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Abstract: A significant loss of p53 protein, an anti-tumour agent, is observed in early cancerous cells. Induction of small
molecules based drug is by far the most prominent technique to revive and maintain wild-type p53 to the desired level. In this
study, a sliding mode control (SMC) based robust non-linear technique is presented for the drug design of a control-oriented p53
model. The control input generated by conventional SMC is discontinuous; however, depending on the physical nature of the
system, drug infusion needs to be continuous. Therefore, to obtain a smooth control signal, a dynamic SMC (DSMC) is
designed. Moreover, the boundedness of the zero-dynamics is also proved. To make the model-based control design possible,
the unknown states of the system are estimated using an equivalent control based, reduced-order sliding mode observer. The
robustness of the proposed technique is assessed by introducing input disturbance and parametric uncertainty in the system.
The effectiveness of the proposed control scheme is witnessed by performing in-silico trials, revealing that the sustained level of
p53 can be achieved by controlled drug administration. Moreover, a comparative quantitative analysis shows that both
controllers yield similar performance. However, DSMC consumes less control energy.

1 Introduction
Cancer remains one of the leading causes of death in the human
race, which mainly develops as a consequence of oncogenes
activation and inactivation of tumour suppressors. In recent years,
tumour suppressor protein: p53 has become a mainstream target in
anti-tumour drug development [1]. After the discovery of the p53
protein in 1979, the scientists have invested a considerable amount
of effort in exploring the protein. It has been observed that around
50% of cancer cases contain either mutations or inactivation of the
p53 protein. The protein attains the significance due to its role in
cancer suppression and its ability to respond to various stresses
which are toxic for the genome. In its wild-type state, p53 induces
responses like DNA repair mechanism, senescence, cell cycle
arrest, and cell death [2]. Whenever the cell gets endangered by
stresses (e.g. radioactivity or DNA damage), p53 activates multiple
downstream targets to ensure normal functioning of the cell. In
fact, whenever the genome's integrity is questioned, p53 plays its
role to preserve it, hence named ‘guardian of the genome’ [3].

The critical role of p53 in regulating numerous cellular
processes demands precise control of its level and activity. Under
normal circumstances, the concentration of p53 is maintained at a
low steady-state level. The murine double minute 2 (MDM2)
protein is the primary negative regulator of p53, which serves as
it's E3 ligase [4]. p53 and MDM2 constitute an auto-regulatory
feedback loop for mutual regulation. MDM2 is responsible for the
destruction of p53 through the ubiquitination process, while the
activation of p53 causes transcription of MDM2 mRNA, which in
turn increases the level of MDM2 protein [4, 5].

The MDM2 attaches a phosphate ion with p53 to initiate its
degradation by the proteasome [6]. In many tumours,
overexpression of MDM2 is the reason for reduced levels of p53,
which prevents DNA damage repair, cell cycle arrest, and
apoptosis. Thus, inhibiting the protein–protein interaction between
p53 and MDM2 can activate and restore the levels of wild-type
p53, which in turn, can restore the normal cell functionality
through p53 mediated responses [7]. Hence, due to the same
reason, MDM2 is becoming a mainstream therapeutic target in the
cancerous cells [8, 9].

The p53 protein binds with MDM2 through hydrophobic
residues at designated binding pockets [4]. It is revealed from the
structure of p53 that some small non-peptide molecules can mimic
the binding pattern between p53 and MDM2. These molecules can
prevent the protein–protein interaction amongst p53 and MDM2
leading to increased accumulation of p53. Blocking the protein–
protein interaction through such molecule inhibitors are emerging
as a promising therapeutic strategy for human cancer retaining
wild-type p53 [10]. Numerous small molecule inhibitors have been
reported in recent years, many of which have already completed
successful preclinical and clinical trials. Nutlin is a family of such
molecule inhibitors, which binds to MDM2 with a higher affinity,
without creating genotoxicity. Nutlin binds to N-terminal pocket of
MDM2, precisely where p53 binds [8, 11]. Nutlin-3a is reported to
have restored wild-type p53 functionality, while some other
variants of Nutlin have effectively treated tumours with
dysfunctional or mutant p53 [12].

