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Deep neural network modeling identifies
biomarkers of response
to immune-checkpoint therapy

Yuqi Kang,1,3 Siddharth Vijay,1,3 and Taranjit S. Gujral1,2,4,*

SUMMARY

Immunotherapy has shown significant promise as a treatment for cancer, such as
lung cancer and melanoma. However, only 10%–30% of the patients respond to
treatment with immune checkpoint blockers (ICBs), underscoring the need for
biomarkers to predict response to immunotherapy. Here, we developed
DeepGeneX, a computational framework that uses advanced deep neural
network modeling and feature elimination to reduce single-cell RNA-seq data
on �26,000 genes to six of the most important genes (CCR7, SELL, GZMB,
WARS,GZMH, and LGALS1), that accurately predict response to immunotherapy.
We also discovered that the high LGALS1 and WARS-expressing macrophage
population represent a biomarker for ICB therapy nonresponders, suggesting
that these macrophages may be a target for improving ICB response. Taken
together, DeepGeneX enables biomarker discovery and provides an understand-
ing of the molecular basis for the model’s predictions.

INTRODUCTION

In order to prevent the immune system from destroying cells indiscriminately, T cells use immune check-

points mediated by immune checkpoint molecules. These molecules are membrane receptors classified

as either stimulatory or inhibitory, depending on whether they activate or inhibit T cell response. Many tu-

mors have strategies to evade immunosurveillance by expressing ligands for inhibitory immune checkpoint

molecules, such as programmed cell death 1 (PD1) and cytotoxic T-lymphocyte-associated protein 4

(CTLA4), which prevent T cells from recognizing and destroying tumor cells. Recently, drugs that block

these interactions, called immune checkpoint blockers (ICBs), have emerged as effective therapies for can-

cer, especially melanoma and lung cancer (Waldman et al., 2020). In comparison to conventional cancer

treatments, such as chemotherapy and radiotherapy, which harm the immune system due to their untar-

geted (systemic) effects, ICBs were shown to be more specific and restrained, with a significant enhance-

ment in the patients’ survival (Esfahani et al., 2020; Dwary et al., 2017; Vera Aguilera et al., 2020). However,

despite these benefits, clinical data highlight that ICBs are not universally effective, as only 10%–30% of pa-

tients who receive ICBs respond to treatment (Ventola, 2017). Furthermore, as these agents activate the

immune response, they pose a risk for triggering a severe autoimmune response (Staff, 2019). These defi-

ciencies highlight the need for strategies to identify patients who will respond to the ICB therapy and un-

ravel physiological and mechanistic differences between the responders and nonresponders.

To address these challenges, numerous research efforts have been directed toward the discovery of pre-

dictive biomarkers of the positive therapeutic effect (Bai et al., 2020). Currently, parameters such as tumor

mutational burden, the status of DNA damage response pathways, and tumor immune microenvironment,

as well as liquid biopsy biomarkers, including circulating tumor DNA, have been investigated and/or adop-

ted as a part of clinical practice (Bai et al., 2020). An emerging strategy for predicting ICB response and

investigating the molecular basis for clinically observed differences between responders and nonre-

sponders is single-cell RNA sequencing (scRNA-seq), i.e., single-cell transcriptomics. Previously, scRNA-

seq analysis of CD8 T cell population from a large cohort of melanoma patients treated with ICBs led to

the identification of TCF7, a gene coding for a transcription factor involved in T cell differentiation, as a

biomarker that correlates with ICB therapy (Sade-Feldman et al., 2018). Although this study presented

promising findings, they relied on simplistic linear correlational models. Furthermore, they focused on

CD8 T cells, thus disregarding the impact of the tumor microenvironment (TME), which drives multiple
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aspects of tumorigenesis, including response to therapy (Binnewies et al., 2018). More recently, bulk RNA-

seq data across 18 solid cancers from more than 7,500 patients, combined with a range of prior biological

knowledge, was used to develop a machine learning model to construct systems-level signatures predic-

tive of ICB response (Lapuente-Santana et al., 2021). However, given their complexity, systems biomarkers

may be challenging to interpret and act upon in routine clinical practice.

To address the need for easy-to-use, clinically actionable biomarkers of ICB response that take into account

features of the TME, we developed a new analytical framework, DeepGeneX. DeepGeneX uses sc-RNA-seq

data, advanced deep neural network modeling, and features elimination steps to identify a smaller set of

genes that could predict a patient’s immune response to ICB therapy. DeepGeneX models outperformed

linear models and identified a set of six genes that could predict the response to ICB in melanoma with

100% accuracy. We further examined the expression of these marker genes in different types of immune

cells in the TME and identified two genes, LGALS1 and WARS, that expressed significantly higher in mac-

rophages of nonresponders compared with those of responders. Gene set enrichment and cell-cell inter-

action analysis suggest the macrophages with high expression of LGALS1 and WARS (M4LW-high) are

immunosuppressive and could directly promote T cell exhaustion and suppress T cell function. Thus, the

M4LW-high macrophage population not only represents a biomarker for ICB therapy but targeting this

population could enhance ICB therapy in nonresponders.

