
RESEARCH ARTICLE

Antennal transcriptome analysis of

chemosensory genes in the cowpea beetle,

Callosobruchus maculatus (F.)

Keisuke Tanaka1☯, Kenji ShimomuraID
2☯*, Akito Hosoi3, Yui Sato3, Yukari Oikawa3,

Yuma Seino2, Takuto Kuribara2, Shunsuke Yajima1,3, Motohiro Tomizawa2

1 NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan,

2 Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku,

Tokyo, Japan, 3 Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan

☯ These authors contributed equally to this work.

* k3shimom@nodai.ac.jp

Abstract

Olfaction, one of the most important sensory systems governing insect behavior, is a possi-

ble target for pest management. Therefore, in this study, we analyzed the antennal tran-

scriptome of the cowpea beetle, Callosobruchus maculatus (F.) (Coleoptera:

Chrysomelidae: Bruchinae), which is a major pest of stored pulses and legumes. The de

novo antennal RNA-seq assembly results identified 17 odorant, 2 gustatory, and 10 ionotro-

pic receptors, 1 sensory neuron membrane protein, and 12 odorant-binding and 7 chemo-

sensory proteins. Moreover, differential gene expression analysis of virgin male and female

antennal samples followed by qRT-PCR revealed 1 upregulated and 4 downregulated odor-

ant receptors in males. We also performed homology searches using the coding sequences

built from previously proposed amino acid sequences derived from genomic data and identi-

fied additional chemosensory-related genes.

Introduction

Insects use olfactory signals in many behavioral contexts, such as locating food, mating, identi-

fying oviposition sites, and escaping predators [1]. To detect olfactory signals, insects have

developed a sensory system consisting of olfactory receptor neurons (ORNs) housed in the hair

sensilla on the antennae and maxillary palps [2]. There are three chemoreceptor gene families

in insects: odorant (OR), gustatory (GR), and ionotropic receptor (IR) families. Insect ORs

contain seven transmembrane domains and have a membrane topology with intracellular N-

termini and extracellular C-termini, opposite to that of G-protein coupled receptors mediating

chemoperception in many vertebrates [3, 4]. GRs have a similar membrane topology to that of

ORs [5], and IRs comprise three transmembrane domains with an extracellular N-terminus

and a cytoplasmic C-terminus [6, 7]. Additionally, other gene families encode proteins that

have crucial roles in olfaction, including odorant-binding proteins (OBPs), chemosensory pro-

teins (CSPs), and sensory neuron membrane proteins (SNMPs) [8, 9]. Insect OBPs and CSPs
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are soluble proteins with an N-terminal signal peptide that is removed during processing and

consist of 130–150 and 100–120 amino acid residues, respectively [10, 11]. Based on the num-

ber of cysteine residues, OBPs are classified into classical OBPs (6 cysteine residues with 3

disulfide bonds) and non-classic OBPs, including plus-C OBPs (8 cysteine residues and a con-

served proline), minus-C OBPs (4–5 conserved cysteine residues lacking C2 and C5 cysteines),

dimer OBPs (12 conserved cysteines), and atypical OBPs (9–10 conserved cysteine residues

and a long C-terminus) [12, 13]. The OBP motif in coleopteran species is conserved (C1-X21-

68-C2-X3-C3-X21-46-C4-X8-28-C5-X8-9-C6, where X represents any amino acid) [14]. In the case

of CSPs, that contain four cysteine residues with a highly conserved pattern (C1-X6-8-C2-X18-

C3-X2-C4) [14]. SNMPs belong to a gene family of human protein CD36, which contains two

transmembrane domains and a large extracellular loop with several cysteines [15–17].

Generally, odorant molecules enter the sensilla through pores [18] and are then transported

through the lymph via OBPs or CSPs to the ORN membrane [19], where they interact with

ORs or IRs, triggering an action potential [20, 21]. The SNMPs also play a role in pheromone

perception [22].

