigation confirmed that the DNA damage
response (DDR) regulates the nuclear localization and
apoptotic effect of CAV ORF3 through checkpoint kinase1/2
(Chk1/2), which is mediated by the phosphorylation of Thr56
and Thr61 during viral replication (Kucharski et al., 2016; Feng
et al., 2020). Upon induction of DNA damage, the ORF3 protein
expressed in primary cells is translocated to the nucleus, but in
transformed cells, the inhibition of DDR signaling results in the
cytoplasmic localization of the protein (Kucharski et al., 2011).
To date, the specific molecular mechanisms by which the ORF3
protein moves between subcellular localizations and mediates
apoptosis remain to be determined.

Proteins Interacting With ORF3
Since DuCV cannot be isolated and cultured in vitro, researchers
have focused more on CAV and PCV; hence the mechanisms of
DuCV, particularly the ORF3 protein, remain unclear. The
identification of ORF3-associating proteins will guide us to a
greater understanding of the mechanism of ORF proteins in
apoptosis induction.

CAV
Recently, a number of cellular proteins have been found to interact
with the CAV ORF3 protein, including PI3-K (Maddika et al.,
2007), PKCb1 (Jiang et al., 2010; Bullenkamp et al., 2015), CDK1
(Maddika et al., 2009; Zhao et al., 2013), Nmi (Sun et al., 2002),
DEDAF (Danen-van Oorschot et al., 2004), APC/C (Teodoro
et al., 2004), Hippi (Cheng et al., 2003), Ppil3 (Huo et al., 2008),
FADD (Guelen et al., 2004), Bcl10 (Guelen et al., 2004), Hsp70,
and Hsc (Chen et al., 2011; Yuan et al., 2013). Among these
proteins, PI3-K, Nmi, Hippi, Ppil3, FADD, Bcl10, and Hsp70,
were confirmed to interact with the ORF3 protein in the
cytoplasm. In the nucleus, the ORF3 protein interactions with
DEDAF, PML, and APC were identified (Table 1).

It was identified that CAV ORF3 protein interacts with the
p85 Src homology 3 (SH3) domain of phosphatidylinositol 3-
kinase (PI3-K) in tumor cells (Maddika et al., 2007). The
initiation of the PI3-K/Akt pathway triggers the nuclear
translocation and activation of Akt, which results in the
induction of cyclin-dependent kinase 2 (CDK2), which in turn
leads to the phosphorylation of the ORF3 protein (Maddika
et al., 2008; Maddika et al., 2009) (Figure 3). PKCb in tumor cells
has also been proven to play a crucial role in the phosphorylation
and nuclear migration of the CAV ORF3 protein, which induces
the activation of multiple signaling events involving caspase 9,
caspase 3 activation, and cleavage of PKCd (Jiang et al., 2010).
APC1 is a subunit of the anaphase-promoting complex/
cyclosome (APC/C) (Teodoro et al., 2004), which is a major
regulator of cell cycle function. Upon ORF3 protein shuttling
into the nucleus, APC1 is inhibited, resulting in APC/C
disruption, and then, the cell undergoes apoptosis following
arrest in the G2/M phase of the cell cycle (Teodoro et al., 2004).

A report provides evidence that the association of ORF3 protein
with Ppil3 or Hippi may lead to ORF3 protein sequestration in the
cytoplasm and prevent the apoptosis of normal cells (Los et al.,
2009). Hippi is a protein that interacts with huntingtin-interacting
February 2021 | Volume 10 | Article 609071
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protein 1 (Hip1) (Cheng et al., 2003), and the Hip-1-Hippi complex
has been shown to induce apoptosis through the recruitment and
activation of the cysteine protease caspase 8 (Gervais et al., 2002). It
has also been shown that both in vitro and in human cells, Hippi
can bind with the self-multimerization domain of the ORF3
protein, and the ORF3 protein binds to the C-terminal half of
Hippi, including its death effector domain-like motif (Cheng et al.,
2003). Moreover, in tumor cells, the ORF3 protein and Hippi are
primarily located separately in the nucleus and cytoplasm,
respectively, whereas in normal cells, they can co-localize in the
cytoplasm (Cheng et al., 2003). These features support the theory
that, in normal cells, the co-expression of the ORF3 protein and
Hippi may suppress the apoptotic activity of the ORF3 protein
(Majumder et al., 2006).