RESULTS

Modeling sc-RNA-seq data to identify molecular drivers of response to immunotherapy

We reasoned that the interactions between T cells and other cells in the TME could affect immune check-

point therapy response. To model and identify molecular signatures from the broader tumor immune

microenvironment (TIME) that could predict responses to immunotherapy, we used a recently published

sc-RNA-seq dataset frommelanoma patients treated with various immune checkpoint therapy (Sade-Feld-

man et al., 2018). This dataset includes 48 tissue samples (31 from nonresponders and 17 from responders)

from 32 melanoma patients treated with checkpoint immunotherapy. In addition, 19 out of these 32 pa-

tients have single-cell RNA sequencing data available, including sequencing data of 5,920 immune cells

collected before immunotherapy treatment. First, we analyzed the distribution of different immune cells

in the stroma from responders and nonresponders and found a 2-fold higher number of CD8 T cells and

a 4-fold higher number of macrophages in nonresponders than the responders (Figures 1A and 1B). In addi-

tion, most CD4 T cells, which are known to correlate with poor clinical outcomes, were also observed in

higher frequency in nonresponders (Pan et al., 2020) (Figures 1A and 1B). These observations are consistent

with the previous study (Sade-Feldman et al., 2018) and suggest that increase in the myeloid/macrophage

population may suppress or cause exhaustion of CD8 T cells in nonresponders.

To identify molecular markers of immune checkpoint therapy response, we applied naive predictive

modeling to the data from all cells in the tumor or macrophages or CDT cells. Specifically, we applied

the support vector machine (SVM) and XGBoost, to distinguish the responder and nonresponder popula-

tion using the immune cell gene expression data. The SVM classifies patients as responders or nonre-

sponders based on drawing a plane to separate patients into two classes, whereas XGBoost adapts a de-

cision-tree algorithm that separates patients with each branching and assigns a label (response or not) at

the final leaf node. Our data show that SVM required the expression data from around 20 genes to accu-

rately predict the outcome from all immune cell populations, whereas the optimal performance of the

XGBoost model was approximately 0.8 (Figure 1C), suggesting a more complex and nonlinear modeling

approach is warranted to predict patient outcome accurately.

Deep neural networks identify genesets that can predict patient response

Another shortcoming of XGBoost models is that they may not perform well on large datasets. Given that

our data measure the activity of more than 26,000 genes, we hypothesized that a deep neural network ar-

chitecture might model the large dataset better. We explored deep neural network (DNN) modeling to

identify biomarkers of immune checkpoint therapy response using data from all immune cells. DNNs are

nonlinear models that are analogous to neurons in the human brain (Zupan, 1994). DNNs have an input

layer, output layer, and hidden layers in between connected by weighted links that capture complex rela-

tions in data. DNNs have previously been applied to biological modeling, including proteomic, genomic,

and other high-throughput data (Grapov et al., 2018). We build the DNN through several stages, as

conceptualized in Figure 2A.
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To build DNN modeling of the sc-RNA-seq data, we first used a multi-stage Grid Search method to opti-

mize the model hyperparameters. Next, model performance was evaluated using leave-one-out cross-vali-

dation (LOOCV) binary cross-entropy between predicted and observed responses to the immune check-

point inhibitor. In LOOCV, we used a dataset that contains information on 19 patients in total, and at

each step, data from 18 patients were used to train the model to predict the remaining patient’s responses.

The Grid Search method was used to search through hundreds of combinations of hyperparameters to

identify a single combination with the lowest LOOCV binary cross-entropy cost. In each round of optimi-

zation, two hyperparameters were tuned: epoch and batch size, weight initializer and optimizer, and

A B

C

D

Figure 1. Modeling single-cell RNA seq data from melanoma patients for immunotherapy response

(A) The UMAP (Uniform Manifold Approximation and Projection) and bar plot (B) showing the immune cell distribution

between nonresponders and responders of the checkpoint immunotherapy.

(C) The performance of SVM (support vector machine)-based model (left) and that of XGBoost model (right) using all

immune cells.

(D) The marker genes and corresponding coefficient or feature importance scores from the optimal SVM and XGBoost

models.
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hidden layers and nodes per hidden layer in rounds 1, 2, and 3, respectively (Figure S1). The resulting opti-

mized network involved two hidden layers with 100 nodes per layer, the normal weight initialization, expo-

nential linear unit (elu) activation function, and the Adam optimizer. The model was trained for 45 epochs

with a batch size of 4. The average accuracy of the model was 0.82 in LOOCV.