To date, in the applied development of sustainable pest management, functional characteri-

zation of chemosensory-based detection of ligands, such as pheromones and host odors, has

been studied, especially of pests. The order Coleoptera is the largest in the animal kingdom

with approximately 390,000 described species, and it contains economically important agricul-

tural pests [23]. Within this order, Tribolium castaneum (Herbst) was the first species to have

its genome sequenced [24]. To date, an additional two coleopteran species have been

sequenced, namely, Anoplophora glabripennisMotschulsky [25] and Leptinotarsa decemlineata
Say, which was the first example of a chrysomelid beetle [26]. Alternatively, antennal transcrip-

tomic analyses have been performed (e.g. [27–29]). For example, chemosensory gene families

have been identified in various chrysomelid beetles, including Colaphellus bowringi Baly [30],

L. decemlineata [31], Ambrostoma quadriimpressumMotschulsky [32], Phyllotreta striolata
(F.) [33], Pyrrhalta maculicollis (Mots.), P. aenescens Fairmaire [34], and Ophraella communa
LeSage [35]. Moreover, RNA sequences (RNA-seq) of antennal OBPs and CSPs of the south-

ern cowpea beetle, Callosobruchus chinensis L., have also been analyzed [36], indicating that

these analyses are common practice.

The cowpea beetle, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae),

is an important pest of stored legumes, particularly of cowpea, Vigna unguiculata (L.) Walp.,

an important grain legume distributed worldwide [37]. The grain loss during cowpea storage

is estimated to be approximately 100% owing to the perforations in grains after beetle emer-

gence [38], thus decreasing seed quality and yield. Regarding the semiochemical-based com-

munication of C.maculatus, five short-chain fatty acids, including (Z)- and (E)-3-methyl-

2-heptenoic acid, (Z)- and (E)-3-methyl-3-heptenoic acid, and 3-methyleneheptanoic acid,

have been identified as female-produced sex-attractant pheromones [39]. During the mating

process, the species also produces short-range contact sex pheromones, such as 2,6-dimethy-

loctanedioic acid and methyl-branched C27–C35 straight-chain synergistic hydrocarbons, to

elicit courtship behavior and copulation [40]. In addition, the contact sex pheromone analogs,

2-methyloctanedioic acid, 3-methyloctanedioic acid, and nonanedioic acid, produced by the

congeneric species, Callosobruchus rhodesianus (Pic.), also result in copulatory behavior in

male C.maculatus [41]. Female C.maculatus are attracted within a short range to the surface

wax of legume seeds, C15–C32 n-alkanes, and seed volatiles, such as 3-octanone, 3-octanol, lin-

alool oxide, 1-octanol, and nonanal, suggesting that females can locate host legumes for ovipo-

sition [42, 43]. However, the molecular basis of chemical perception, including pheromone

perception, remains unknown; however, transcriptional analyses have been performed follow-

ing the genome assembly of C.maculatus [44–46]. Furthermore, information on annotated
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chemosensory genes is still limited, possibly because previous studies analyzed the transcrip-

tomes of the abdomen, head, and thorax to understand the digestive and reproductive gene

expression profiles of C.maculatus [44, 45]. Therefore, in the present study, we focused on de
novo RNA-seq to analyze the antennal transcriptome of the species and conducted homology

searches to identify chemosensory-related genes for coding sequences (CDSs), which were

derived from the genomic data of C.maculatus but still not annotated. Additionally, we carried

out phylogenetic analyses using the annotated chemosensory genes from genomically analyzed

coleopteran beetle data. Finally, we compared the expressions of differentially expressed genes

(DEGs) in the antennae of virgin C.maculatusmales and females.

Methods

Insect rearing

Laboratory colonies of C.maculatus were used for the study. The insects were reared on Vigna
angularis (Willd.) Ohwi and Ohashi in a plastic container at 28˚C in a dark incubator. The

adults that emerged from the beans were immediately separated by sex, anesthetized on ice,

and had their antennae excised and stored at -80˚C until further use.