PCV
In a study on the modulation of cellular functions by the PCV2,
the ORF3 protein was found to interact directly with the E3
ubiquitin ligase pPirh2 (also known as RCHY1) (Liu et al., 2007),
which targets p53, a tumor suppressor and a transcription factor
(Hong et al., 2014) (Table 1). The interaction suppresses pPirh2
stabilization and causes a decrease in degradation of p53, leading
to increased accumulation of p53, which eventually induces a
caspase signaling cascade that leads to apoptosis via the intrinsic
pathway (Leng et al., 2003) (Figure 4). It was proven that the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
amino acid residues 20–65 in the ORF3 protein play a crucial role
in the interaction of the ORF3 protein with pPirh2, which is
competitive over p53 (Karuppannan et al., 2010).

Previously, specific interactions of PCV2 ORF3 with regulator
of G protein signaling 16 (RGS16) and DDE-like transposase, the
sequence of which is very similar to that of Tn10 transposase
sequence, have been reported (Timmusk et al., 2006; Timmusk
et al., 2009) (Table 1). RGSs, a protein family that modifies
signaling via G protein-coupled receptors (GPCRs), have a
conserved domain of approximately 120 amino acids, which
binds to the activated Ga subunit of G-proteins and thereby
terminates G-protein signaling (Jean-Baptiste et al., 2006; Xie
and Palmer, 2007). More evidence suggests that the direct
interaction between PCV2 ORF3 and RGS16 within the
cytoplasm leads to the ubiquitin-mediated proteasomal
degradation of RGS16, further enhancing NF-kB translocation
into the nucleus through the ERK1/2 signaling pathway and
increasing the number of IL-6 and IL-8 mRNA transcripts (Choi
et al., 2015). However, there is no additional information about
the interaction of the DDE-like transposase ORF3 protein.

Currently, studies have indicated that the number of proteins
associated with pPirh2 and p53 is greater than 20 and 320,
respectively (Jung et al., 2012), which means that the process of
ORF3-induced apoptosis may be much more complicated (Pan
et al., 2018). Accordingly, future studies may consider whether
FIGURE 2 | A simulation model of the CAV ORF3 protein associated with various binding partners and its different effects on signal transduction pathways. The
ORF3 protein can associate with importin b1, which facilitates its translocation from the cytoplasm to the nucleus. In tumor cells, the ORF3 protein phosphorylated
by Kinase, interacts with a subunit of APC/C called APC1 and directly interacts with PML to induce the formation of PML nuclear bodies. The NES of the ORF3
protein is functional in a CRM1-dependent fashion in normal but not in tumor cells, which indicates that in tumor cells, the ORF3 protein is unable to be driven out of
the nucleus with the NES out of function when CRM1 inhibited. This hypothetical model may not apply to non-tumor cells in 1BR3 normal human diploid fibroblasts
and the early passage secondary culture of normal human embryonal lung fibroblasts 6689 (Guelen et al., 2004).
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other factors are involved in regulating apoptosis through their
interactions with ORF3 and should determine exactly the roles
that the proteins play.

Pathways of ORF3-Mediated Apoptosis
The precise mechanisms of cell death mediated by the ORF3
protein from the Circoviridae family are not clear, although there
is a consensus regarding some of the specific molecular events
(Table 1).