The complex feedback interactions of the p53 pathway govern
its dynamic response. Initial studies were aimed at measuring the
dynamics at the cell population level [13]. However, later on, it
was realised that measuring the dynamics in the population may
hide the actual behaviour expressed by single cells. Hence
analysing the fluorescence-tagged protein reveals the hidden
dynamics of an individual cell [14]. Depending on the stimulus, the
p53–MDM2 loop can exhibit multiple dynamic response patterns.
Broadly, these patterns are either oscillatory or sustained [15]. p53
is reported to initiate oscillations in case of less extensive DNA
damage. The oscillatory behaviour is further classified as digital
pulses, damped oscillations, and sustained oscillations. The
frequency of these oscillatory pulses is dependent upon the extent
of the DNA damage, while the pulse width and amplitude are
invariant. The pulsating p53 is usually associated with DNA repair
or cell cycle arrest [12, 14]. The status of the DNA is verified after
each pulse of ∼6 h. In the case the DNA is repaired, the oscillatory
p53 dies out and resumes the blocked cell cycle process. The
sustained p53 response is initiated due to extensive DNA damage.
The amplitude and width of the response are directly dependent
upon the extent of the damage. The expressed genes, in this case,
lead to the irreversible cell fate, i.e. cell death [16, 17]. It is evident
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that in the case of severe DNA damage, p53 does not provide
adequate time for DNA to repair, and kills the cell immediately.

The computational frameworks provide useful tools to better
understand the network topology, create a new hypothesis and
explore the areas for which we lack complete understanding. The
efforts to model the p53 pathway are mainly focused upon the
interactions between P53 and MDM2 governing its responses [18].
Numerous mathematical models have been developed in the
literature using continuous time, discrete time and delayed
differential equations [19–21]. ‘Systems biology’ has long been
used to understand and to predict the behaviour of biological
systems through computational models. Recently, systems biology,
along with the control theory, have been considered as a great tool
for a more precise therapeutic intervention in complex biological
networks. Nevertheless, some noteworthy developments have been
made in drug delivery of cardiovascular systems [22, 23], blood
pressure control [24, 25], tumour chemotherapy [26], anaesthesia
drug delivery [27], diabetes control [28], Parkinson's tremor [29]
and HIV/AIDS control [30, 31].

Application of control in cancer treatment is a fairly new
subject. The main objective in cancer treatment is remission of
cancerous cells within minimum time while maintaining the health
profile of a patient. Chemotherapy, radiotherapy and surgical
procedures are one way around, but these procedures may reduce
the quality of life of the patient [32]. The current research trend is
shifting towards in-silico methods for analysis and control. There is
a strong need to use these in-silico models to implement drug
design using control theory. The control objective is to administer
the treatment and to schedule the drug. The mathematical models
of bio-systems are not always precise. Therefore, it is required to
solve the desired task by designing a control system, which can
handle the model imprecisions and uncertainties. In the literature, a
couple of model-based control techniques are explored for the p53
pathway. In [33], a complex mathematical model for the p53 and
related pathways is exploited to design flatness based control for
maintaining the desired level of p53. In our previous work [34], we
designed a Lyapunov-based control system to obtain the desired
model concentrations by shifting the equilibrium point from
cancerous to normal state. Therein, all the state variables are
considered to be measurable, which is not the case in actual
scenarios.