Next, we sought to improve the model’s predictive accuracy while also identifying which of the �26,000

genes in the model were indicative of ICB response. We employed a method we call ‘‘permutation gene

importance’’ (PGI). First, we assigned an initial baseline error score to the DNN model based on the

model’s binary cross-entropy error of predicted response on the original, unchanged 19 patient training

matrix. Subsequently, we shuffled each gene’s activity across all 19 patients while keeping the remaining

matrix of features unchanged and inputted the data into the DNNmodel, tracking the binary cross-entropy

error after each shuffle. Each gene was assigned a ‘‘gene importance’’ score, which was calculated by sub-

tracting the baseline binary cross-entropy error from the error after permuting the feature. By measuring

the model’s error changes, we estimated the importance of different gene’s activity in contributing to a

positive or negative response of the patient, with higher error changes (i.e., gene importance scores) indi-

cating greater reliance of the model on that specific gene’s activity. From this, we obtained a ranked list of

the most important genes. After ranking the genes by importance score, we used the top 1,000 genes to

build a new model. Having filtered the genes with only the top 1,000 genes, we then iteratively used the

process of recursive gene elimination—(1) ranking genes by importance score, (2) removing the bottom

25% of genes, and (3) assessing LOOCV binary cross-entropy of the DNN model built using the remaining

75% of genes (Figure 2B).

Applying the above strategy led to significant improvement in the model’s accuracy from 0.82 to 1.0 over

several rounds of gene elimination (Figure 2B). We identified seven gene sets (all <10 genes) that resulted

in a 100% LOOCV accuracy. Of these, a six gene set signature was chosen for further exploration. This set

includes CCR7, SELL, GZMB, WARS, GZMH, and LGALS1, in order of predicted importance (Figure 2C).

Overall, the process of permutation gene importance reduced the model’s matrix of features from

�26,000 genes to six of the most important genes. The importance scores of these six genes in each round

of elimination are shown in Figure 2D. These six genes were used to build the final DNN model we call

DeepGeneX, and we compared the performance of DeepGeneX with our two baseline models (Figure 2E).

Among the six genes, five of them were also among the15 marker genes identified by the SVM model

(GZMB, GZMH, SELL, CCR7, LGALS1) and two of them were used in XGBoost (GZMH, CCR7) (Figure 1D).

We further rebuilt the SVM and XGBoost models with these six genes as input and observed a 100% accu-

racy for SVM and an enhancement in accuracy for XGBoost, from 79% to 89%, showing the robustness of the

marker gene set. The coefficients of the SVM model using the six marker genes assigned negative coeffi-

cients for GZMB, GZMH, LGALS1, and WARS and the positive coefficient for CCR7 and SELL, whereas

XGBoost with these six marker genes put importance on GZMH, LGALS1, SELL, and CCR7. These model

performance indicators suggested that the DeepGeneX model effectively predicted whether a patient is

a responder or nonresponder and that recursive gene elimination could reduce the dimensionality of

the input space to identify gene signatures that were indicative of immune checkpoint response.

DeepGeneX-identified marker genes are differentially expressed in responders and

nonresponders

To gain biological insights into the marker genes identified by DeepGeneX, we next analyzed the expres-

sion pattern of six marker genes in the sc-RNAseq data from responders and nonresponders. Our data

show that all six genes were differentially expressed between responders and nonresponders (Figure 3A).

SELL and CCR7 were expressed at significantly higher levels in responders, whereas GZMB, GZMH,

LGALS1, andWARS expression in responders was significantly lower (Figure 3A). Further, we also observed

differential expression of these marker genes in specific immune cell types. Consistent with previous

studies (Martin and Badovinac, 2018; Sade-Feldman et al., 2018), we observed the predominant expression

Figure 2. DeepGeneX identifies genesets that can predict patient response to immunotherapy

(A) A schematic illustration of DeepGeneX framework.

(B) A plot showing the LOOCV accuracy of DeepGeneX after each round of feature elimination. The number of genes used to build the model in each round

is also indicated.

(C) The importance score of the top six genes predicted by DeepGeneX.

(D) A plot showing the importance score of the top six genes predicted by DeepGeneX in each round of recursive gene elimination.

(E) A table comparing the performance of three predictive models.
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of SELL and CCR7 in memory T cells. These genes were also expressed in a more significant proportion of

memory T cells in responders compared with nonresponders. In contrast, GZMB and GZMH, known to be

expressed in cytotoxic cells (Hashimoto et al., 2019), were mainly expressed in the natural killer (NK) cells

and CD8 T cells of nonresponders (Figure 3A). Lastly, LGALS1 and WARS were expressed primarily in the

macrophages of nonresponders and showed a significant correlation (coefficient = 2.75, p value = 0.00014).

Previous studies have shown that LGALS1 plays an essential role in promoting the differentiation of M2-like

A B

Figure 3. Expression and distribution of DeepGeneX-predicted marker genes in responders and nonresponders

population

(A) Violin plots comparing the overall expression distribution across all immune cells between responders and

nonresponders. ***p < 0.0005, Mann Whitney U test.

(B) The UMAPs comparing the difference in the expression of the six marker genes: SELL, CCR7, GZMB, GZMH, LGALS1,

and WARS in different immune cell populations.
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macrophage and therefore driving an immunosuppressive TME (Abebayehu et al., 2017; Chen et al., 2019).