RNA extraction, cDNA library construction, and Illumina sequencing

Sixty antennae from virgin male and female C.maculatus were crushed using a BioMasher II

(Nippi Inc., Tokyo, Japan). Thereafter, total RNA was extracted using the ReliaPrep RNA Cell

Miniprep System (Promega Corporation, Madison, WI, USA) following the manufacturer’s

protocol. RNA quality was confirmed based on an RNA Integrity Number >8 using an Agilent

RNA 6000 Nano Kit in an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,

USA). Afterward, a cDNA library was prepared using a TruSeq RNA Library Preparation Kit

v2 (Illumina, San Diego, CA, USA) using 100 ng of total RNA according to the manufacturer’s

protocol. The library was sequenced on the Illumina sequencing platform (Illumina HiSeq

2500), and 100 bp paired-end reads were generated. The read data were deposited in the DDBJ

Sequence Read Archive (DRA011785).

de novo RNA-Seq assembly

Raw reads were adapter-trimmed and quality-filtered using fastp version 0.20.0 [47]. The

trimmed and filtered reads from each sample were assembled de novo using Trinity version

2.8.5 [48] with default parameters. The CDSs were predicted using TransDecoder version 5.3.0

(https://github.com/TransDecoder/TransDecoder/wiki), and those with approximately 98%

similarity were clustered using the cd-hit-est program of CD-HIT version 4.8.1 [49]. The clus-

tered CDS contigs were defined as unigenes in this study. The unigene sequences were evalu-

ated using benchmarking universal single-copy orthologs (BUSCO) analysis version 3.0.2 [50].

In addition, the unigenes were annotated with e-value<1e-5 using the NCBI non-redundant

database and the blastx program [51].

Phylogenetic analyses of the in silico predicted chemosensory system

To narrow down chemosensory-related genes from the unigenes, an insect antennal dataset

was customized from the NCBI protein database using the following keywords: "odorant

receptor," "gustatory receptor," "sensory neuron membrane protein," "ionotropic receptor,"

"odorant-binding protein," and "chemosensory protein." The unigenes were then translated

into amino acid sequences and annotated using the blastp program against the custom dataset

[51]. In addition, a dataset of amino acid sequences obtained from the C.maculatus genome
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(GCA_900659725.1_ASM90065972v1) from the NCBI Genome database (https://www.ncbi.

nlm.nih.gov/genome) was also annotated using the same protocol.

The candidate chemosensory proteins (ORs, GRs, IRs, and SNMPs) were predicted using

the TMHMM server 2.0 (http://www.cbs.dtu.dk/services/TMHMM/). Among them, the heli-

cal domains of ORs and GRs comprising seven helices with topology from inside to outside,

IRs comprising three helices, SNMPs comprising two transmembrane helices with intracellu-

lar N- and C-termini, and eight cysteine residues were localized on the extracellular domain.

The candidate OBPs and CSPs with Sec signal peptides were predicted using the signalP 5.0

server (http://www.cbs.dtu.dk/services/SignalP/).

Amino acid sequences for each protein, consisting of both the candidate protein with trans-

membrane domains or signal peptide and the target protein identified using the BLAST

search, were aligned using MAFFT version 7.214 [52] with default parameters. Moreover,

maximum-likelihood (ML) phylogenetic analysis for the aligned sequence was performed

using IQ-TREE multicore version 1.6.12 with the best-fit model in ModelFinder and 1,000

ultra-fast bootstrap replicates [53]. The ML phylogenetic trees were drawn using CLC Geno-

mics Workbench 20 (Qiagen, Germantown, MD, USA). Amino acid sequences of chemosen-

sory-related proteins from other insects were also obtained to estimate the C.maculatus
candidate proteins. Accordingly, OR sequences of T. castaneum, A. glabripennis, and L. decem-
lineata were obtained from Mitchell et al. [54]. Leptinotarsa decemlineata GR sequences, T.

castaneum, and L. decemlineata IR sequences were obtained from Schoville et al. [26]. Further-

more, SNMP sequences for A. planipennis, A. glabripennis, and D. ponderosae were retrieved

from Andersson et al. [55], and those for T. castaneum were obtained from Dippel et al. [56].