In contrast to PCV and DuCV, the CAV ORF3 protein has
the unique ability to induce tumor-specific cell apoptosis
independent of p53 (Zhuang et al., 1995). It is now well
established that ORF3 protein expression in CAV results in the
activation of caspases (Danen-van Oorschot et al., 2000).
Moreover, the mitochondrial pathway is activated by the ORF3
protein through a Nurr77-dependent pathway (Maddika et al.,
2005) (Figure 3). What’s particularly interesting is that Nur77,
which is shuttled from the nucleus to the cytoplasm upon the
transient expression of ORF3 protein, is able to transmit
apoptotic signals from the nucleus to mitochondria (Maddika
et al., 2005). Upon transfer to the cytoplasm, Nur77 may directly
or indirectly cause cytochrome C and AIF release and activate
the mitochondrial apoptosis pathway (Los et al., 2009).
Moreover, the data indicates that Apaf-1 is required for ORF3-
mediated apoptosis (Burek et al., 2006). Taken together, these
studies suggest that the ORF3 protein ultimately induces
apoptosis modulated by Bcl2 family members through the loss
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
of mitochondrial membrane potential and the cleavage of
caspase 3 and caspase 7 (Maddika et al., 2005; Chaabane
et al., 2014).

As opposed to the G2/M arrest observed with the CAV ORF3
protein, PCV1 ORF3 induces dramatic G1 cell cycle arrest
(Hough et al., 2015). In contrast to that of PCV2, the ORF3
protein of PCV1 appears to be more cytotoxic by activating a
caspase-dependent apoptotic pathway, and potentially initiates a
caspase-independent poly ADP-ribose polymerase (PARP)
cleavage pathway (Chaiyakul et al., 2010). But the precise
apoptotic signaling networks have yet to be discovered.
Reports have indicated that the PCV2 ORF3 protein induces
apoptosis via the death receptor pathway, ultimately by
activating both caspase 3 and caspase 8 (Liu et al., 2005)
(Figure 4), and the apoptotic response is correlated with its
nuclear localization (Kiupel et al., 2005). However, in melanoma
cells and mouse primary splenocytes, it showed to induce
apoptosis in a completely different manner—a p53-dependent
pathway, which is independent of caspase 3 and caspase 8 (Teras
et al., 2018).

To date, studies have successfully expressed the ORF3 protein
of DuCV in DF-1, CHO, and Sf9 cells (Xiang et al., 2012; Wu
et al., 2018), which suggests a cellular tendency of ORF3 by
performing as a different expression in cell lines. The expression
levels of caspase 3 and caspase 8 mRNA are up-regulated after
the transfection of ORF3 protein, indicating that the DuCV
ORF3 protein may induce apoptosis through the death receptor
TABLE 1 | Molecules that interact with CAV and PCV ORF3 proteins.

Viruses Cellular
localization

Interacting
molecules

Biological effects References

CAV Nucleus PML The disruption of the interaction between the PML and ORF3 proteins does not affect their
cytotoxicities

(Heilman et al., 2006)

CDK1 and
CDK2

Induce ORF3 Thr108 phosphorylation; regulate ORF3 subcellular localization (Maddika et al., 2009;
Zhao et al., 2013)

PKC b Make ORF3 phosphorylated (Jiang et al., 2010;
Bullenkamp et al., 2015)

APC1 Induces cell cycle arrest in mitosis (Teodoro et al., 2004)
DEDAF Increases apoptosis (Danen-van Oorschot

et al., 2004)
Cytoplasm Nmi May alter the activity of Nmi (Sun et al., 2002)

Importin b1 Facilitates ORF3 nuclear translocation (Poon et al., 2005;
Kuusisto et al., 2008)

PI3K Activates PI3K and Akt; facilitates Akt nuclear translocation (Maddika et al., 2007;
Maddika et al., 2008)

Hippi Co-localizes with ORF3 protein in the cytoplasm of non-cancerous cells, whereas in tumor cells, the
ORF3 protein migrates to the nucleus and Hippi remains in the cytoplasm

(Cheng et al., 2003)

Ppil3 Facilitates cytoplasmic localization of ORF3 (Huo et al., 2008)
FADD Co-localizes in so-called death effector filaments (Guelen et al., 2004)
Bcl10 Co-localizes to cytoplasmic filaments; regulates apoptosis and NF-kB activation (Guelen et al., 2004)
Hsp70 Inhibit the Hsp70 expression and reduce its transcription (Chen et al., 2011; Yuan

et al., 2013)
Hsc70 Affects ORF3-induced Akt phosphorylation (Chen et al., 2011)