Both of the above-mentioned control techniques are not
inherently robust. The issue of robustness is addressed in this paper
by the application of sliding mode control (SMC), which is known
for its robustness properties [35]. The main issues accompanied by
SMC, i.e. chattering and discontinuous control input are addressed
by employing a modified algorithm based upon the theory of
dynamic SMC (DSMC). As the discontinuous term is included in
the time derivative of the control input, therefore, the output of
DSMC is smooth [36]. To make model-based control possible, a
reduce-order sliding mode observer (SMO) is developed to
estimate the unknown states. The robustness of the proposed
scheme is assessed by introducing parametric uncertainties,
measurement noise, and an input disturbance. The loss in the
concentration of drug Nutlin due to unwanted cross-talk between

pathways or due to undesirable signals from neighbouring cells is
considered as an input disturbance. Moreover, a quantitative
comparison is also made between the DSMC and the conventional
SMC, which shows that the DSMC consumes the lesser control
energy for similar tracking performance.

The structure of the paper is organised as follows. In Section 2,
ordinary differential equations (ODEs)-based control-oriented non-
linear mathematical model of the p53 pathway is discussed. The
designs of conventional and dynamic SMC algorithms along with
the corresponding SMOs are discussed in Sections 3 and 4,
respectively. The results and discussions are presented in Section 5
and finally, the paper is concluded in Section 6.

2 Mathematical model
The mathematical model presented by Hunziker et al. in [21]
allows control-oriented drug dosage design. The model offers a
simplistic approach yet adequately preserves the fundamental
dynamical properties of the p53–MDM loop. The interactions
between MDM2 and p53 protein are represented by a schematic
diagram shown in Fig. 1 [21]. The single cellular dynamics of the
pathway are demonstrated by an ODE-based mathematical model,
given by

ẋ1 = σp − αx1 − k f x1x3 + kbx4 + γx4,
ẋ2 = ktx1

2 − βx2,
ẋ3 = ktlx2 − k f x1x3 + kbx4 + δx4 − γx3 − km(u − ζ)x3,
ẋ4 = k f x1x3 − kbx4 − δx4 − γx4 .

(1)

where x1 is the concentration of p53 protein, x2 is the Mdm2
mRNA, x3 is the concentration of MDM2 protein and x4 is the
MDM2–p53 protein complex. All of these concentrations are
measured in nM. The control input u to the system is the
concentration of the anti-tumour drug ‘Nutlin’, measured in mg/kg
(Note: x3 is positive by physical nature, and takes part as control
gain) and the concerned output is x1 (concentration of p53 protein).
Here, ζ is the input disturbance, faced by cellular structure due to
intrinsic noise, unwanted interference from neighbouring pathways
and environmental stresses. It appears with the same vector g as
the input u, hence ζ is assumed to be a matched disturbance. The
disturbance satisfies the following assumption: 
 

Assumption 1: Consider ζ to be a matched disturbance
(bounded by ∥ ζ ∥ ≤ ζ0 and ζ0 ∈ ℝ+), which is sufficiently smooth,
i.e. ζ̇ is the continuous and bounded, i.e.
ζ̇(t) ≤ ψ(t), ∥ ψ(t) ∥ ≤ ψ0, where ψ(t) is a smooth function and
ψ0 ∈ ℝ+.

The parameters and rate constants being used in the p53 model
are listed and described in Table 1. Here, the Greek letters (α, β, γ
and δ) represent the degradation rates. The parameter α models all
the processes which result in Mdm2 independent deactivation of
the p53 protein, leading to a reduced active p53 concentration in
the nucleus. Whereas the parameter δ represents the Mdm2
dependent p53 deactivation. The parameter β is the degradation
rate of Mdm2 mRNA and γ is the Mdm2 protein degradation, due
to the auto-ubiquitination process. 

The subscripted letters represent the production rates, such as
the parameter σp models the synthesis of p53 protein, which is
assumed to be produced at a constant rate. The rate constant kt
describes the transcription of Mdm2 mRNA, whereas the
subsequent translation to Mdm2 protein is described by the rate
constant ktl. The rate constants k f  and kb describe the Mdm2–p53
complex formation and breakup, respectively. Even though most of
the parameters are constrained, the parameters γ, δ and k f  can vary
by the environmental conditions and due to cell–cell variability.
The uncertain parameters are listed in Table 2. 

The non-linear model presented in (1) can be written in control
affine form, i.e.

