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Abstract

Sepsis is the leading cause of death in hospitalized patients and beyond the hospital stay

and these long-term sequelae are due in part to unresolved inflammation. Metabolic shift

from oxidative phosphorylation to aerobic glycolysis links metabolism to inflammation and

such a shift is commonly observed in sepsis under normoxic conditions. By shifting the met-

abolic state from aerobic glycolysis to oxidative phosphorylation, we hypothesized it would

reverse unresolved inflammation and subsequently improve outcome. We propose a shift

from aerobic glycolysis to oxidative phosphorylation as a sepsis therapy by targeting the

pathways involved in the conversion of pyruvate into acetyl-CoA via pyruvate dehydroge-

nase (PDH). Chemical manipulation of PDH using dichloroacetic acid (DCA) will promote

oxidative phosphorylation over glycolysis and decrease inflammation. We tested our

hypothesis in a Drosophila melanogaster model of surviving sepsis infected with Staphylo-

coccus aureus. Drosophila were divided into 3 groups: unmanipulated, sham and sepsis

survivors, all treated with linezolid; each group was either treated or not with DCA for one

week following sepsis. We followed lifespan, measured gene expression of Toll, defensin,

cecropin A, and drosomycin, and levels of lactate, pyruvate, acetyl-CoA as well as TCA

metabolites. In our model, metabolic effects of sepsis are modified by DCA with normalized

lactate, TCA metabolites, and was associated with improved lifespan of sepsis survivors,

yet had no lifespan effects on unmanipulated and sham flies. While Drosomycin and cecro-

pin A expression increased in sepsis survivors, DCA treatment decreased both and selec-

tively increased defensin.
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Introduction

Advances in diagnostic modalities, prevention of complications, and care bundles improve

sepsis-associated short-term mortality; however, sepsis remains a leading cause of death in

hospitalized patients and beyond [1]. In addition to high mortality rates, sepsis survivors expe-

rience long-term complications, such as accelerated cardiovascular and neuro-cognitive

decline, new infections, cancer, and metabolic disturbances [2, 3]. Importantly, late deaths

among sepsis survivors are not solely explained by health status before sepsis, implying some

feature of the sepsis itself contributes to these late sequelae [4–7].

During sepsis, immune cells shift their metabolic balance towards aerobic glycolysis over oxi-

dative phosphorylation producing excessive amounts of lactate, a marker for sepsis severity, even

under normoxic conditions [8–11]. The metabolic changes occurring during sepsis in turn lead

to further immune cell activation and unresolved inflammation [12, 13]. Clinical [14] and labo-

ratory [13, 15–17] work suggests a link between unresolved inflammation and long-term

sequelae making the aerobic glycolysis a major component of this complex regulatory network.

Lactate, the signature molecule of aerobic glycolysis, is a pro-inflammatory metabolite regulating

cytokines and macrophage polarization [13, 18]. Lactate is generated from pyruvate by the

enzyme lactate dehydrogenase (LDH). The availability of pyruvate for lactate production is regu-

lated by pyruvate dehydrogenase (PDH), a key enzyme in the tricarboxylic acid cycle (TCA)

transforming pyruvate into acetyl-CoA and subsequent mitochondrial respiration [10, 18, 19].

Interestingly, PDH quantity and activity are decreased during sepsis with resultant accumulation

of pyruvate [9]. Because lactate dehydrogenase (LDH) is an equilibrium enzyme, increased lac-

tate production during sepsis would be due to a mass-action effect exerted by an increased avail-

ability of pyruvate [20]. Consequently, a decrease in PDH activity during sepsis will result in

increased lactate production and decreased mitochondrial oxidative phosphorylation [13, 21].

The PDH complex is at a key control point of energy metabolism and subject to regulation

by multiple mechanisms, including succinylation of PKM2, posttranslational phosphorylation

and subsequent inactivation by pyruvate dehydrogenase kinase (PDK) [22]. Dichloroacetate

(DCA), a classic PDK inhibitor, has been successfully used to decrease levels of lactate and

shifts metabolism towards oxidative phosphorylation in patients with congenital hyperlactate-

mia by directly decreasing the PDK activity with subsequent increase in the downstream

enzyme, PDH, activity [23].