Similarly, WARS was shown to induce the secretion of a panel of Interferons (IFN) and cytokines, which

contributed to the activation of tumor-associated macrophages (TAMs) (Brown et al., 2010; Nie et al.,

2019). Thus, based on the higher expression of LGALS1 and WARS in the macrophages of the nonre-

sponder population and the previously documented role of these genes, we posit that high LGALS1-

and WARS-expressing TAM population may negatively impact response to immune checkpoint therapy.

Validating DeepGeneX-predicted marker genes across cancer types

To determine whether DeepGeneX-identified marker genes could predict response to immunotherapy in

other cancers, we compared the differential expression between responders and nonresponders using a

scRNA-seq dataset from basal cell carcinoma patients (Yost et al., 2019). This dataset includes pretreat-

ment scRNA sequencing data from eleven basal carcinoma patients treated with anti-PD1 therapy. After

removing tumor cells, we achieved a final dataset of 18,799 immune cells. We found that four out of six

genes (SELL, CCR7, LGALS1, andWARS) showed a consistent trend with immunotherapy response. As pre-

dicted by DeepGeneX, we found significantly higher expression of SELL and CCR7 in responders and sub-

stantially higher expression of LGALS1 and WARS in nonresponders in basal cell carcinoma patients (Fig-

ure 4A). To further extend the validity and generality of DeepGeneX-defined marker genes, we then

assessed the expression pattern of four genes and patients’ overall survival across seventeen cancer types

using the bulk RNA-seq data and clinical data from The Cancer Genome Atlas (TCGA) (Figure 4B). Our data

show that patients with the favorable expression pattern of marker genes (high expression in SELL/CCR7

and low expression in LGALS1/WARS) showed significantly better survival rates compared with those with

unfavorable gene expression patterns (Log rank test, p value < 0.05) in nine out of seventeen cancer types,

including SKCM (Skin Cutaneous Melanoma) (Figures 4B and 4C). Together, these orthogonal analyses

suggest that the applicability of our DeepGeneX-identified marker gene set is not limited to skin mela-

noma cancer type or sc-RNA-seq data.

High LGALS1- and WARS-expressing macrophages are immunosuppressive

Our analysis of sc-RNA-seq from melanoma and basal cell carcinoma and bulk RNA-seq from melanoma

suggests that the expression of LGALS1 and WARS correlates with nonresponsiveness to immunotherapy

(Figure 3) and poor overall survival (Figure 4). To determine whether high LGALS1- and WARS-expressing

macrophages (M4LW-high) played a role in immunotherapy resistance, we explored the biological pro-

cesses and pathways enriched in macrophages from nonresponders compared with those from responders

using Gene Set Enrichment Analysis (GSEA). We then identified pathways enriched in M4LW-high popula-

tion but not in M4LW-low population of nonresponders. Our data showed that M4LW-high population ex-

hibited a significant overlap in the pathways related to the activation and polarization of macrophages and

the interaction between macrophages and CD8 T cells (NES>2, FDR <0.05, Figure 5A ). For example, we

noted enrichment in interferon-gamma (IFN-y) signaling and response, which may indicate the polarization

toward proinflammatory type macrophages (Muller et al., 2018), and upregulation of major histocompati-

bility complex class I (MHC-I), which could result in cytotoxic CD8 T cell activation and proliferation by pro-

cessing and presenting the antigen to naive T cells (Castro et al., 2018). In addition, we found enrichment of

the pattern recognition receptor signaling pathways, which include signaling receptors in TLR (Toll-like re-

ceptor) and NLR (node-like receptor) families (Figure 5A), indicating activation and differentiation of mac-

rophages (Cen et al., 2018; Franchi et al., 2009; Singh et al., 2014). Together, these enriched pathways sug-

gest that M4LW-high in nonresponders are fully activated and polarized. Thus, we propose that these

mature macrophages could infiltrate into the TME as TAMs and induce differentiation and proliferation

of naive CD8 T cells to cytotoxic CD8 T cells via MHC-I antigen presentation. Further, these data suggest

that CD8 T cells in nonresponders could have already been activated by macrophages and exhausted prior

anti-PD1 and anti-CTLA4 therapy. Therefore, we posit that although TAMs themselves contribute to an

immunosuppressive environment, their impact on the continuous activation of CD8 T cells could partially

explain the resistance to immune checkpoint therapy.

Figure 4. Validation of DeepGeneX-identified marker genes in other cancers

(A) Violin plots showing the difference in expression of six marker genes between responders and nonresponders in patients with basal cell carcinoma.

*p < 0.05, **p < 0.005, ***p < 0.0005, Mann Whitney U test.

(B) Log rank test results comparing the overall survival difference between patients with the favorable expression pattern of marker genes (high SELL/CCR7

and low LGALS1/WARS) and patients with unfavorable expression patterns across all cancer types in the TCGA database.