ẋ = f (x) + g(x)(u + ζ), (2)

Fig. 1  Schematic model of p53 pathway dynamics
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where x ∈ ℝ4 is the state vector, f , g ∈ ℝ4 are smooth vector
fields. The vector fields f (x) and g(x) are given as

f (x) =

σp − αx1 − k f x1x3 + kbx4 + γx4

ktx1
2 − βx2

ktlx2 − k f x1x3 + kbx4 + δx4 − γx3

k f x1x3 − kbx4 − δx4 − γx4

,

g(x) =

0
0

−kmx3

0

.

Recent techniques, such as microscopy, flow cytometry, rapid
immunoassay and immunomagnetic-electrochemiluminescent
(ECL) are used for the rapid measurements of p53 and Mdm2
concentrations using patient's serum [37–39]. Accordingly, the
measurement vector ym is given by

ym = [x1 x3]T . (3)

The objective of this paper is to design a control system to achieve
a desired concentration level of p53 in the presence of parameter
variations and disturbance. Therefore, the next section illustrates
the procedure of control design.

3 SMC design
The control objective is to achieve a desired constant level of x1,
i.e. x1 → x1d. The design procedure consists of two steps: in the first
step, the variable x3 is handled as a fictitious control, represented
by a state function x3 f , defined by

x3 f = 1
k f x1

(σp − αx1 + (kb + γ)x4 + k(x1 − x1d)), (4)

substituting x3 = x3 f  in (1), yields

ẋ1 = − k(x1 − x1d) . (5)

The solution of (5) is given as

x1(t) = x1d + (x1(0) − x1d)e−kt . (6)

For a positive value of k, x1 → x1d asymptotically.
The second step employs a selection of real control u such that

x3 = x3 f . (7)

Therefore, the sliding surface is chosen to be the error between x3
and x3 f  i.e.

s = x3 − x3 f , (8)

and the control input is chosen to be a discontinuous function

u = Msign(s), M > 0. (9)

The problem in (7) is solved should sliding mode occur on s = 0.

3.1 Existence of sliding mode

The existence of sliding mode can be analysed by taking a positive
definite Lyapunov function

V = 1
2s2 > 0. (10)

The time derivative of the Lyapunov function in (10) is found to be

V̇ = sṡ . (11)

The original system includes parameter variations and external
disturbance. To find the stability of the original system, we
consider the time derivative of the perturbed sliding variable, that
can be found from (2) and (4). Consequently (11) takes the
following form:

V̇ = s(θ(x, t) + υ(x, t) − kmx3Msign(s) + kmx3ζ),
≤ −Mx̄3km s + s Θ + s Υ + s x̄3kmζ0,
≤ − s (Mx̄3km − Θ − Υ − x̄3kmζ0) .

(12)

where ∥ θ(x, t) ∥ ≤ Θ ∈ ℝ+ contains the nominal model
parameters and ∥ υ(x, t) ∥ ≤ Υ ∈ ℝ+ accommodates the parametric
uncertainties. The mathematical expressions for θ and Υ are given
as

θ(x, t) = (ktlx2 − k f x1x3 + (kb + δ)x4 − γx3)

− 1
x1

2 ((kb + γ)(x1ẋ4 − x4ẋ1) − (σp − kx1d)ẋ1) ,

Υ(x, t) = 1
x1

2 Δγ(x1ẋ4 − x4ẋ1)

−(σp − kx1d)(Δγx4 − Δk f x1x3) .

It is pertinent to mention that x3 always satisfies the condition
x3 > x̄3 > 0. If the condition M ≥ (τ + Θ + Υ + x̄3kmζ0)/(x̄3km)
holds, where τ ∈ ℝ+, then time derivative of Lyapunov function
becomes

V̇ ≤ − 2Vτ . (13)

The inequality in (13) guarantees that sliding mode s = 0  is
enforced after a finite time interval ts [40], characterised by

ts ≤ 2Vs(0)
τ . (14)

After the establishment of sliding mode, x3 = x3 f  and eventually
x1 = x1d.