In the current study, we hypothesized that increased aerobic glycolysis leading to unre-

solved inflammation contributes to long-term complications of sepsis, including shortened

lifespan [5]. We tested our hypothesis in a D. melanogaster model of surviving sepsis by manip-

ulating PDH activity with DCA to modify the increased glycolysis, to normalize antimicrobial

peptide expression, and improve lifespan [24, 25].

Materials and methods

Drosophila melanogaster strain and maintenance

The flies were raised on standard cornmeal-molasses agar medium at 22–25˚C, 60% humidity,

and on a 12-h light/dark cycle. The vials were changed every 3 days. We selected male flies 2–3

days after eclosion for experiments. Wild-type (WT) Canton S flies were obtained from

Bloomington stock (Bloomington Drosophila Stock Center, Indiana University).

Experimental design: Fly infection and treatment

We used our previously established model of percutaneous infection in D. melanogaster with

subsequent antibiotic treatment to mimic the clinical course and treatment of human sepsis
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[26]. The flies were divided into 3 groups: unmanipulated, sham, and sepsis survivors. To study

the impact of DCA in diet, each experimental group was further divided into 2 groups depend-

ing on DCA treatment.

We prepared Staphylococcus aureus suspension in Luria-Bertani (LB) broth and grew the

bacteria to an optical density (OD) of 1.0 at 600 nm. At OD of 1.0, there were ~1.67 × 106 CFU

of S. aureus. We anesthetized flies with CO2 and pricked with a tungsten needle (0.01 mm at

the tip and 0.25 mm across the needle body) into their thorax. The sham group was pricked

with a sterile needle while the sepsis survivor group had the needle dipped into the bacterial

solution. We pricked the sham flies first to coat the tungsten needle with hemolymph to

achieve consistent bacterial coating with the infection group.

We transferred unmanipulated, sham, and sepsis survivors to vials containing antibiotic

(linezolid) with DCA [DCA(+)] or without DCA [DCA(-)] after recovery from anesthesia and

kept flies in these vials for 18 h before transferring the flies back to antibiotic-free vials. All flies

were treated with linezolid (0.5 mg/mL) in the diet as described. DCA treatment continued for

one week after the initial infection and it was incorporated into the diet (DCA, 0.5 mg/mL,

Sigma Aldrich, St. Louis, USA) [27]. Immune and metabolic outcomes and lifespan were fol-

lowed over a 7-day course.

Fly survival and lifespan

After infection and treatment with antibiotics, fly survival was assessed by visual inspection of

living flies. The flies that died within 6 h after the initial inoculation were excluded from the

survival analysis, because death within the first 6 hours was considered to be secondary to

trauma from inoculation rather than infection. During lifespan observations, the fly media was

changed and survival assessed every 3 days. The infections were performed around the same

time of the day (Fig 1).

Rapid Iterative Negative Geotaxis (RING)

We performed geotaxis assays to evaluate the fitness-related locomotion traits following sepsis.

We joined two empty polystyrene vials by tape vertically facing each other forming an

Fig 1. Experimental design. Conceptual depiction of the experimental design. The flies underwent either sterile needle injury (“sham”) or injury with a bacteria-laden

needle (“sepsis”). Following a 6-hour recovery period in vials with regular diet to assure that the needle injury did not lead to death, flies were transferred into vials

containing linezolid +/- dichloroacetate (DCA). We followed the lifespan of the flies and in a subset, we measured the gene expression, geotaxis, and metabolomic changes.

https://doi.org/10.1371/journal.pone.0241122.g001
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18.5-cm-long tube. We transferred groups of 20 flies into the vials and allowed to acclimatize

to the new setting for 5 min before conducting the assay. Flies were gently tapped down to the

bottom of the vial for 10 s with the same interval and strength by the same operator throughout

the whole experiment. Pictures of the flies were taken with a digital camera at 5 s. We repeated

each geotaxis experiment six times, allowing for 1-min rest periods between each trial and pic-

tures were analyzed by counting the number of flies that climb above the 10-cm mark in 5 s

after the tap. We calculated the average of the number of flies crossing the 10-cm threshold

and expressed the results as percentage of the total number of flies in the tube (% climbing

index). Each geotaxis experiment was performed 1 h before the needle pricking (0 h baseline),

1 day, and 7 days after needle pricking. The data are presented as percent of the baseline at

time 0 h.

