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Abstract: Despite the progress made in molecular and clinical research, patients with advanced-stage
gastric cancer (GC) have a bad prognosis and very low survival rates. Furthermore, it is challenging
to find the complex molecular mechanisms that are involved in the development of GC, its
progression, and its resistance to therapy. The interactions of chemokines, also known as chemotactic
cytokines, with their receptors regulate immune and inflammatory responses. However, updated
research demonstrates that cancer cells subvert the normal chemokine role, transforming them into
fundamental constituents of the tumor microenvironment (TME) with tumor-promoting effects. C-C
chemokine ligand 5 (CCL5) is a chemotactic cytokine, and its expression and secretion are regulated in
T cells. C-C chemokine receptor type 5 (CCR5) is expressed in T cells, macrophages, other leukocytes,
and certain types of cancer cells. The interaction between CCL5 and CCR5 plays an active role in
recruiting leukocytes into target sites. This review summarizes recent information on the role of the
CCL5 chemokine and its receptor CCR5 in GC cell proliferation, metastasis formation, and in the
building of an immunosuppressive TME. Moreover, it highlights the development of new therapeutic
strategies to inhibit the CCL5/CCR5 axis in different ways and their possible clinical relevance in the
treatment of GC.
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1. Introduction

Several research findings suggest that unresolved pathogen infections and chronic inflammation
promote tumor development. Hence, inflammation has become another hallmark of cancer [1–3].
Indeed, inflammatory cellular effectors and cytokines within the tumor microenvironment (TME) can
promote an antitumor immune response or support tumor pathogenesis [3–5]. Thus, the new challenge
is to find drugs or drug combinations that are capable of counteracting the pro-tumorigenic effects of
the TME or its formation [6].

Tumor cells can promote the formation of an immunosuppressive/protective TME by recruiting
and then “educating” monocytes, myeloid cells, or T cells to become immunosuppressive
tumor-associated macrophages (M2-TAM) [7], myeloid-derived suppressor cells (MDSC), T-regulatory
cells (T-reg) [8], and mesenchymal stromal cells (MSCs) [9] capable of suppressing T and natural
killer cells (NK) responses [10]. Consistently, the presence of inflammatory cells and high amounts
of inflammatory mediators (e.g., cytokines, chemokines, enzymes) in the primary tumor is often
associated with a bad prognosis and an increased capability to form metastasis [4,11,12].

Tumor cells and the TME can communicate through direct contact and/or through paracrine
signals [6], including cytokines and chemokines, which are considered to be key orchestrators not only
in inflammation and immune surveillance, but also in cancer progression [13,14] since they can act
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as survival/growth factors [15,16], improve angiogenesis [17], affect tumor immunity, and influence
therapeutic outcomes in patients [18].

A variety of chemokines and chemokine receptors has been detected in neoplastic tissues [1,6].
We will focus our attention primarily on the C-C chemokine ligand 5 (CCL5), also known as
RANTES (Regulated upon Activation, Normal T cell Expressed, and Secreted), and its receptor,
C-C chemokine receptor type 5 (CCR5). CCL5 belongs to the C-C chemokine family whose
members also include CCL3(MIP-1α) and CCL4(MIP-1β) [19]. CCL5, a target gene of nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) [20,21], is expressed by T lymphocytes,
macrophages, platelets, synovial fibroblasts, tubular epithelium, and certain types of tumor cells [19].

CCL5 induces the recruitment of different leukocyte types, including T cells,
monocytes/macrophages, eosinophils, and basophils to sites of injury and infection. In collaboration
with IL-2 and IFN-γ which are released by T cells, CCL5 induces the activation and proliferation of
particular NK cells to generate C-C chemokine-activated killer cells [19].