Table 1 Definition of model parameters and kinetic rate
constants [21]
Parameter Definition Value
σp production rate of p53 1000 nMh−1

α Mdm2 independent deactivation/
degradation of p53

0.1 h−1

δ Mdm2 dependent deactivation/
degradation of p53

11 h−1

kt transcription of Mdm2 0.03 (nMh)−1

ktl translation of Mdm2 1.4 h−1

β degradation rate of Mdm2 mRNA 0.6 h−1

γ Mdm2 degradation/deactivation 0.2 h−1

kb dissociation of Mdm2–p53 7.2 h−1

km Nutlin rate constant 200 h−1

kD = kb/k f dissociation constant of Mdm2–p53 1.44 nM
 

Table 2 Parameters subjected to variations
Parameter Nominal value Actual value Unit
γ 0.2 0.24 h−1

δ 11 13.2 h−1

k f 5.1428 6.168 nM−1h−1

 

206 IET Syst. Biol., 2019, Vol. 13 Iss. 4, pp. 204-211
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



3.2 Zero dynamics

It is mandatory to check the stability of zero dynamics after sliding
mode has been established. The relative degree r of the sliding
variable is equal to 1, as u appears in ṡ. Therefore, the system
exhibits zero dynamics involving states x2, x3 and x4. Under sliding
mode, s = 0 ⇒ x3 = x3 f , and x1 = x1d. Now the zero dynamics is
governed by

ẋ2 = ktx1d
2 − βx2, (15)

ẋ4 = k f x1dx3 f − (kb + δ + γ)x4

= (σp − αx1d) − γx4 . (16)

The solutions of the linear ODEs (15) and (16) are given by

x2(t) = (x2(0) − Θ)e−βt + Θ, (17)

x4(t) = (x4(0) − ξ)e−γt + ξ, (18)

where Θ, ξ ∈ ℝ+ are given by

Θ = ktx1d
2

β ,

ξ = σp − αx1d
γ .

It is obvious from (17) and (18), that x2 and x4 are bounded.
The control law (9) directly depends upon variables x1, x3 and x4.

The measurements of only x1 and x3 are available. Hence there is a
need to design an observer to estimate the unknown state x4. It is
worth mentioning that we do not need x2 in control explicitly, but to
enforce sliding mode, x2 must be available. Sliding mode existence
condition is based on inequality (12). Therefore it is sufficient to
know an upper estimate x2max only. It demonstrates the robustness of
sliding mode concerning an unknown state x2.

3.3 Sliding mode observer

Implementation of the above control requires variable x4, which
can be found by using a reduced-order state observer. In this paper,
a reduced-order SMO is proposed to estimate the unknown state.
The observer eliminates the need to estimate the state variables
which are readily available. Control input u (9) is a function of
states x1, x3 and x4. The unknown state variable x4 can be estimated
by enforcing sliding mode on error term x~1, equal to the difference
between its real value x1 and the estimate x^1. The time derivative of
x^1 is taken as

ẋ^ 1 = σp − αx1 − k f x1x3 + μsign(x~1) . (19)

where

x~1 = x1 − x^1, (20)

and

ẋ
~

1 = ẋ1 − ẋ^ 1 = (kb + γ)x4 − μsign(x~1) . (21)

The sliding mode with x~1 = 0 is established if μ > (kb + γ)x4max .
Then sliding mode equation is defined by equivalent control [35]

(μsign(x~1))eq = (kb + γ)x4,

which can be obtained by a low-pass filter

τż + z = μsign(x~1),
lim
z → 0

z = (μsign(x~1))eq . (22)

Eventually x4 can be obtained as

x4 = z
(kb + γ) . (23)

Fig. 2 illustrates the overall implementation scheme of the SMC in
conjunction with the reduced-order SMO. It is worth mentioning
that the estimation behaviour of the SMO can be well analysed
when we initialise both the p53 plant and SMO with different
initial conditions. 