(C) Kaplan-Meier survival curve comparing patients with favorable/unfavorable marker genes’ expression pattern within TCGA-SKCM (melanoma) dataset,

p-val < 0.005, log rank test.
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M4LW-high populations from nonresponders produce a set of ligands affecting CD8 T cells

We hypothesized that the M4LW-high population is immunosuppressive and may directly inhibit the func-

tion of CD8 T cells. Specifically, ligands or secreted factors from macrophages could contribute to the dif-

ference in the function and amount of CD8 T cells between responders and nonresponders. To verify this,

we applied NichNet (Browaeys et al., 2020), a method that identifies ligands secreted by sender cells that

could contribute to the differential gene expression in the receiver cells. First, we designated all immune

cells as sender cells and CD8 T cells as receiver cells to identify ligands expressed in other immune cells that

could affect CD8 T cell function between responders and nonresponders. To exclude the impact of other

immune cells from the result, we identified a list of ligands that are uniquely or dominantly expressed by

macrophages (Figure 5B). To examine the possible relationship between immunotherapy response and

expression of LGALS1 and WARS in macrophages, we separated the macrophages from nonresponders

into two subpopulations as defined previously: M4LW-high and M4LW-low. Next, the Mann Whitney U

test was applied to identify a subset of ligands differentially expressed between M4 LW-high and macro-

phages from responders. Among these ligands, CD80, CD86, TNFSF10 (TRAIL), TNFSF13B (TACI), and

ICAM1 were found to be upregulated in M4LW-high, whereas CXCL2, VEGFA, CCL20, CXCL11, HBGEF,

and IL1Bwere overexpressed in bothM4LW-high andM4 LW-low compared with responders’ macrophages

(Figure 5B, Figure S2). Next, we determined macrophage-specific target genes in CD8 T cells affected by

the ligands (Figure 5C). We found that the CD8 T cells from nonresponders had higher expression of

GAPDH, EZH2, VCAM1, PRF1, TSCCD3 (GILZ), STAT1, FKBP5, IFIT3, CTNNB1, and BCL2L11, whereas

CD8 T cells from responders expressed higher levels of BTG2,CD44, FOS,MALAT1, andNR4A2 (Figure 5C,

Figure S2). Gratifyingly, many of the genes identified as overexpressed in CD8 T cells from nonresponders

have known roles in T cell exhaustion and impaired function (Dimeloe et al., 2017; Kornberg et al., 2018;

Levine et al., 2021), T cell differentiation (Kakaradov et al., 2017; Stairiker et al., 2020), and enhanced infil-

tration and recruitment of immune cells, including M2-macrophages. Together, these data suggest that

secreted factors from M4LW-high macrophages promote an overactivated or exhausted state in T cells.

Further studies are warranted to determine the mechanistic understanding of how ligands from M4LW-

high activate markers of T cell exhaustion.

DISCUSSION

Although artificial intelligence (AI)-based approaches such as DNNs represent a promising opportunity to

identify disease biomarkers, their lack of interpretability impedes their application in biological sciences.

Commonly referred to as ‘‘black-box’’ models, it is increasingly difficult to comprehend the underlying bio-

logical mechanisms through which DNNs reach their predictions as their complexity increases. Due to this

shortcoming, it is oftenmore useful to employ simpler interpretablemodels irrespective of lower predictive

accuracy over more complex models. In this manuscript, we developed an integrated approach by

combining DNNs and recursive feature elimination, called DeepGeneX, that allows accurate prediction

of outcome and reveals the underlying features important for the predictions.

We applied DeepGeneX to sc-RNA-seq data from melanoma patients and identified a set of six genes,

GZMB, GZMH, SELL, CCR7, LAGLS1, and WARS, that could predict a patient’s response to ICB therapy.

This finding was validated on a sc-RNA-seq dataset from basal cell carcinoma (Yost et al., 2019). Among

the six genes, we further investigated the biological impact of LGALS1 andWARS in macrophages on other

cell types in the microenvironment and the effectiveness of immunotherapy. GSEA of high LGALS1- and

WARS-expressing macrophages indicated a heightened activation and polarization of the macrophage

population. We then applied NicheNet to examine the impact of macrophages with high expression of

LGALS1 and WARS on CD8 T cells. We found ligands that mainly were or uniquely secreted by macro-

phages, such as VEGFA, ICAM1, PLXNB2, targeted genes in CD8 T cells, and modulated activation, differ-

entiation, and infiltration of naive T cells. Further, our analyses of M4LW-high/CD8 T cells revealed differ-

entially expressed genes in CD8 T cells. For example, we found higher expression of CD44, EZH2, and

Figure 5. Pathway enrichment and cell-cell interactions of M4 LW-high macrophages

(A) GO pathways enriched in M4 LW-high from nonresponders compared with macrophages from responders’ population. NES; normalized enrichment

score.

(B) A dot plot showing the expression and distribution of ligands predominantly secreted by macrophages (in red) that could contribute to the CD8 T cell

difference between responders and nonresponders.