CCL5 activity is mediated mainly by binding to CCR5, but also to CCR1 and CCR3 [19].
CCR4 [20,22] and CD44 are auxiliary receptors for CCL5 [22,23]. CCR5 is a promiscuous receptor that
binds with high affinity CCL5, CCL3, and CCL4. CCR5 is the major co-receptor for HIV cell entry [24],
and this property has significantly boosted the research on CCR5 antagonists/inhibitors [25].

2. The CCL5/CCR5 Axis in Cancer: General Mechanisms

2.1. CCL5–CCR5 Interactions May Favor Tumor Development in Multiple Ways

2.1.1. Proliferation

CCL5 can increase cancer cell growth [15,18,26,27]. It stimulates cell proliferation by inducing
the mammalian target of rapamycin (mTOR) pathway followed by a rapid upregulation of cyclin
D1, c-Myc, and Dad-1 expression, or by enhancing glucose uptake with increased ATP production
and glycolysis [28]. CCL5 may act indirectly by recruiting the TME, monocytes/macrophages, or
fibroblasts that, in turn, may promote and sustain tumor cell survival/proliferation [14,29].

2.1.2. Immunosuppression

Tumor-associated macrophage (TAM)s are a heterogeneous population of myeloid cells that contribute
to immunosuppression, favoring the establishment and persistence of solid tumors as well as metastatic
dissemination. The immunosuppressive effect of TAMs stems from their enzymatic activities and their
production of anti-inflammatory cytokines, such as indoleamine 2,3-dioxygenase (IDO), interleukin-10
(IL-10), and transforming growth factorβ (TGF-β), which have inhibitory effects on tumoricidal lymphocytes
and expand T-reg populations [30]. Consistently, Halama et al. found that blocking the CCR5/CCL5 axis
with the CCR5 antagonist Maraviroc (MVC) in functional organoids derived from metastatic colorectal
cancer (CRC) patients, determined a macrophage repolarization with anti-tumoral effects. Myeloid-derived
suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that can limit productive immune
responses against tumors [31]. Targeting the autocrine CCL5/CCR5 axis with MVC was found to reprogram
the MDSCs and reinvigorate the antitumor immunity [32].

2.1.3. Angiogenesis

Angiogenesis is a prerequisite for tumor growth and invasion [33]. CCL5 exerts proangiogenic
effects by promoting endothelial cell migration, spreading, neovessel formation, and vascular
endothelial growth factor (VEGF) secretion. Moreover, tumor cells, upon CCL5 stimulation, can
produce VEGF or, by secreting CCL5, may recruit CCR5-expressing TAMs [19,34]. In turn, by secreting
VEGF, TAMs can induce angiogenesis [18,30,35]. Thus, targeting tumor-promoting TAMs, which are
now considered to be the major players in the regulation of tumor angiogenesis, may represent an
attractive new therapeutic strategy.
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2.1.4. Migration (Metastasis Formation)

The binding of chemokines to their G-protein-coupled receptors (GPCRs) activates a series
of downstream effects that facilitate receptor internalization and signal transduction, leading to
integrin activation (adhesion) and polarization of the actin cytoskeleton [36]. The consequences
are directional sensing, cell polarization, accumulation of the small GTPases Rac and Cdc42 and
of PI3K at the leading edge, actin polymerization, and F-actin formation. These changes cause
actomyosin contraction, tail retraction, and, finally, cell migration [36]. More specifically, in lung
cancer, CCL5 contributes to the activation of the αvβ3 integrin and to cell migration through PI3K/Akt,
which in turn activates IKKalpha/beta and NF-κB [37]. In ovarian cancer, CCL5 can induce matrix
metalloproteinases-9 (MMP-9) secretion by monocytes, which, by degrading the matrix, allows
for tumor cell extravasation [38]. In prostate cancer, CCL5 promotes invasion by increasing the
secretion of both MMP-2 and -9 and by activating extracellular signal–regulated kinases (ERK) and
Rac signaling [39]. In osteosarcoma, CCL5/CCR5 interactions act via MEK, ERK, and then NF-κB,
resulting in the activation of αvβ3 integrin [40].