Although the discontinuous control u in (9) provides robustness
against modelling uncertainties, but the modelling imperfections
can result in an unwanted high-frequency motion, called chattering.
During this high-frequency motion, the system is unable to
maintain its trajectories on the switching manifold; rather they
cross it. The requirement of smoothness in control input and the
limitations in actuators for biological control processes limit the
application of discontinuous SMC. The inherent properties
associated with the SMC (i.e. robustness and parameter invariance)
can still be exploited by modifying the discontinuous controller.
Hence, in the subsequent section, we discuss the modified control
algorithm strategy to obtain a continuous and smooth control input.

4 Modified control algorithm
As the control input cannot be discontinuous, so the discontinuous
sign function is shifted in the time derivative of the control input.
The modified technique is inspired by DSMC, which provides a
continuous control input along with the inherent properties of
SMC. A new sliding variable is proposed, which shifts the
discontinuous function (9) into the first-order time derivative of the
control input. The desired trajectory tracking for the output is
achieved with the choice of sliding function proposed in (8). A new
sliding manifold σ is defined in terms of the sliding manifold s, i.e.

σ = ṡ + λs, (24)

where s is given by (8).
The dynamics of the sliding mode σ = 0  is governed by

ṡ + λs = 0, (25)

where λ > 0 defines the convergence rate of s. This new sliding
surface can be considered as a filtered version of s, with u̇ = ν,
where ν = κsign(σ). The complete implementation scheme with the
modified controller is presented in Fig. 3. 

4.1 Existence of sliding mode

The existence of the sliding mode for the modified control design
is also analysed by taking a positive definite Lyapunov function

V = 1
2σ2 > 0. (26)

The time derivative of the Lyapunov function (26) is computed as

V̇ = σσ̇ . (27)

Fig. 2  Control implementation scheme-I
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By considering the parametric perturbations and the disturbance,
the time derivative of the sliding variable can be found from (2)
and (24). Consequently (27) takes the following form:

V̇ = σ(Ω(x, t, u) − kmx3(u̇ − ζ̇) + Ψ(x, t)),
V̇ ≤ − κkmx̄3 σ + σ Ω0 + σ kmx̄3ψ0 + σ Ψ0,
V̇ ≤ − σ (κkmx̄3 − Ω0 − kmx̄3ψ0 − Ψ0) .

(28)

where the function ∥ Ω(x, t, u) ∥ ≤ Ω0 ∈ ℝ+ contains the nominal
model parameters and ∥ Ψ(x, t) ∥ ≤ Ψ0 ∈ ℝ+ accommodates the
parametric uncertainties. The sliding mode can be enforced and
reachability condition V̇ ≤ 0  can be achieved by selecting a
discontinuous controller gain κ ≥ (ϵ + Ω0 + kmx̄3ψ0 + Ψ0)/(kmx̄3),
where ϵ ∈ ℝ+. The time derivative of V becomes

V̇ ≤ − 2Vϵ, (29)

and the system trajectories will converge to the desired state within
finite time ts, defined by

ts ≤ 2Vσ(0)
ϵ . (30)

The new sliding variable σ (24) requires the states x2 and x4. The
estimation of the x4 has been discussed in Section 3, whereas the
reconstruction of x2 is discussed in the subsequent subsection.

4.2 Modified SMO

Fig. 3 represents the complete implementation scheme for the
modified controller accompanied by the observer. The estimation
of x2 is carried out similarly as the reconstruction of x4 has been
performed. Here, the sliding mode is enforced in the manifold
x~3 = x3 − x^3. The structure of the reduced-order SMO is

ẋ^ 3 = (kb + δ)x4 − k f x1x3 − (γ + kmu)x3 + ϑsign(x~3) . (31)

It is worth mentioning that x4 is used instead of x^4 (estimated in
Section 3.3) in (31). By selecting a suitable discontinuous gain μ, it
has been ensured that x4 is already estimated during the estimation
of x2. From (19), it can be seen that the system trajectories reach
the sliding manifold x~1 = 0 in finite time ts1, which is inversely
proportional to the discontinuous gain μ [40]. Afterwards, x4 is
estimated by simply applying a low-pass filter, as in (23).
Similarly, the system trajectories in (31) reach the sliding manifold
x~3 = 0 in finite time ts2, depending upon the discontinuous gain ϑ.
The discontinuous gain μ >> ϑts1 << ts2, hence, the sliding
manifold x~1 = 0 is achieved much faster than the manifold x~3 = 0.
Consequently, during the estimation of the x2, the state x4 is already
estimated.