Patterns of host response gene expression

We determined pathogen recognition receptor Toll and antimicrobial peptide (AMP) expres-

sion with quantitative real-time polymerase chain reaction (qRT-PCR) at 24 h and 1 week

after inoculation with bacteria. AMP expression levels provide an indication of the degree to

which the immune system is activated, a surrogate for inflammation. Gene expression of Toll
(FBgn0262473), defensin (FBgn0010385), drosomycin (FBgn0283461), and cecropin A
(FBgn0000276) were normalized to actin5C (FBgn0000042); all data were normalized to the

unmanipulated group. We used 20 flies per group in triplicate. TaqMan1 Gene Expression

Assay primers included the following: toll, Dm02151201_g1; defensin, Dm01818074_s1; droso-
mycin, Dm01822006_s1; cecropin A, Dm02609400_sH; and actin5C, Dm02361909_s1. Assay

details are provided as (S1 Table).

Metabolomic analysis

LC-MS sample preparation. Each sample containing 30 flies was homogenized in

MeOH:ACN:H2O (2:2:1), snap frozen and sonicated. To precipitate the proteins, samples were

centrifuged at 1500 g for 10 min at 4˚C and the supernatant was transferred to a new vial and

dried under N2. The sample was re-suspended in 500 μL CHCl3:MeOH:H2O (2:1:1) and cen-

trifuged for 5 min at 4˚C at 1500 g to separate the upper polar phase from the lower organic

phase. A similar extraction was also performed for 5 mg 13C algal cells, whose supernatant was

used as an internal standard.

Targeted analysis of organic acids. Organic acids were analyzed by derivatizing them to

their corresponding 3-nitrophenylhydrazones [28]. Briefly 100 μL of the supernatant along

with 10 μL of internal standard was heated at 50˚C with 50 μL of 200 mM 3-nitrophenylhydra-

zine in 50% aqueous acetonitrile and 50 μL of 120 mM N-(3-dimethylaminopropyl)-N-ethyl-

carbodiimide HCl in a 6% pyridine solution in the same solvent for 20 min. From this

reaction, 100 μL was diluted to 500 μL using 50% aqueous acetonitrile (ACN). The reconsti-

tuted sample, 10 μL was injected into the Ultimate 3000 RSLC system (Thermo Fisher Scien-

tific, Waltham, MA) connected to a Thermo Fisher Scientific Q Exactive mass spectrometer.

Chromatographic separation was conducted using a reversed phase Phenomenex (Torrence,

CA) Luna C18 column (2.1 mm × 150 mm, 5 μm) column using gradient elution with a mobile

phase consisting of H2O + 0.1% formic acid (A) and acetonitrile + 0.1% formic acid (B), deliv-

ered at a flow rate of 0.2 mL/min. The gradient program was 3% B (0–3 min), from 3% B to

95% B (3–50 min), 95% B (50–55 min), from 95% B to 3% B (55–57 min) and 3% B (57–60

min). The mass spectrometer was equipped with an ESI source and was operated in negative

ion mode using a full scan range of 150 m/z to 900 m/z. Analyte identification was confirmed
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by high resolution accurate mass and compared to the 13C internal standard spectra and reten-

tion time [29] (S2 Table).

Untargeted analysis of primary metabolites. The primary metabolites in the polar phase

were separated using ion-pairing reversed phase chromatography on the LC-MS system

described above [30]. The mobile phase consisted of 5mM hexylamine in H2O (A) acetonitrile

(B), delivered at a flow rate of 0.15 mL/min with a post column addition of 0.1 mL/min aceto-

nitrile before entering the mass spectrometer. The gradient was held at 3% B for the first 3 min

and increased to 30% B (3–30 min) following an additional increase to 95% B (30–55 min), a 5

min wash at 95% B (55–60 min), 95% B-100% B (60–61 min), 100% B (61–66 min), and return

to initial conditions for a 3 min equilibration. The mass spectrometer was operated in negative

ion mode using a full scan range of 100 m/z to 900 m/z. Analyte identification was confirmed

by high resolution accurate mass and compared to the 13C internal standard. Principal compo-

nent analysis (PCA) was applied to visualize grouping patterns using unsupervised multivari-

ate data analysis.

Statistical analysis

Kaplan-Meyer survival analysis was performed using Stata 15 (StataCorp. LLC, College Sta-

tion, TX). Log-rank test was performed with the Kaplan-Meier survival curves for the groups

adjusting for clusters, where each vial was treated as a cluster. Statistical analysis between dif-

ferent groups was accomplished with ANOVA using Graph-Pad Prism software version 8.0

(GraphPad Software Inc., La Jolla, CA).