A schematic representation of the consequences of the CCL5/CCR5 interactions in cancer is
shown in Figure 1.

Figure 1. Effects of the C-C chemokine ligand 5 (CCL5) and C-C chemokine receptor type 5 (CCR5)
interactions on cancer. CCL5 secreted by tumor cells or by cancer-associated fibroblasts (CAFs)
recruits monocytes, T cells, eosinophils, and mast cells in the tumor microenvironment (TME). CCL5
induces tumor cell proliferation via the mammalian target of rapamycin (mTOR) pathway and
increases ATP production, enhances tumor cell migration/invasion through αvβ3 integrin activation
and matrix metalloproteinases-2/9 (MMP-2/9) upregulation, promotes angiogenesis by inducing
vascular endothelial growth factor (VEGF) secretion; targeting the CCR5/CCL5 axis reprograms the
immunosuppressive M2-tumor-associated macrophage (TAM) to anti-tumoral M1-TAM. Thin arrow,
up-regulation; bold arrow, repolarization; red cross, inhibition.
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3. Possible Clinical Applications: CCL5 and CCR5 as Therapeutic Targets

One of the strategies in cancer therapy is to counteract the formation of a pro-tumorigenic and
immunosuppressive TME. There is evidence suggesting possible clinical applications of drugs that are
capable of inhibiting the CCR5/CCL5 axis or decreasing CCL5 production/secretion by tumor cells or
by the TME [18].

Moreover, CCL5 levels, as well as their changes in liquid biopsy samples, could potentially be
useful to monitor or predict disease progress and treatment outcomes. Clinical evidence has revealed
that elevated levels of tissue or plasma CCL5 are markers of an unfavorable outcome in patients with
breast [41–44], cervical [45], prostate [26], ovarian [46], gastric [47,48], colorectal [49], or pancreatic
cancer [50].

3.1. Inhibition of CCL5–CCR5 Interactions

Finding new therapies for cancer patients is necessary, however the discovery of safe and
efficacious drugs remains expensive and time-consuming [51,52]. Thus, several non-oncology
drugs have been successfully repurposed for cancer [52], including the CCR5 antagonists TAK-779,
Anibamine, and, especially, MVC [18,53].

MVC is a U.S. Food and Drug Administration (FDA)-approved CCR5 antagonist, which is highly
selective and well tolerated, originally developed for HIV patients as a viral entry blocking inhibitor.
Recently, it has demonstrated its potential to treat different types of cancer (Table 1).

Table 1. CCL5/CCR5 axis inhibitors used in preclinical studies and clinical trials (cancer and HIV).

Compound Mechanism/Molecule Cancer-Related Studies References

Maraviroc
Selzentry, Celsentri,
UK-427857 (Pfizer)

Approved by US FDA in
2007 for the treatment of

HIV patients.

CCR5 antagonist

Enhanced cell killing mediated by
DNA-damaging chemotherapeutic agents
in breast cancer.

[54]

Reprogrammed immunosuppressive
myeloid cells and reinvigorated antitumor
immunity.

[32]

Repolarized TAMs.
Objective clinical responses in advanced
colorectal cancer patients with liver
metastases (Phase I trial).

[53]

Decreased migration of CCR5+ regulatory
T cells, reduced breast cancer growth in
the lungs.

[55]

Vicriviroc
SCH 417690,

SCH-D
(Merck)

Pyrimidine CCR5 entry
inhibitor of HIV-1

Enhanced cell killing mediated by
DNA-damaging chemotherapeutic agents
in breast cancer.

[54]

Inhibited invasiveness and metastatic
potential in preclinical models of breast
cancer.

[56]

TAK-779
(Takeda)

CCR5 antagonist,
nonpeptide, quaternary
ammonium derivative

Failed to protect from developing liver
metastases in mice. [57]

Reduced T-regs infiltration and tumor
growth in a pancreatic cancer mouse
model.