Now, the error dynamics of the SMO is obtained by computing
the time derivative of x~3, which is given by

ẋ
~

3 = ẋ3 − ẋ^ 3 = ktlx2 − ϑsign(x~3) . (32)

The sliding mode is established if ϑ > ktl ∥ x2 ∥, and the sliding
mode equation is defined in terms of the equivalent control

(ϑsign(x~3))eq = ktlx2,

which can be obtained by employing a low-pass filter,
characterised by

τż2 + z2 = ϑsign(x~3),
lim

z2 → 0
z2 = (ϑsign(x~3))eq . (33)

Consequently, x2 is determined as

x2 = z2

ktl
. (34)

It is worth mentioning that there is no need to estimate x2 if ṡ is
obtained by a differentiator.

5 Results and discussions
In this section, a thorough simulation analysis for the sliding mode
controller and observer pair is described for the regulation of p53
protein. Moreover, a comparison between the conventional SMC
and DSMC techniques is also presented. It is worth mentioning that
for a fair comparison between both techniques, the discontinuous
gains (M and κ) are kept identical. Moreover, the challenges faced
while implementation of these feedback control techniques for
biological systems is catered by a rigorous simulation analysis in
the presence of the practical issues.

A major challenge while developing computational models for
complex biological systems is the existence of multiple free
parameters. The dynamic behaviour of the model is often highly
dependent upon these parameters. Although high accuracy methods
for discovering interactions are well developed, accurate methods
for measurement of parameters are still limited [41]. Traditionally,
these parameters are estimated using regression techniques, by
optimising the consensus between available data and the model.

The parameters estimated using in-vitro measurements can lead
to inaccuracies due to differences in in-vitro and in-vivo conditions.
Moreover, the amount of measured data is usually limited due to
expensive and time-consuming techniques. Consequently, these
approaches often yield parametric uncertainties. For the p53 model
discussed in this paper [21], most of the parameters mentioned in
Table 1 are constrained but the parameters k f , δ and γ can vary by
the application of different stresses. To study the robustness
property of the SMC for the p53 pathway, 20% of parametric
uncertainties are introduced in the nominal parameters, as
described previously in Table 2. It is worth mentioning that the
controller and estimator contain the nominal system parameters.

A matched input disturbance ζ is also considered to ensure
robustness. The amount of loss in the drug Nutlin due to unwanted
cross-talk between pathways or due to undesirable signals from
neighbouring cells is considered as a disturbance. The hypothetical
time profile for the vanishing disturbance is shown in Fig. 4.
Moreover, the effect of measurement noise has also been
incorporated. In this regard, an additive white Gaussian noise with
zero mean and variance of 1 × 10−4 is added in each measurement
of the p53 plant. The robustness of the proposed control scheme is
assessed by introducing parametric uncertainties, external
disturbance, and sensor noise simultaneously. 

According to different studies conducted on cancerous cells in
the literature, it is well noted that in normal healthy cells, the
concentration of p53 x1  is around 400 nM (nanomoles). In
cancerous cells, p53 is prohibited from raising its level, so it
remains in a lower concentration state. In the simulations x1 is
initialised for a case of the cancerous cell, i.e. 17 nM [21], and the
desired concentration of p53 x1d  is set to 400 nM in the controller.
It is also evident from the literature that sustained p53
concentration is possible only if MDM2 concentration is kept low.
The designed controller strategy ensures a sustained high level of

Fig. 3  Control implementation scheme-II
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p53 (Fig. 5) and a lower concentration of MDM2 (Fig. 6). It is
evident from Fig. 5 that an excellent tracking behaviour of the
output (p53) is obtained, the level of the p53 protein rises up
quickly after application of the controller and maintains its desired
value at steady state. 