(C) A heatmap showing the potential targeted genes in CD8 T cells in response to ligands expressed in nonresponders’ macrophages. Ligands with bold

italic font are differentially expressed in M4 LW-high only.
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BTG2, which are known to suppress T cell function in CD8 T cells from patients with M4LW-high macro-

phages. CD8 T cells from patients with high expression of LGALS1 and WARS seemed to be fully activated

and differentiated into effector T cells. In contrast, the CD8 T cells from the responders of ICB therapy or

patients with low expression of LGALS1 andWARS population overrepresented markers of quiescent T cell

population and memory T cells. Because immune checkpoint therapy such as anti-PD1 and anti-CTLA4

aims to boost the immune system’s potency and activate quiescent T cells, its effect could be reduced

or diminished on already activated and exhausted T cells found in nonresponders. Thus, the M4LW-high

macrophages-driven shift in T cell state could partially explain the differential response to ICB therapy.

The clinical response to ICB therapy is an elaborate consequence combining the interplay of several com-

plex andmultifacetedmolecular mechanisms and signaling pathways in the TME, within and between cells.

Current ICB therapy response prediction methods sacrifice the required complexity to develop computa-

tional models that can be interpreted. Compared with existing methods, DeepGeneX can simultaneously

model highly complex relations in data driven by DNNs (known for their ability to model complex data) to

predict patient outcomes and produce a set of descriptive genes that characterize nonresponders and re-

sponders. The recursive gene elimination algorithm improves neural network prediction while concurrently

reducing the number of genes into a set of smaller gene signatures. Consequently, these smaller gene sig-

natures (<10) can easily be measured in clinical or preclinical settings to predict response to ICB therapy. In

addition, the ease of sc-RNA data collection allows for the rapid and straightforward collection of data

required for accurate DeepGeneX prediction of response.

Overall, we present a broadly applicable, DNN-based approach called DeepGeneX that uses recursive

feature elimination and significance scoring to reduce a complex dataset (�26,000 genes) into a clinically

actionable biomarker gene set (6 genes) with 100% accuracy. We also demonstrate that DeepGeneX accu-

rately models complex biological data and elucidates the underlying molecular mechanisms behind the

predictions. Furthermore, DeepGeneX is a generally applicable approach that can predict the effects

from any dataset and in any disease context, given a training set of measurements. In conclusion,

DeepGeneX is a significant step toward a more robust machine-based strategy for predicting phenotypic

and clinical response to therapeutics with a complex mechanism of action, and as such, an essential addi-

tion to the current set of methodologies in this area.

Limitations of the study

Despite the exceptional performance of the DeepGeneX models, there are a few limitations of this study.

First, the power of deep neural networks can be fully realized when working with large and complex data-

sets. However, the melanoma dataset we used to generate the DeepGeneXmodel consisted of only 19 pa-

tients, a relatively smaller dataset. Secondly, the sc-RNAseq data did not contain information on cancer

cells. Thus, we could not consider the impact of tumor cells on the performance of immune checkpoint ther-

apy. Overall, the methods and approaches described in this study could be readily applied to molecular

data, including sc-RNAseq data from other cancers, to identify clinically actionable gene sets for predicting

response to therapy.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information about the methods and requests for data or scripts should be directed to and will be

fulfilled by the lead contact, Taranjit S Gujral (tgujral@fredhutch.org).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All data reported in this paper will be shared by the lead contact upon request. The source code for the

SVM and XGBoost is available in the supplemental information. The source code for the DeepGeneX is

available at: https://github.com/gujrallab/biomarkers. Any additional information required to reanalyze

the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Single-cell (sc) RNA sequencing data analysis

The sc-RNA sequencing data and the corresponding patients’ immunotherapy response and treatment record

were achieved from the published paper (Sade-Feldman et al., 2018). The gene expression values of single cells

were normalized as log2(TPM+1). Then, we applied Seurat to plot the immune cells of pre-treatment samples

based on the normalized values of gene expression for each cell (Butler et al., 2018). The cell types were labeled

according to the marker genes from the paper (Sade-Feldman et al., 2018). UMAPs from Seurat were plotted to

show the different distribution of immune cell populations of responders and non-responders and show the dif-

ferential expression of identified marker genes for predicting immune response. The Mann Whitney U test was

applied to examine the statistical difference in expression of marker genes between responders and non-re-

sponders. Fisher Exact test was used to correlate the expression of two genes, where the threshold of high or

low expression was defined as 2 of log2(TPM+1) value (Sade-Feldman et al., 2018). We also obtained a dataset

for basal cell carcinoma and processed the data with the above workflow to validate and generalize our findings

(Yost et al., 2019). All statistical tests were performed using the python package SciPy (Virtanen et al., 2020).