SIMCA 14.1 (SIMCA, Umetrics, Umeå, Sweden) was used for LC-MS and Principal com-

ponent analysis (PCA). Data obtained from LC-MS analysis were imported into SIMCA for

multivariate analysis. PCA were carried out to discriminate the metabolic patterns between

groups according to common variability within groups (unmanipulated vs. sham vs. sepsis sur-

vivors as well as diet effects among sepsis survivors) after mean centering and unit variance

scaling. In our PCA analyses, R2X represents percentage variability of the X data (metabolites

assessment by LC-MS raw values) explained by each principal component. The results are

given as score plots of the first two principal components with their R2X values.

Results

DCA improves lifespan after surviving sepsis

The lifespan of flies was followed every day until death occurred in all the experimental groups

of flies. The DCA treatment did not affect lifespan in unmanipulated and sham groups (S1

Fig). Interestingly, one week of DCA treatment in the sepsis survivor group led to significantly

longer lifespan when compared to flies surviving sepsis not treated with DCA (p<0.001) (Fig

2). In sepsis survivors on regular diet, median lifespan was 12 days (IQR: 7–35 days) compared

to sepsis survivors on DCA diet with a median survival of 20 days (IQR: 11–58 days). The sep-

sis survivors on DCA diet showed better survival throughout of the study period, especially

after day 12.

Geotaxis among sepsis survivors is not improved by DCA

The geotaxis was assessed 24-hour and 7-days after surviving sepsis. While we observed a sig-

nificant lifespan benefit with DCA, there was no early separation of lifespan by day 7. There

was also no improvement in geotaxis in sepsis survivors exposed to DCA compared to regular

diet (Fig 3).
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Flies treated with DCA had decreased levels of antimicrobial peptides

Gram (+) bacterial Lys-type peptidoglycan, a characteristics of Gr (+) bacteria, strongly stimu-

late the Toll system with downstream activation of pathways leading to AMP expression. AMP

expression levels provide a surrogate marker of immune system activation [26].

We assessed the Toll receptor (FBgn0262473) along with three effector AMPs; defensin
(FBgn0010385), drosomycin (FBgn0283461), and cecropin A (FBgn0000276), all are most

strongly regulated by the Toll pathway. In a recent model of Drosophila surviving sepsis,

AMPs increased and remained elevated following clearance of bacterial pathogen [26]. The

values reported in Fig 4 are relative values to the one measured in the unmanipulated groups

[DCA (-) and DCA (+)] at 24 hr and 1-week post sepsis (Fig 4).

In the early post-sepsis phase (24 h), the cecropin A (FBgn0000276) expression was signifi-

cantly higher among flies surviving sepsis on both regular (10.2-fold) and DCA (22.6-fold)

diet. The expression of defensin (FBgn0010385) was significantly increased among sepsis survi-

vors exposed to DCA 24 h after septic injury compared to sham flies fed DCA (17.9-fold).

Defensin (FBgn0010385) was also significantly elevated in the DCA (+) sepsis survivors com-

pared to DCA (-) sepsis survivors (11.4-fold). The transmembrane protein Toll (FBgn0262473)
expression was not affected by the DCA treatment.

Fig 2. Drosophila lifespan after surviving sepsis is prolonged after a 1-week exposure to DCA. The flies were divided into 3 experimental

groups: unmanipulated, sham, and sepsis survivors. To study the impact of DCA in diet, each experimental group was further divided into 2

groups depending on DCA treatment [DCA (-) and DCA (+)]. Survival of Drosophila melanogaster after septic injury with Staphylococcus
aureus was assessed after the initial 4–6 hours to exclude trauma-associated mortality. All flies received oral linezolid (0.5 mg/mL) for 18 h.

Lifespan analysis was performed using the Kaplan-Meyer survival analysis. In the DCA (+) groups, flies were fed DCA (0.5 mg/mL) only for 1

week following sepsis and then switched back to regular diet. The DCA (+) sepsis survivors had improved lifespan compared to flies that were

fed regular diet (�p< 0.001).

https://doi.org/10.1371/journal.pone.0241122.g002
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When the same set of genes were examined 1 week after the injury, expression of drosomy-
cin (FBgn0283461) (29-fold in DCA (-) and 25.4-fold in DCA (+)) and cecropin A
(FBgn0000276) (3.11-fold in DCA (-) and 4.8-fold in DCA (+)) were significantly increased in

sepsis groups when compared to sham groups regardless of the diet. However, DCA treatment

significantly decreased the expression of drosomycin (FBgn0283461) (0.43-fold) and cecropin A
(FBgn0000276) (0.75-fold) in flies surviving sepsis.