PCV Cytoplasm pPirh2 Leads to the accumulation of p53 and induction of a caspase cascade to apoptosis in the intrinsic
pathway of apoptosis

(Leng et al., 2003; Liu
et al., 2007)

RGS16 Causes ubiquitin-mediated proteasomal degradation of RGS16 and increases NF-kB translocation
into the nucleus through the ERK1/2 signaling pathway; induces an increase in IL-6 and IL-8 mRNA
transcripts

(Timmusk et al., 2009;
Choi et al., 2015)

/ DDE-like
transposase

No more information is available. (Timmusk et al., 2006)
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pathway, similar to PCV2 ORF3. However, the specific
mechanism of the signaling pathway remains to be
further determined.
APOPTOTIC EFFECTS OF THE
INTERACTIONS BETWEEN ORF3 AND
OTHER VIRAL PROTEINS

The co-localization and association of the CAV ORF3 and ORF2
protens have been observed. It was revealed that the ORF2
protein directly interacts with the ORF3 protein in the nucleus
to downregulate apoptosis by altering the phosphorylation status
of the latter, but not completely abolish it (Lai et al., 2017). In the
meantime, the de-phosphorylation of ORF3 protein at Thr108
via this interaction seems to participate in modulating the CAV
infection process (Lai et al., 2017). There is doubt about whether
other phosphorylation sites on the ORF3 protein are similarly
regulated by ORF2 or if there are more undiscovered sites.

For PCV2, a newly identified putative protein ORF4 was
shown to inhibit apoptosis by suppressing the activation of
ORF3, as indicated by significant decreases in caspase 3 and
caspase 8 (Gao et al., 2014) (Figure 4). It was confirmed that the
ORF4 protein interacts with ferritin heavy chain(FHC), the
only one subunit of ferritin that has ferroxidase activity,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
resulting in a reduction in FHC content, and ultimately
suppresses apoptosis by inhibiting the production of ROS (Lv
et al., 2015). On the other hand, the ORF4 protein can induce
apoptosis via the mitochondrial pathway by interacting with
adenine nucleotide translocase 3 (ANT3) (Lin et al., 2018). As
stated above, the ORF4 protein has a dual function in the
induction of apoptosis, one of which is its association with
ORF3 to suppress apoptosis.
CONCLUSIONS AND PERSPECTIVES

The main histological changes associated with infections by
Circoviridae family viruses are lymphoid tissues, which show
with lymphocyte depletion and necrosis (Woods and Latimer,
2000; Palinski et al., 2016; Dennis et al., 2018; Klaumann et al.,
2018) that may be connected to the apoptotic activity of ORF3
proteins. The more studies on ORF3 proteins that are executed,
the more evidence confirming its significant role in the
pathogenicity of viruses is revealed. Regarding molecular
structures, the findings of NLSs in CAV (Rohn et al., 2002),
PCV (Lin et al., 2011; Hough et al., 2015), and DuCV (Wu et al.,
2018) ORF3 proteins suggest the possibility of these proteins
being located in the nucleus. The characterization of the NLSs
and NESs of the ORF3 proteins (Wang et al., 2004; Poon et al.,
FIGURE 3 | Assumption of the CAV ORF3 protein-induced apoptosis of tumor cells (Los et al., 2009). Through association with PI3-K, the ORF3 protein can lead to
constitutive activation of PI3-K and the subsequent phosphorylation of Akt. The nuclear translocation of Akt activates CDK2 by direct and indirect phosphorylation,
which subsequently phosphorylates the ORF3 protein at Thr108. Then, the ORF3 protein is forced to accumulate in the nucleus. In the cytoplasm, the ORF3 protein
can interact with various proteins, including Nmi, Hippi, Ppil3, FADD, Bcl10, and Hsp70. In the nucleus, the ORF3 protein associates with other types of interaction
partners, such as DEDAF, PML and APC. In addition, the ORF3 protein can trigger Nurr77 phosphorylation and then make its nuclear export. Nurr77 in the
cytoplasm is known to regulate the Bcl-2 family such that apoptosis is induced via the mitochondrial pathway.
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2005; Hough et al., 2015; Gu et al., 2016) has begun to shed light
on the subcellular localization of ORF3 proteins, which
contributes to their different apoptotic activities. Particularly
for the CAV ORF3 protein, phosphorylation sites (Rohn et al.,
2002; Rohn et al., 2005; Lanz et al., 2012; Kucharski et al., 2016;
Feng et al., 2020), such as Thr108, Thr107, Thr56, and Thr61, are
considered to be of vital importance to its nuclear localization
and apoptotic effect, whereas it has not yet been discovered in the
ORF3 proteins of PCV and DuCV. On the other hand, the CAV
ORF3 protein, in particular, has a tumor cell-specific nuclear
targeting signal (Danen-Van Oorschot et al., 2003; Kuusisto
et al., 2008), which indicates tumor-selective toxicity induced
upon its accumulation in the nuclei of transformed cells (Danen-
Van Oorschot et al., 1997; Poon et al., 2005; Helck et al., 2008;
Zhao et al., 2013). However, whether the ORF3 protein of PCV
or DuCV has tumor-selective cytotoxicity remains to be
discovered. Hence, these findings suggest that more attention is
needed on the aspects highlighted herein to elucidate the
mechanisms of the ORF3 proteins.