In addition, OBP and CSP sequences for T. castaneum were obtained from Dippel et al. [57],

and OBP and CSP sequences for C. chinensis were retrieved from Zhang et al. [36], and OBP

sequences for L. decemlineatawere obtained from Schoville et al. [26]. OBP and CSP sequences

for A. glabripennis were obtained from Wang et al. [58] and Andersson et al. [55], respectively.

Identification of DEGs

The trimmed and filtered read data were mapped onto the de novo assembled unigenes using

CLC Genomics Workbench 20 with the following parameters: mismatch cost = 2, insertion

cost = 3, deletion cost = 3, length fraction = 0.8, and similarity fraction = 0.8. After statistical

analysis based on a generalized linear model, DEGs with a change more than |2|-fold and false

discovery rate (FDR)-adjusted p-value< 0.05 were selected. Gene ontology (GO) annotation

and enrichment analysis of the DEGs were conducted using Blast2GO Basic version 6.0.3 [59].

qRT-PCR

The total RNA was quantified using a Nanodrop spectrophotometer (Thermo Fisher Scien-

tific, Waltham, MA, USA), and first-strand cDNA was synthesized using a ReverTra Ace

qPCR RT kit (Toyobo, Osaka, Japan) according to the manufacturer’s protocol. Gene-specific

primers (listed in S1 Table) were designed using Primer3.

qRT-PCR reactions were carried out in a StepOnePlus Real-Time PCR System (Applied

Biosystems Inc., Foster City, CA, USA) using THUNDERBIRD Next SYBR qPCR Mix

(Toyobo) with an amplification step (95˚C for 30 s, followed by 45 cycles of 95˚C for 5 s and

60˚C for 30 s), followed by a dissociation step (a cycle of 95˚C for 15 s, 60˚C for 30 s, and 95˚C

for 15 s) for melting curve analysis. The expression levels were calculated using the ΔΔCt

method [60]. The mean Ct value for each gene was calculated using three replicates, and the

glyceraldehyde-3-phosphate dehydrogenase gene was used to normalize gene expression. The
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relative expression levels of each C. maculatus OR (CmacOR) by sex were compared using a

two-tailed Student’s t-test. All statistical analyses were performed in R software.

Results

Sequencing and de novo assembly

The number of raw paired-end reads ranged from 2 × 19,324,335 to 2 × 22,898,011 in each

sample, with approximately 98.9–99.0% reads generated as clean sequence reads. A total of

23,840 contigs were identified as unigenes belonging to eukaryotes, arthropods, and insects

with BUSCO scores of 94.7, 92.7, and 91.8%, respectively. In addition, 20,024 (84.0%) contigs

were functionally annotated using BLAST.

Identification of chemosensory-related genes

Unigene data and datasets of amino acid sequences derived from C.maculatus genomic data

were functionally characterized into six chemosensory-related gene sets using the customized

insect antennal dataset (S2–S7 Tables).

ORs. Transmembrane topology prediction identified 26 genes encoding putative ORs (17

from the antennal transcriptomes and 9 from the genomic analysis; CmacOR), with lengths

ranging from 335 to 479 amino acid residues.

In Coleoptera, phylogenetic analysis revealed that the OR genes were separated into nine

major subfamilies [54]; CmacOR gene numbers were allocated based on these subfamilies. The

ML phylogenetic tree with genomically identified ORs of three coleopteran species revealed

that 20 of 26 CmacORs were clustered around group 2A and followed by group 5A (4) (Fig 1).

Within group 2A, a species-specific cluster comprised CmacOR4–11. Only one gene (Cma-

cOR2) was housed in group 1, and no other genes were detected in the other groups.