While DCA treatment significantly diminished drosomycin (FBgn0283461) and cecropin A
(FBgn0000276) expression, the expression of defensin (FBgn0010385) was significantly higher

in DCA-treated flies after sepsis compared to sepsis survivors on regular diet (2.4-fold). In

summary, DCA treatment for 1 week facilitated a focused and sustained expression of defensin
(FBgn0010385), the AMP against gram-positive bacteria, whereas DCA treatment reduced

expression of drosomycin (FBgn0283461) and cecropin A (FBgn0000276).

Treatment of Drosophila surviving sepsis with DCA demonstrates

metabolomic reprogramming

We then studied changes in metabolite levels in sham and sepsis survivor groups with or with-

out DCA treatment. We used multivariate analysis with an unsupervised PCA model to study

Fig 3. Geotaxis among sepsis survivors is not improved by DCA. Despite lifespan advantage provided by the 1-week exposure to DCA,

geotaxis–a composite index of locomotor performance- did not improve negative geotaxis among survivors of sepsis.

https://doi.org/10.1371/journal.pone.0241122.g003
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metabolites. PCA results were calculated by reducing the number of dimension while preserv-

ing the initial information (metabolites variability) (S2 Table) [31]. The two principal compo-

nents of the score plot are considered as a combination of the initial variables, each of them

having a different “weight” in the calculation of the principal component (PC). The weights of

each variable on the PC1 and PC2 describe the metabolites variation responsible for the dis-

crimination of the clusters in the PCA score-plots. The multivariate analysis with the unsuper-

vised PCA model showed that flies on regular diet could not be separated according to their

group (Fig 5A). On the contrary, when flies were treated with DCA, the PCA score plot shows

that the 2 first components could discriminate sham from unmanipulated and from sepsis sur-

vivors (Fig 5B). When comparing the DCA effect among the sepsis survivors, the PCA model

could clearly discriminate two clusters along the first component (R2X = 0.885) (Fig 5C). The

metabolites having the highest weight on the first component are α-ketoglutarate, fumarate,

and pyruvate. These PCA models confirm the metabolic consequences of the DCA treatment.

For the further comparison of metabolic assessment, we used the unmanipulated flies to nor-

malize metabolite concentrations in sham and sepsis survivor groups.

From the results shown in Fig 6, two metabolomic effects became obvious. The first

observed difference was the effect of infection. We observed aerobic glycolysis with acetate,

lactate, and TCA metabolite accumulation such as pyruvate, citrate/isocitrate, α-ketoglutarate,

succinate, and fumarate among sepsis survivors on regular diet compared to sham groups on

regular diet. The second observation was the diet effect. DCA treatment has no effect on sham

flies as none of the metabolites measured were significantly modified with the introduction of

DCA. Once we introduced DCA into the diet, the infection effect was partially reversed. DCA

(+) resulted in a decrease in lactate levels among sepsis survivors, with a return to levels similar

to that in the sham group. Only malate and fumarate were significantly lower in sepsis survivors
compared to sham group while on DCA. In addition, DCA diet led to decreased fumarate, α-

ketoglutarate and pyruvate levels in comparison to sepsis surviving flies on regular diet.

Among sepsis survivors, levels of pyruvate, citrate, α-ketoglutarate, acetate, and succinate were

normalized to the levels of sham in the DCA group (Fig 6).

Levels of acetyl-CoA in DCA (+) flies were significantly higher when compared to flies on

regular diet for each corresponding group (p<0.05). However, neither in regular diet, nor in

the DCA diet groups, there were no differences between the sham and sepsis survivor groups

within each respective group (Fig 6).