[58]

Met-CCL5
Met-RANTES

CCR5 inhibitor,
competitive chemokine

receptor blocker

Decreased mammary tumor cell invasion
and activation of matrix
metalloproteinases induced by
mesenchymal stem cell-derived CCL9 and
CCL5.

[59]

Decreased breast tumor growth,
infiltrating macrophages, increased
stromal development and necrosis in mice.

[60]
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Table 1. Cont.

Compound Mechanism/Molecule Cancer-Related Studies References

OTR4120 and OTR4131 GAG mimetics, inhibit
CCL5 binding to GAG

Strongly inhibited CCL5-induced
migration and invasion of hepatocellular
carcinoma.

[61]

Anibamine
CCR5 antagonist, natural

product

Inhibited the proliferation of ovarian
cancer cell lines, showing reduced
cytotoxicity.

[62]

Inhibited prostate cancer cell growth,
adhesion, and invasion. Reduced tumor
growth in mice.

[63]

DT-13
Steroidal saponin of
dwarf lilyturf tuber

Inhibited gastric cancer cell migration by
downregulation of both CCR5 and CCL5
expression.

[64]

Inhibited breast cancer cell proliferation,
adhesion, and migration and lung
metastasis in vivo by reducing VEGF,
CCR5, HIF-1α.

[65]

Aplaviroc
(GlaxoSmithKline) CCR5 entry inhibitor

Developed for the treatment of HIV
infection. Studies of Aplaviroc were
discontinued because of liver toxicity.

[66]

GSK706769
(GlaxoSmithKline) CCR5 antagonist 2008 Completed phase I trial for HIV

treatment.
https://adisinsight.springer.

com/drugs/800023238

INCB009471 (Incyte
Corporation) CCR5 inhibitor Phase of Development: II (discontinued).

HIV treatment.

https://aidsinfo.nih.gov/
drugs/print/516/incb-9471/

0/1/professional

Cenicriviroc TBR-652,
TAK-652 (Takeda)

Inhibitor of CCR2 and
CCR5 receptors

Completed study in a Phase IIb clinical
trial for HIV treatment.

https://www.clinicaltrials.
gov/ct2/show/NCT01338883

In breast cancer, MVC decreased the migration of CCR5+ regulatory T cells, reduced metastatic
breast cancer growth in the lungs [55,67], and enhanced cell killing mediated by DNA-damaging
chemotherapeutic agents [54]. In human colon cancer, it reduced the accumulation of fibroblasts in the
tumor [68]. Recently, Halama et al. [53] demonstrated that T cells at the invasive margins of human
CRC liver metastases produced CCL5 which had tumor-promoting effects and was responsible for
the functional reprogramming/education of immunosuppressive TAMs toward a pro-tumorigenic
phenotype. In a phase I trial in patients with liver metastases of advanced refractory CRC, MVC
confirmed antitumoral potency [53], since treatment with the drug was associated with mitigation of
tumor-promoting inflammation within the tumor tissue and objective tumor responses [53].

TAK-779, a quaternary ammonium derivative, is a non-peptide CCR5 antagonist with a small
molecular weight, that binds exclusively to CCR5. It inhibited HIV infection and CCL5-induced
proliferation and invasion of prostate cancer cells (PCa) [18].

Anibamine is the first natural product reported as a CCR5 antagonist. It produced significant
inhibition of both PCa and ovarian (OVCAR-3) cancer cell line proliferation and suppressed adhesion,
invasion, and tumor growth in mice [62,63].

A detailed list of inhibitors of the CCL5/CCR5 axis used in preclinical studies and clinical trials
in cancer and HIV patients is shown in Table 1.