We identified a putative OR-coreceptor (Orco) gene, namely CmacOrco, which was clus-

tered with the Orco family with a high level of conservation (84–89% amino acid sequence

identity) across the three beetles (A. glabripennis, L. decemlineata, and T. castaneum). The Cma-

cOrco gene also showed the highest expression level according to the TPM value (S2 Table).

GRs. GR-transmembrane topology prediction revealed 2 GRs predicted from the antennal

transcriptome, and 7 GRs were annotated upon genomic analysis, namely CmacGR1–7, with

intact open reading frames ranging from 330 to 400 amino acid residues. The ML tree con-

structed using genomically identified L. decemlineata GRs revealed one sugar receptor

(CmacGR1) in the cladogram containing LdecGR4–9 [26] (Fig 2). Additionally, four

CmacGRs (CmacGR2a–3b) were clustered with LdecGR10NIC, which was identified as a fruc-

tose receptor. The remaining four CmacGRs derived from the genomic data were separately

clustered in the bitter group [61].

IRs. Transmembrane topology prediction identified 10 IRs from the antennal transcrip-

tome and 21 IRs from the genomic analysis (CmacIRs), ranging from 88 to 927 amino acid res-

idues in length, correspondingly named for their putative T. castaneum and L. decemlineata
homologs. The ML tree of CmacIRs revealed 23 widely conserved antennal IRs and 8 divergent

IRs (Fig 3). Four conserved-receptor-homologs, namely IR8a, IR25a, IR76b, and IR93a,

required as co-receptors with the other IRs [62], were detected in the antennal IRs. We also

identified the antennal IR41a and IR75 groups, which functioned as olfactory detectors of

acids and amines [63–65], and IR40a, which detected humidity [66, 67]. Eight homologs were

identified among the divergent IRs (one from the antennal transcript and seven from the geno-

mic annotations).

SNMPs. Based on transmembrane topology prediction, we identified one SNMP contain-

ing 522 amino acid residues, and the ML tree among coleopteran beetle SNMPs revealed that
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the gene contained an SNMP2 clade, namely CmacSNMP2 (Fig 4). Although coleopteran

SNMPs were categorized into four groups [68], no other SNMPs were detected in this study.

OBPs and CSPs. Using signal peptide prediction and motif analysis, 12 OBP genes from

the antennal transcriptome and 14 OBP genes from the genomic analysis were identified, with

4 OBPs in common, whose sizes ranged from 118 to 361 amino acid residues. The number of

putative OBPs was almost comparable to that in the congeneric species, C. chinensis (21) [36],

correspondingly named for their putative C. chinensis homologs. Moreover, no plus-C, dimer,

Fig 1. Maximum-likelihood phylogenetic tree of putative Callosobruchus maculatus odorant receptors (CmacORs) with insect OR sequences

from Anoplophora glabripennis (Agla), Leptinotarsa decemlineata (Ldec), and Tribolium castaneum (Tcas). Thick nodes are supported by a

bootstrap value>60%. The rate of amino-acid substitutions per site is shown in the scale bar.

https://doi.org/10.1371/journal.pone.0262817.g001
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and atypical OBPs were identified in this study, while 15 classical and 11 minus-C OBPs were

deduced from the 26 predicted CmacOBPs.

The ML tree revealed 14 orthologous pairs between C.maculatus and C. chinensis; among

them, almost all the pairs shared 93–100% identical residues. Although some CchiOBPs lack

N-terminus amino acids, only CmacOBP11 and CchiOBP11 shared 70% identical residues

(Fig 5). Six OBPs were specific to C.maculatus. Some CchiOBPs were grouped in different

clusters from those previously reported; CchiOBP18 was in the classic OBP and CchiOBP17

was in the plus-C clade, possibly due to the different tree construction methods [36].