Baseline model construction

We constructed predictive models using gene expression values as inputs and immunotherapy responses as la-

bels. Using the expression values of individual cells would result in overwhelming zero values. Therefore, we use

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python Python Software Foundation https://www.python.org/

Numpy (Van Der Walt et al., 2011) https://numpy.org/

Pandas pandas – Python Data Analysis Library https://pandas.pydata.org/

Seurat package version R package https://cran.r-project.org/web/packages/

Seurat/index.html

SciPy (Virtanen et al., 2020) https://www.scipy.org/scipylib/download.

html

XGBoost python package (Chen and Guestrin, 2016) https://github.com/dmlc/xgboost/tree/

master/python-package

Python package Scikit-learn (Pedregosa et al., 2011) https://scikit-learn.org/stable/

Seaborn (Waskom, 2021) https://seaborn.pydata.org/index.html

TCGABioLink (Colaprico, 2016) https://bioconductor.org/packages/release/

bioc/html/TCGAbiolinks.html

DeepGeneX This paper https://github.com/gujrallab/biomarkers
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themean valuesof the expression values for geneswithin all immune cell populations for eachpatient. Twobase-

linemodels were selected for the prediction of immunotherapy response: support vectormachine (SVM) (Hearst

et al., 1998) andXGBoost (Chen andGuestrin, 2016). SVM is a supervisedpredictivemodel that is used to classify

theclassesofpoints (vectorsofnumeric values, vectorsofgeneexpressionvaluesperpatientsherespecifically) by

findingahyperplane toseparate thesepoints in space.XGBoost, as adecision-treebasedalgorithm,worksdiffer-

ently fromSVM. Insteadof identifyingaplane,decision-tree likemodelsconstructa tree-likemodel that separates

sampleswith each branching.More than a traditional decision treemodel, XGB is able to adjust the existing tree

models using the new input (gene expression data of patients and their response to immunotherapy) and mini-

mize thepredictionerror viagradient boosting. Toavoidoverfittingdue to theunbalanceof the sample space (19

patients) and thenumberof features (25,000+genes),wefirst excludedgeneswith lowvariance (<1). ForSVM,we

applied sklearn build-in recursive feature elimination to select the top 100 genes as final input features for model

building (estimator as SVM, linear kernel) (Pedregosa et al., 2011). The performance of SVMusing increasing per-

centagesof the top100geneswas evaluatedby the averageaccuracyof leave-one-out cross validation (LOOCV).

In LOOCV, each timen � 1patients’ scRNAdataand response areused to train themodel topredict the remain-

ing patient’s response. The process is repeated n times, excluding and predicting every patient. For XGBoost,

due to its bagging property, we used all gene expression values as input features for self-selecting the features

of importance. The parameters of XGBoost were tuned via grid search to evaluate a large number of hyperpara-

meter combinations from a user-defined range and get the one with optimal performance, considering the

following parameters: learning rate, number of estimators, and the maximum depth of the built tree. We used

the following setting: learning rate = 0.41, number of estimators = 150, and maximum tree depth = 5. The per-

formance was evaluated by the average model accuracy of LOOCV. We built the SVM model using the Python

package Scikit-learn and XGBoost model with XGBoost package (Chen and Guestrin, 2016; Pedregosa et al.,

2011). In the feature elimination step of SVM and parameter optimization step of XGBoost, to avoid overfitting,

weonly include80%ofdatapoints randomly shuffled fromthedataset.All performanceevaluation, validationand

random shuffling steps were also done via the Scikit-learn package.

DNN model construction

We developed DNN models using gene expression values as inputs and immunotherapy responses as

output. As was done with XGBoost and SVMmodels, themean expression values for genes for each patient

were used, which eliminated hundreds of genes with 0 values. The implementation of the DNN model was

achieved using the Keras and TensorFlow Deep Learning libraries as described previously (Chan et al.,

2021; Vijay and Gujral, 2020). A multi-phase Grid Search method was used to optimize the DNN hyperpara-

meters (epochs, batch size, optimizer, weight initializer, hidden layer quantity, and nodes per hidden layer).

Grid Search evaluates several hundred hyperparameter combinations in order to identify the model hyper-

parameters that result in the lowest binary cross-entropy error between observed and predicted responses

to the drug. The error function that was used to compare numerous models was LOOCV (Leave-One-Out-

Cross-Validation) Binary Cross-Entropy, as it is a commonly used error function for binary classification. In

LOOCV, each time n � 1 patients’ scRNA data and response are used to train the model to predict the

remaining patient’s response. The process is repeated n times, excluding and predicting every patient. Bi-

nary cross entropy between predicted and observed responses is used to assign an error score to each

model built with various combinations of hyperparameter values. In each phase of Grid Search, combina-

tions of hyperparameters were evaluated, and the combination with the lowest LOOCV Binary cross-en-

tropy was used in the subsequent phase of optimization until the final phase was reached. After the optimal

hyperparameters were identified, the architecture was used to build the preliminary DeepGeneX network.

Recursive gene elimination

After the development of a trained preliminary DeepGeneXDNNmodel defined by f and a dataset defined

by ½y; X1 ; X2 ; X3 ;.�, the baseline error (ebaseline) can be computed, assuming a pre-defined cost function.