Discussion

Sepsis was recently defined by the SEPSIS 3 consortium as a ‘life-threatening organ dysfunc-

tion caused by a dysregulated host response to infection’ [24]. Acute inflammation during

early phases of sepsis is necessary to survive infection, yet sustained inflammation is deleteri-

ous [26, 32, 33]. Activated immune cells during early phases of sepsis undergo rapid activation

to generate ATP and biosynthetic intermediates utilizing aerobic glycolysis and lactate accu-

mulation, which in turn propagates further antibacterial defenses and inflammation [13, 18,

Fig 4. DCA selectively affects early and late AMP expression patterns in Drosophila surviving sepsis. Flies were infected with Staphylococcus aureus and

then treated with orally available linezolid (0.5 mg/mL) in the diet for 18 hours. DCA treatment continued for one week after the initial infection and it was

also incorporated into the diet (DCA, 0.5 mg/mL). AMP transcription was assessed after 24 h and 1 week surviving sepsis by quantitative PCR and

normalized to unmanipulated flies in each respective diet group. Significant different expression values across treatment within each antimicrobial peptide

transcript were determined by one-way ANOVA and Tukey’s multiple comparison tests (�<0.05 and ��<0.01). After 24 h surviving sepsis, cecropin A
expression was significantly elevated regardless of the diet exposure. However, only the DCA exposed flies had significantly elevated defensin expression

levels. After 1 week surviving sepsis, addition of DCA significantly decreased the expression of cecropin A and drosomycin while increasing defensin
expression. The number of biological repeats for qPCR was n = 6.

https://doi.org/10.1371/journal.pone.0241122.g004

PLOS ONE Metabolic reprogramming improves lifespan after surviving sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0241122 November 5, 2020 9 / 18

https://doi.org/10.1371/journal.pone.0241122.g004
https://doi.org/10.1371/journal.pone.0241122


34]. In sepsis survivors, such an excessive acute immune response could transition to dysfunc-

tional immunity with long-term poor outcomes [18, 19]. As such, the new paradigm in the

management of sepsis is towards improving potentially modifiable variables of late morbidity

and mortality [35–37]. However, causality between sepsis and “post-acute mortality” in sepsis

survivors is not well established [38, 39]. Metabolic profiling of rodents and humans show a

shift from oxidative phosphorylation to aerobic glycolysis with increased lactate production

during early phases of sepsis [10, 40, 41]. While metabolic changes during an acute immune

response are not novel, recent work conceptualized that acute inflammatory responses in

immune cells are both supported and regulated by metabolic shifts leading to “trained immu-

nity” in innate immune cells [18, 42]. In the current work, we used the Drosophila sepsis sur-

vival model to understand the association between innate immunity and metabolomic

changes during long-term sepsis sequelae. Drosophila provides the advantage that it only has

the innate immunity, yet survives infections and maintains an immune memory (trained
immunity) as a whole organism [43, 44]. Trained immune memory confers a long-term pro-

tection against secondary infections, yet may consume resources for the organism to live and

Fig 5. Multivariate analysis of metabolomic LC-MS data show DCA-dependent changes among sepsis survivors. We studied changes in metabolite levels in sham
and sepsis survivors with or without DCA treatment. We used the unmanipulated flies to normalize metabolite concentrations in sham and sepsis survivor groups. (A)

Multivariate analysis with unsupervised PCA model showed that flies on regular diet could not be separated according to their group (r2x = 0.678) (Fig 5A). (B)

However, when flies were treated with DCA, PCA score plot shows that the 2 first components could discriminate sham from unmanipulated and sepsis survivors
(r2x = 0.532) (Fig 5B). (C) Finally, when we compared the effects of DCA among the sepsis survivors, the PCA model could clearly discriminate two clusters along the

first component (r2x = 0.885) (Fig 5C). The metabolites having the highest weight on the first component were α-ketoglutarate, fumarate, and pyruvate. The number of

biological repeats for LC-MS was n = 5.

https://doi.org/10.1371/journal.pone.0241122.g005
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Fig 6. DCA promotes a shift from aerobic glycolysis to oxidative phosphorylation in flies surviving sepsis. We studied changes in metabolite levels in sham and

sepsis survivors with or without DCA treatment. We used the unmanipulated flies to normalize metabolite concentrations in sham and sepsis survivor groups. Sepsis led

to acetate, lactate, and TCA metabolite accumulation such as pyruvate, citrate/isocitrate, α-ketoglutarate, succinate, and fumarate among sepsis survivors on regular diet

compared to sham groups on regular diet. When flies were fed DCA, infection effect was partially reversed with a decrease in lactate among sepsis survivors returning to
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survive on the long run, a pragmatic trade-off [7, 45–50]. This becomes especially relevant in

organisms that lack adaptive immune systems, such as the Drosophila. Key metabolic enzymes

of glucose oxidation and citric acid cycle are studied within the context of trained immunity
[19, 51]. One of the upstream enzymes in glucose oxidation, pyruvate dehydrogenase (PDH),

is a key regulatory enzyme determining the fate of pyruvate into the TCA cycle and its activity

is decreased in sepsis [9, 52].