Figs. 5 and 6 compare the simulation results (for x1 and x3,
respectively) obtained from SMC and DSMC. In Fig. 5, x1 quickly
reaches the desired value for both the cases. The continuous control
introduces a small overshoot in the output and slightly increases
the settling time, but that all comes with the advantage of
chattering reduction in the system. The corresponding tracking
error e = x1 − x1d  in the case of SMC and DSMC is depicted in
Fig. 7. Fig. 6 represents the concentration of mdm2, which is quite
smooth in case of DSMC as compared to the SMC. 

Fig. 8 compares the discontinuous control input generated by
first-order SMC and the control input provided by the modified
control, which is smooth as compared to its counterpart. The
smoothness of input is attributed to the use of the discontinuous
term in first-order time derivative of the control input. It is evident
that the control effort remains under 75 mg/kg, which is in
accordance with the upper bound (i.e. 400 mg/kg) experimented by
the authors in [42]. The sliding variables s and σ, for the
conventional SMC and the DSMC, are shown in Figs. 9 and 10,
respectively. In the reaching phase s ≠ 0 , the controller drags x3
towards x3 f  and during the sliding motion s = 0 , the design of s
keeps the tracking error e zero, consequently the output x1 attains
its desired value x1d. The chattering phenomenon can also be seen
in the zoomed version of Figs. 9 and 10. 

A quantitative analysis is also carried out to evaluate and
compare the performance of DSMC with conventional SMC. The
performance criteria to measure the error, i.e. root-mean-square
error (RMSE), is computed by

RMSE = 1
N ∑

i = 1

N
e2(i), e(i) = x1(i) − x1d(i), (35)

where N is the number of total time samples. Furthermore, the
average power of both control signals, defined by

Pavg = 1
N ∑

i = 1

N
u2(i) (36)

evaluates the control effort efficiency. The RMSE and Pavg for both
the controllers are given in Table 3. The comparison shows that
conventional SMC has slightly better tracking performance than
DSMC, but that comes at the cost of higher control energy
consumption and discontinuous control input. 

Fig. 4  Time profile of the disturbance
 

Fig. 5  Output of the p53 pathway for both controllers
 

Fig. 6  Concentration of MDM2 for both controllers
 

Fig. 7  Tracking error e for SMC and DSMC
 

Fig. 8  Control input (Nutlin) comparison for both controllers
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6 Conclusion
In this paper, novel drug design is accomplished for obtaining the
desired level of p53 concentration. An SMC based robust nonlinear
technique for a control-oriented model of the p53 pathway is
presented for the re-activation of wild type p53 protein. The small
molecules based drug Nutlin is considered as the control input to
revive p53 protein to the desired concentration level. Simulation
tests are performed to evaluate the effectiveness of the control
scheme, which shows promising results but with the issue of
undesirable high-frequency chattering. For smooth control actions
and chattering reduction, a modified control technique based on the
theory of dynamic sliding mode is presented. The modified control
leads to decent trajectory tracking while guaranteeing smooth
control actions. For the estimation of unmeasured system states, a
reduced-order SMO is employed. The robustness of the proposed
scheme is accessed by introducing parametric uncertainties,
measurement noise, and an input disturbance. Because the exact
function of disturbance is unknown, a hypothetical profile is
assumed. However, a disturbance estimator can be constructed in
the future to better cope with the effects of the disturbance.
Moreover, a quantitative comparison is also made between the
DSMC and the conventional SMC, which shows that the DSMC
consumes lesser control energy for the same tracking performance.
The proposed control method can complement existing
chemotherapy treatments and can become a valuable asset in
targeted cell therapy.
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