The cost function was defined as follows:

C
�
Binary Cross Entropy

�
= � 1

n

Xn

i = 1

yi � logbyi + ð1 � yiÞ � logð1 � byi Þ (Equation 1)

The baseline error was calculated as defined below:

ebaseline =
1

n

Xn

i = 1

Cðf ðyi ; X1i ; X2i ; X3i ;.ÞÞ (Equation 2)
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To calculate the post-permutation error (epermutation), each feature is shuffled one-by-one for a total of 200

random shuffles. The matrix of features with a single feature permuted once can defined by Xpermutation.

Accordingly, the post-permutation error for an individual feature is computed as follows:

epermutation =
1

200

X200
j = 1

1

n

Xn

i = 1

C
�
f
�
y ;Xpermutation

i

��
(Equation 3)

Lastly, the relative gene importance ðRGIÞ or error difference for an individual feature is computed:

RGI = epermutation � ebaseline (Equation 4)

For each gene, an RGI score was computed, and the genes are ranked from highest to lowest importance.

In the first round of elimination, the top 1000 genes based on RGI were selected to build the new model.

Subsequently, for every following round of recursive gene elimination, the bottom 25% of genes were elim-

inated. Using just the top 75% of genes, a newDeepGeneXmodel was built, and LOOCV accuracy was used

to track the model’s overall relative performance across several rounds. This three-step process— (1)

ranking genes by importance score, (2) removing the bottom 25% of genes, and (3) assessing LOOCV ac-

curacy of the DeepGeneX model built using only the remaining genes is repeated until the LOOCV Accu-

racy of themodel achieves an inflection point where the accuracy starts to decrease as the number of inputs

decrease.

Cell interaction analysis

NicheNet was adopted to examine the difference in cell-cell interaction in the tumor microenvironment be-

tween responders and non-responders, especially from the aspect of how macrophages would affect CD8

T cells (Browaeys et al., 2020). By specifying the cell types of sender and receiver cells and the condition to

compare with, NicheNet identified ligands of the sender cells that were likely to cause the differential gene

expression in the receiver cells between two conditions: responder to immunotherapy or not in our case.

Here, we first choose CD8 T cells as receivers and macrophages as senders to obtain ligands produced by

macrophages that could contribute to the difference in CD8 T cells between responders and non-re-

sponders. We also examine the situation where all immune cells were considered as senders and CD8

T cells as receivers. The overlapping ligands from these two analyses identified the ligands that were

uniquely or mostly secreted by macrophages that would not be masked by background – the interaction

between CD8 T cell and other immune cells. It also provided the information of the possible targeted genes

in CD8 T cells of these identified ligands, allowing us to link this information and the following-up pathway

enrichment analysis. To examine how LGALS1 and WARS expression in macrophages would contribute to

the resistance to immunotherapy, we consideredM4 LW-high asmacrophages with high expression of both

LGALS1 and WARS, while the rest as M4 LW-low, using the expression threshold defined above. We

compared the expression of identified ligands from the M4 LW-high/M4 LW-low population of non-re-

sponders to those from responders. Mann Whitney U test was applied to show the significant difference

in ligand expression (Virtanen et al., 2020).

GSEA analysis

We applied GSEA analysis on the gene expression data of specific immune cell populations to investigate

the distinction in pathway regulation between patients with different immune responses or marker gene

expressions (Subramanian et al., 2005), using the GO biological process pathway dataset. We focused

on differentially regulated pathways that are enriched macrophages from non-responder compared to

those from responders. Pathways with a false discovery rate less than 0.05 and a normalized enrichment

score of more than two were kept. To identify pathway enrichments that are dominantly impacted by

M4 LW-high, we separate the macrophages from non-responders by their LGALS1 and WARS expression

and compared the enriched pathways compared to macrophages from responders accordingly. We

then intersected the pathways enriched in non-responders with those upregulated in M4 LW-high, but

not in M4 LW-low to achieve a final list of pathways that are uniquely enriched in M4 LW-high from non-re-

sponders and could contribute to the distinct immunotherapy response.

Survival analysis

The clinical data (overall survival data) and the expression data (htseq-count) of seventeen cancer types

were achieved from the TCGA database, GDC portal (Grossman et al., 2016). The expression data were

normalized to CPM (counts per million) value using edgeR (Robinson et al., 2010). To examine the impact
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of the expression of marker genes (SELL, CCR7, WARS and LGALS1) on patients’ survival, for each cancer

types, patients were split into two groups: one with favorable gene expression pattern and the other with

the unfavorable pattern. To determine the expression pattern, the expression values for four marker genes

were first ranked across patients, SELL/CCR7 in descending order, since DeepGeneX indicates that the

higher expression of these two genes linked with immunotherapy response, while LGALS1/WARS in

ascending order. The rank value of these four genes were then summed for each patient. For each cancer

type, if the sum value of a patient is greater than themedian, that patient is classified to have an unfavorable

expression pattern, otherwise, favorable. Kaplan-Meier analysis was used to compare the survival differ-

ence between these two groups of patients and generate corresponding survival curve (Davidson-Pilon,

2019). Log rank test was used to examine the statistical significance of such difference (Virtanen et al., 2020).
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