While acknowledging the limitations of pre-clinical models, others and we defined “sepsis”

in Drosophila, where the flies were infected with Staphylococcus and then treated with orally

available antibiotics [25]. The antibiotic exposure eliminated the bacterial burden, however

inflammation (“dysregulated host response”) persisted. In our original work, we showed

decrease and subsequent elimination of bacterial burden with antibiotic treatment.

We tested our hypothesis that manipulating PDH activity with a small molecular PDH acti-

vator, DCA, will reverse the increased glycolysis in sepsis, normalize AMP expression, and

improve lifespan. Pyruvate dehydrogenase kinase 1 (PDK1) is upstream of PDH, phosphory-

lates and inhibits PDH preventing conversion of pyruvate to acetyl-CoA and shifting cell

metabolism towards aerobic glycolysis highlighted by increased lactate production. DCA, by

inhibiting PDK1, activates PDH and promotes the entry of pyruvate into the TCA cycle [53].

We here showed that 1-week exposure to DCA improves lifespan of Drosophila surviving sep-

sis over a course of almost 12 weeks, regulates inflammatory AMP, and promotes conversion

of pyruvate into acetyl-CoA facilitating oxidative phosphorylation over aerobic glycolysis.

DCA is reported to promote lifespan extension in C. elegans and D. melanogaster upon contin-

uous exposure, yet we did not observe such an effect in the control flies exposed to DCA as we

exposed flies for only 1 week and subsequently reared them on regular diet [54, 55]. The rela-

tively brief exposure to DCA could explain the lack of survival advantage in non-infected con-

trol flies. Nevertheless, DCA effect on lifespan among flies surviving sepsis was profound and

did last beyond the 1-week exposure. DCA has ben used to manipulate metabolic and inflam-

matory changes in other infection models. Work by Yamane et al did show in a murine model

of influenza that both DCA as well as a DCA analog (diisopropylamine dichloroacetate)

improved survival associated with inhibition of pyruvate dehydrogenase kinase 4 [56]. While

we observed increased lifespan, we did not observe a functional recovery among sepsis survi-

vors as evaluated with geotaxis [56, 57].

Fungi or gram-positive bacteria activate the Toll pathway with subsequent activation of the

NF-κΒ factor Dif, Relish, or Dorsal and production of AMPs such as drosomycin, cecropin A,

and defensin [58–61]. We studied AMP’s as a surrogate for inflammation based on our earlier

research [26]. In our prior work using the same model, we explored the components of the

canonical transcription factor NF-κB (dorsal, Dif, Relish) and a wider panel of receptors, sig-

naling molecules, and antimicrobial peptides (PGRP-SD, Toll, Metchnikowin, Cecropin A,

JNK, Drosomycin, Defensin, InR, IRS, PTEN, Akt1, Foxo, mTORC1, and ratio of p-Akt/Akt)

as surrogates for sustained inflammation among flies surviving sepsis. We observed persistent

elevation of NF-κB gene expression as well as activation and AMP’s in the absence of any obvi-

ous infection as shown by culturing flies surviving sepsis. This enabled us to establish the basis

for the “sepsis survivor” phenotype with the goal of mimicking patients surviving sepsis, yet

having ongoing inflammation even at hospital discharge.

levels similar to that in the sham group. Only malate and fumarate were significantly lower in sepsis survivors compared to sham group while on DCA. In addition, DCA

diet led to decreased fumarate, α-ketoglutarate and pyruvate levels in comparison to sepsis surviving flies on regular diet. Once exposed to DCA, the TCA metabolites

were either brought back to baseline–like succinate- or decreased lower than sham in sepsis survivors. In summary, DCA reversed the systemic metabolic signatures of

aerobic glycolysis among survivors of sepsis. The number of biological repeats for TCA analysis was n = 5.

https://doi.org/10.1371/journal.pone.0241122.g006
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In our experiments, among flies not treated with DCA, the drosomycin and cecropin A
expression was elevated 1 week after surviving sepsis despite clearance of bacterial burden sug-

gesting a sustained expression and activation of AMPs. Activation of AMPs, markers of

inflammation, could contribute to lifespan reduction. Support for this idea comes from the

observations by the Ganetzky laboratory that overexpression of AMPs, such as drosocin, atta-
cin, defensin and drosomycin, in young flies induces neurodegeneration in mature flies and

shortens lifespan [32]. Similarly, AMP overexpression in flies deficient in Methuselah-like
receptor-10 (Mthl10) did limit lifespan in Drosophila [50].