Fig 2. Maximum-likelihood phylogenetic tree of putative Callosobruchus maculatus gustatory receptors (GRs) with Leptinotarsa decemlineata
(Ldec) GR sequences. Thick nodes are supported by a bootstrap value>60%. The rate of amino-acid substitutions per site is shown at the scale bar.

https://doi.org/10.1371/journal.pone.0262817.g002
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The minus-C CmacOBPs clustered into two subfamilies in the tree; CmacOBP2, Cma-

cOBP4a, 4b, CmacOBP12, CmacOBP14, CmacOBP15, and CmacOBP20 clustered with several

minus-C OBPs from T. castaneum, A. glabripennis, and L. decemlineata, and the remaining

CmacOBP3 clustered with the other subfamily comprising the species-specific lineage expan-

sion of A. glanbripennis and L. decemilineata [54].

The antennal transcriptome and genomic analysis revealed 7 and 6 CSP genes (117–317

amino acids long), respectively, with 3 CSPs in common, and the names were designated

CmacCSP1–6. The phylogenetic ML tree analysis showed three orthologous pairs between C.

maculatus and C. chinensis, sharing 98–99% identical residues, and three CSPs were specific to

C.maculatus (Fig 6).

Fig 3. Maximum-likelihood phylogenetic tree of putative Callosobruchus maculatus ionotropic receptors (IRs) with Leptinotarsa decemlineata
(Ldec) and Tribolium castaneum (Tcas) IR sequences. Thick nodes are supported by a bootstrap value>60%. The rate of amino-acid substitutions per

site is shown in the scale bar.

https://doi.org/10.1371/journal.pone.0262817.g003
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Detection of DEGs and qRT-PCR analyses

Using gene expression analysis of the reads mapped to the de novo assembled unigene

sequences, 231 DEGs were detected between virgin male and female antennae, of which

112 upregulated and 119 downregulated genes were observed based on male antennae (Fig

7A). The GO enrichment analysis indicated that the DEGs were significantly enriched in

four biological processes ("nervous system process," "multicellular organismal process,"

"signaling," and "lipid metabolic process"), five cellular components ("plasma membrane,"

"membrane," "cell periphery," "microbody," and "peroxisome"), and four molecular func-

tions ("oxidoreductase activity," "transmembrane transporter activity," "transporter activ-

ity," and "catalytic activity") (Fig 7B). On the other hand, although the DEGs were

identified in "cutin, suberin, and wax biosynthesis," "tryptophan metabolism," "folate bio-

synthesis," "histidine metabolism," and "one carbon pool by folate" based on 2-fold enrich-

ment in the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis,

these pathways were not significantly enriched. Combining the DEGs with topology predic-

tion, seven CmacORs revealed different expression patterns between sexes; CmacOR13a

was upregulated while six CmacORs (CmacOR3, CmacOR6a, CmacOR6b, CmacOR8b,

CmacOR11, and CmacOR15) were downregulated in male antennae (Fig 7C, S2 Table). To

validate the expression profiles of CmacORs between virgin male and female antennae, we

performed qRT-PCR for the five CmacORs, except for CmacOR6b and CmacOR8b, which

have been suggested to be isoforms, and CmacOrco, which formed heteromeric complexes

with all ORs. The analysis revealed that CmacOR13a was significantly upregulated in male

antennae, whereas CmacOR3, CmacOR6a, CmacOR11, and CmacOR15 were significantly

upregulated in female antennae (Fig 8). However, CmacOrco expression did not differ

between the antennae of males and females.