For the aspect of inducing apoptosis pathways, the PCV2
ORF3 protein activates both caspase 3 and caspase 8 through the
death receptor pathway (Liu et al., 2005), which may also be
triggered by the DuCV ORF3. The p53-dependent pathway,
which is independent of caspase 3 and caspase 8, is considered
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
to be another different manner activated by the PCV2 ORF3
protein. The CAV ORF3 protein is distinct in its ability to induce
the selective killing of transformed cells independent of p53
(Zhuang et al., 1995; Noteborn, 2004). More than one-half of
human cancers are not responsive to many chemotherapeutics
owing to mutations in p53 (Leroy et al., 2014). Therefore, the
study on the CAV ORF3 protein provides a unique system for
identifying apoptosis pathways (Maddika et al., 2006) that can
kill cancer cells selectively independent of p53. Currently, many
studies on the CAV ORF3 protein aim to deliver the protein as a
potentially safe cancer chemotherapy drug (Ruiz-Martıńez et al.,
2017; Castro et al., 2018; Wyatt et al., 2019). Clearly, continued
studies of pathways related to cell death have obvious therapeutic
value (Hough et al., 2015), although the induction activities of
the PCV and DuCV ORF3 proteins are weaker than the activity
of the CAV ORF3 protein.

In conclusion, although the specific mechanisms of these
ORF3 proteins differ in CAV, PCV, and DuCV of the
Circoviridae family, they are certainly accompanied by the
induction of apoptosis (Guelen et al., 2004; Liu et al., 2005;
Xiang et al., 2012), which may provide a theoretical foundation
to explain their pathogenesis. Based on a wide array of reported
works on the CAV, PCV and DuCV ORF3 proteins, this review
offers the first glimpse into the ORF3-induced apoptosis by
Circoviridae viruses, which involves specific structures,
subcellular localizations and apoptosis pathways of the
ORF3 protein, and suggests that further investigations into
these apoptosis mechanisms be researched. As stated above,
further study will help us obtain a deeper understanding of the
molecular mechanisms of ORF3-induced apoptosis and provide
a new perspective on the pathogenesis of viruses in the
Circoviridae family.
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FIGURE 4 | A simulation model describes the mechanisms of PCV2 ORF3-
induced apoptosis (Pan et al., 2018). On the one hand, the PCV2 ORF3
protein induces apoptosis through the death receptor pathway via the
activation of caspase 8 and caspase 3. On the other hand, the interaction of
the ORF3 protein and pPirh2 causes the accumulation of p53 and then
upregulates factors downstream of p53 to induce apoptosis. The ORF4
protein inhibits apoptosis by suppressing the activation of ORF3. And by
interacting with FHC, which has been suggested to prevent cells from
undergoing apoptosis induced by a variety of stimuli, it can ultimately
suppress apoptosis by inhibiting the production of ROS.
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