3.2. Inhibition of CCL5 Secretion

The inhibition of CCL5 secretion by cancer cells or by TME may represent an additional
system to affect tumor progression [18]. In classical Hodgkin lymphoma, the PI3Kδ-specific
inhibitors GS-1101 [17] and Auranofin [69] and the NF-κB inhibitor dehydroxymethylepoxyquinomicin
(DHMEQ) [70] not only were cytotoxic, but also decreased CCL5 secretion by cancer cells, leading to a
reduced capability to recruit peripheral blood mononuclear cells (PBMCs) [69].

Another therapeutic modality that deserves some consideration deals with the possibility to
counteract the cross talk mediated by the CCL5/CCR5 axis between cancer cells and MSCs.

https://adisinsight.springer.com/drugs/800023238
https://adisinsight.springer.com/drugs/800023238
https://aidsinfo.nih.gov/drugs/print/516/incb-9471/0/1/professional
https://aidsinfo.nih.gov/drugs/print/516/incb-9471/0/1/professional
https://aidsinfo.nih.gov/drugs/print/516/incb-9471/0/1/professional
https://www.clinicaltrials.gov/ct2/show/NCT01338883
https://www.clinicaltrials.gov/ct2/show/NCT01338883
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Breast cancer cells stimulated de novo secretion of the chemokine CCL5 from mesenchymal stem
cells, which then acted in a paracrine fashion on the cancer cells to enhance their motility, invasion,
and metastasis [71]. Zoledronic acid (ZA) [72], as well as PEGylated nanoparticles (NPs) encapsulating
ZA [73], decreased both CCL5 and IL-6 secretion by MSCs, suggesting that ZA may exert antitumor
activity by affecting the ability of MSCs to interact with breast cancer cells.

Along this line, we recently found that the epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitor, gefitinib decreased the capability of supernatants from PCa cells to increase CCL5
secretion by MSCs [74].

Overall, decreasing cancer cells or TME secretion of CCL5 using anticancer drugs may affect both
tumor cell proliferation and/or the formation of a protective/immunosuppressive TME.

4. Gastric Cancer and Its TME

Gastric cancer (GC) is the fifth most common cancer worldwide [75]. The precise pathogenesis of
GC remains unclear. It has been correlated to many factors, such as eating habits, environmental factors,
hereditary predisposition, chronic gastritis, gastric polyps, gastric mucosa abnormal hyperplasia, and
Helicobacter pylori (H. pylori) infection. At diagnosis, over 50% of patients present locally advanced
or metastatic GC and consequently are ineligible for curative surgery. When surgery is not possible,
chemotherapy is often given to reduce tumors, but with low benefit to patients. Therefore, to
improve GC treatment, it is fundamental that we find the molecular events that are responsible
for the development and progression of this malignancy [76,77].

Inflammation plays a decisive role at different stages of tumor development, including initiation,
promotion, malignant conversion, invasion, and metastasis [1,2,77–80]. H. pylori, a microaerophilic
gram-negative bacterium that colonizes the gastric mucosa of 50% of the human population, plays
a predominant role in the etiology of GC [81]. Its carcinogenic potential is driven by the interplay
between bacterial virulence factors and the host’s immune responses that allow H. pylori to switch
between commensalism and pathogenicity. The result is chronic inflammation, with the production
of cytokines/chemokines and cell proliferation, which increases the risk of DNA damage and,
consequently, tumorigenesis [81]. According to the strong association between infections with H. pylori
and neoplastic transformation in the human stomach, H. pylori has been classified as a class I carcinogen
by the World Health Organisation in 1994, representing the strongest known risk factor for GC [81,82].
While many virulence factors of H. pylori have been described, the CagA (cytotoxin-associated gene A)
toxin, which is translocated into gastric epithelial cells via a bacterial secretion system, appears to be
the most specific for the development of a pathological phenotype. Infection with H. pylori, a potent
activator of NF-κB in gastric epithelial cells, increases CCL5 [47,81–83] and induces the expression of a
variety of genes, including IL-1, IL-6, IL-8, IL-10, TNF-α, VEGF, cyclooxygenase-2 (COX-2), inducible
nitric oxide synthase (iNOS), cell cycle regulators, the matrix metalloproteinases (MMP)-2, MMP-7,
MMP-9, and also adhesion molecules [82,84].