The metabolite patterns of flies surviving sepsis reared on regular diet showed characteristics

of the aerobic glycolysis with lactate and TCA cycle metabolites accumulating. Lactate has been

used as a marker for poor clinical outcome and, in our experience, high lactate level in Drosophila

is associated with a shortened lifespan [19, 26, 62]. In addition to lactate accumulation among

sepsis survivors, pyruvate, citrate/isocitrate, α-ketoglutarate, acetate, succinate, and fumarate

were significantly elevated compared to sham group. However, following DCA treatment, lactate

and pyruvate levels came to baseline, suggesting a shift of pyruvate into the TCA cycle away from

the lactate production. Among TCA cycle metabolites, citrate/isocitrate, α-ketoglutarate, acetate

and succinate also came to baseline levels with DCA treatment. Fumarate and malate levels

decreased significantly in the DCA group. The decrease in fumarate and malate may also indicate

a redirection of flux from pyruvate carboxylase to PDH entry of pyruvate, yet this requires flux

studies [52]. We used unsupervised PCA method to analyze the metabolomic changes. When we

studied the metabolic impact of DCA treatment in the sham group, DCA diet has no metabolic

effects compared to regular diet other than an increase in acetyl-CoA. However, in the sepsis sur-

vivor group, DCA diet effects on metabolite contents are in good agreement with the DCA mech-

anism of action and the expected reversal of aerobic glycolysis. Interestingly, when compared to

the sham group on regular diet, the DCA-treated sepsis-surviving group, none of the metabolites

differed between these two groups. This result may support our hypothesis that metabolomic

effects of sepsis have been reversed by DCA. When regular diet- and DCA- survivors were com-

pared, we observed a clear clustering in the PCA loading plots.

How the relatively short course of DCA affects the sustained levels of anti-Gr(+) defensin
expression is of interest as it could link metabolomic changes to inflammation. Pyruvate can

be converted to acetyl-CoA in the nucleus by the nuclear PDH, providing a source of acetyl for

histone acetylation and DCA could act in a similar fashion promoting histone acetylation and

thus linking metabolic changes with epigenetic control of AMP expression [63–66].

We studied geotaxis up to day 7 to avoid any survivor bias effect on later time points and

found no difference between the regular and DCA diet groups on day 1 and day 7 after sepsis.

Our goal of using a functional outcome was to mimic the human experience surviving sepsis

[57].

As for the limitations of our current work, the DCA effect on the life span is not mechanisti-

cally shown and requires cellular level genetically modified flies to test our hypothesis further

along with 13C-based metabolomic flux studies.

In summary, our results suggest an association between DCA-induced metabolic changes

in Drosophila surviving sepsis and their lifespan. This sepsis survival model in an organism

with only innate immunity lends itself for further mechanistic exploration of various spatial

and temporal interventions towards lifespan and healthspan outcomes.
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S1 Fig. Drosophila lifespan after sterile needle injury (“sham”) is unchanged following a

1-week exposure to regular diet or DCA. To study the impact of DCA in diet, sterile needle
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injured (“sham”) flies were divided to either receive regular or DCA diet. Survival of Drosoph-
ila melanogaster after sterile injury was assessed following the initial 4–6 hours to exclude

trauma-associated mortality. All flies received oral linezolid (0.5 mg/mL) for 18 h. Lifespan

analysis was performed using the Kaplan-Meyer survival analysis. In the DCA diet group,

sham flies were fed DCA (0.5 mg/mL) only for 1 week following needle injury and then

switched back to regular diet. There was no lifespan difference between regular and DCA diet

receiving sham flies (p> 0.05).

(TIF)

S1 File. Data for publication. This folder contains all of the data for the manuscript and the

data files are titled with their corresponding figure panel.
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