Fig 4. Maximum-likelihood phylogenetic tree of putative Callosobruchus maculatus sensory neuron membrane protein (SNMP) with insect

SNMP sequences, Dendroctonus ponderosae (Dpon), Agrilus planipennis (Apla), Anoplophora glabripennis (Agla), Tribolium castaneum (Tcas),

and Drosophila melanogaster (Dmel). The tree was rooted with the croquemort (Crq) protein lineage, a member of the CD36 family that is non-

SNMP. Thick nodes are supported by a bootstrap value>60%. The rate of amino-acid substitutions per site is shown in the scale bar.

https://doi.org/10.1371/journal.pone.0262817.g004
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Discussion

Recent RNA-seq (transcriptome) analyses, especially of non-model organisms, have revealed

continuous progress in high-throughput sequencing technology [69–71]. Therefore, in the

present study, we used next-generation sequencing to analyze the antennal transcriptome of a

non-model bean beetle, C.maculatus, and accessorily annotated predicted genes from its

genomic data.

Fig 5. Maximum-likelihood phylogenetic tree of putative Callosobruchus maculatus odorant-binding proteins (OBPs) with insect OBP sequences

from Anoplophora glabripennis (Agla), Leptinotarsa decemlineata (Ldec), Tribolium castaneum (Tcas), and Callosobruchus chinensis (Cchi).

Thick nodes are supported by a bootstrap value>60%. The rate of amino-acid substitutions per site is shown in the scale bar. The four CmacOBPs

suffixed with asterisks were a perfect match between the antennal transcriptome and genomic analyses.

https://doi.org/10.1371/journal.pone.0262817.g005
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Olfactory-related chemosensory genes have been suggested as potential targets for pest

management. Since there are limited coleopteran databases and limited annotation informa-

tion on C.maculatus, we searched for unigenes and CDSs built from the genomic and amino

acid sequences against the customized NCBI protein database. Based on the highest BLAST

scores, we identified 99 candidate chemosensory genes, including 26 ORs, 9 GRs, 24 IRs, 1

SNMP, 22 OBPs, and 10 CSPs, which were verified using the transmembrane hidden Markov

model, signal peptide predictions, and motif analyses. Of these genes, 17 ORs, 2 GRs, 10 IRs, 1

SNMP, 12 OBPs, and 7 CSPs were newly identified using de novo antennal RNA-seq.

Fig 6. Maximum-likelihood phylogenetic tree of putative Callosobruchus maculatus chemosensory proteins (CSPs) with insect CSP

sequences from Anoplophora glabripennis (Agla), Tribolium castaneum (Tcas), and Callosobruchus chinensis (Cchi). Thick nodes are

supported by a bootstrap value>60%. The rate of amino-acid substitutions per site is shown in the scale bar. The three CmacCSPs suffixed with

asterisks were a perfect match between the antennal transcriptome and genomic analyses.

https://doi.org/10.1371/journal.pone.0262817.g006
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Fig 7. Differential gene expression between antennae of virgin males and females. (A) Volcano plot showing log2 fold change (FC) (x-axis) and

log10 false discovery rate (FDR) (y-axis) plots of all expressed unigenes. The red plots represent the 112 upregulated DEGs (males> females) (FC� 2

and FDR< 0.05), whereas the blue plots represent the 119 downregulated DEGs (males< females) (FC� 2 and FDR< 0.05). (B) Dot plot showing

fold enrichment, gene scale, and FDR derived from GO enrichment analysis. (C) Heatmap showing the 49 olfactory-related chemosensory gene

expression profiling through de novo antennal RNA-seq. CmacOR13a in red and the six CmacORs in blue are shown as up- and downregulated DEGs,

respectively.

https://doi.org/10.1371/journal.pone.0262817.g007
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In the insect olfactory system, OR forms heteromeric complexes with Orco. Although low-

level amino-acid identities are shared between ORs, Orco sequences are highly conserved

across distinct insect lineages [72]. In the phylogenetic analysis, CmacOrco revealed high simi-

larity with three coleopteran Orco genes. The bulk of CmacORs was grouped in group 2A, fol-

lowed by group 5A; 13 CmacORs formed a unique cluster in group 2A, indicating species-

specific OR expansion (Fig 1). In Coleoptera, some species lost many OR subfamilies during

evolution, and the ORs revealed a systematic lineage-specific expansion pattern following gain

and loss [54]. Cucujiformia beetle genomic analysis revealed the expansion of subgroups 2A

and 5A [54, 73], consistent with the present results.

The gustatory receptors of coleopteran beetles follow a common insect pattern; they include

a CO2 receptor; putative sugar receptors, including those specific to fructose detection; and the

remaining GRs are classified as putative bitter receptors assumed to be homologous with those

in Drosophila melanogaster [73–76]. In the present analysis, no CO2 receptor was identified,

and only sugar, fructose, and bitter receptors were suggested. Since TPM values of CmacGR1

and CmacGR3a derived from the antennal transcriptome were low (S3 Table), the GR expres-

sion was suggested to be low in the antennae.

Insect IRs are derived from ionotropic glutamate receptors and are divided loosely into

antennal and divergent IRs; the antennal IRs show olfactory detection of acids and amines.

Conversely, divergent IRs are associated with the gustatory function [6, 77]. In antennal tran-

scriptome analysis, only one divergent CmacIR101 with low TPM values was detected (S4

Fig 8. Sex-specific expression of Callosobruchus maculatus candidate OR and Orco genes using qRT-PCR analysis. MA, male antennae; FA, female

antennae. Asterisks above the bars indicate a significant difference (p< 0.05, t-test); NS, no significant difference.

https://doi.org/10.1371/journal.pone.0262817.g008
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Table); however, nine antennal CmacIRs with adequate TPM values were detected, suggesting

that divergent IR expression could be low in the antennae. The IR75 beetle clade includes

DmelIR75a–d and DmelIR64a homologs, which tend to radiate, ranging from 4 to 11 genes

[55]. Furthermore, three CmacIRs within the IR75 clade were identified.

We identified only one SNMP gene cluster within the SNMP2 clade. Members of the

SNMP1 subgroup are usually expressed in pheromone-sensitive olfactory neurons and are

required for pheromonal activity in Drosophila flies and moths [78–82]. However, coleopteran

beetle SNMPs remain poorly understood regarding whether the SNMPs could mediate phero-

mone reception, which requires further investigation.

Binding proteins (OBPs and CSPs) are involved in the first step of chemoreception in the

lymph. On comparing the OBPs and CSPs between the congeneric beetles C.maculatus and C.

chinensis, it was observed that three CmacOBPs and six CchiOBPs did not generate pairs (Fig

5). The sex attractant pheromone structures differed in both species; C.maculatus uses five

short-chain fatty acids, whereas C. chinensis uses homosesquiterpene aldehydes [83], indicat-

ing saltational evolution of the structures [84]. Therefore, such unique OBPs may be involved

in detecting the structurally different sex attractant pheromones.

Within Coleoptera, CSPs are highly conserved and expressed in many parts of beetles

[55]. In the case of the Chinese white pine beetle, Dendroctonus armandi Tsai and Li, the

DarmCSP2 involves not only carrying of pheromones but also various host plant volatiles

[85]. Thus, CmacCSPs identified from the antenna-transcriptome might carry some

semiochemicals.

Since adult C.maculatus do not feed, the most important chemosensory signals are for mat-

ing and host recognition for oviposition. qRT-PCR analyses confirmed that the expression pat-

tern of CmacOrco between the antennae of males and females was not significant, and the

same pattern was observed in other coleopteran species [30, 33, 35]. In honey bees, the male-

biased expression OR is associated with detecting female-produced sex pheromones [86].

CmacOR13a is highly expressed in the male antennae, suggesting it might be related to sex

pheromone reception. In contrast, CmacOR3, CmacOR6a, CmacOR11, and CmacOR15 were

significantly more expressed in female antennae; these CmacORs might be related to identify-

ing host legumes for oviposition.

In the present study, antenna-transcriptome-based chemosensory gene analyses suggested

the presence of several chemosensory genes. Further functional analyses of chemosensory

genes could facilitate the development of sustainable pest control strategies for C.maculatus.
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