The chronic inflammatory state of the stomach, caused by H. pylori infection as well as the
production of inflammatory mediators, cytokines, and chemokines, such as CCL5 within gastric tissues,
plays an important role in the initiation and progression of GC. Furthermore, in GC, tumor cell survival,
growth, proliferation, and metastasis are promoted by the interaction with the TME [84]. The TME
of GC is composed of many different types of cells, including TAMs, lymphocytes, cancer-associated
fibroblasts (CAFs), and endothelial cells [84].

4.1. Macrophages (TAMs)

Monocytes from the peripheral blood are recruited in the TME and differentiate into TAMs
in response to chemokines, including CCL5, and growth factors produced by stromal and tumor
cells [30]. In GC, TAMs can improve genetic instability, promote cancer stem cells [85], increase
metastasis, and contribute to the formation of an immunosuppressive TME by inhibiting T cell
activation [86,87]. Thus, inhibition of monocytes/macrophage recruitment and/or survival in tumors
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or their immunosuppressive reprogramming may also represent a new therapeutic option for GC.
Indeed, TAM levels into GC tumor tissue directly correlate with tumor vascularity [84] and the strength
of tumor invasion, nodal status, and clinical stage [84,87].

4.2. Regulatory T Cells (T-Regs)

T-regs are functionally immunosuppressive subsets of T cells, and play an important role in
immunological self-tolerance [88]. T-reg (FOXp3+) cells have been identified as regulatory components
of the adaptive immune response and are associated with H. pylori-related inflammation and bacterial
persistence [89]. The frequency of T-regs among tumor infiltrating lymphocytes (TILs) derived from
tumor-draining regional lymph nodes or peripheral blood lymphocytes is higher in GC than in normal
gastric tissue [84,89]. Patients with a higher proportion of T-regs showed poorer survival rates than
those with a lower proportion. Interestingly, after patients underwent curative resection for GC,
the proportion of T-regs decreased and came back to levels comparable to those for normal, healthy
donors [89]. Thus, naturally occurring Foxp3+ T-regs may be induced to migrate from the peripheral
blood to the tumor sites by the chemokines CCL17, CCL22, and CCL5 and then increase in number by
tumor-related factors to create a favorable environment for tumor growth [89].

4.3. Cancer-Associated Fibroblasts (CAFs)

CAFs are important components of various types of tumors, including GC [90,91]. During
tumorigenesis and progression, CAFs play critical roles in tumor invasion and metastasis via
a series of functions, i.e., extracellular matrix deposition, metabolism reprogramming, and
chemoresistance [90,91]. CAFs may modulate several aspects of tumor biological behavior in GC,
including the ability to proliferate, metastasize, and invade. Additionally, CAFs increase the infiltration
of immune cells into GC stroma and increase the rate of angiogenesis by secreting VEGF [92].

4.4. Endothelial Cells (Angiogenesis)

Angiogenesis is the result of an imbalance between positive and negative angiogenic factors
released by tumor and host cells into the TME. In GC, angiogenesis is promoted by H. pylori [93],
high numbers of CAFs [77,92], and TAMs [94,95]. In addition, both GC tumor and stromal cells
produce various angiogenic factors, including VEGF, IL-8, and platelet-derived endothelial cell growth
factor (PD-ECGF). Tumor angiogenesis plays an essential role in growth, invasion, and metastatic
spread of GC [96], indicating that pharmacologic blockade of angiogenesis is a promising new therapy,
and that the real-time assessment of the vasculature status is a promising approach to predict the
efficacy of the treatments and improve the clinical management of patients with GC [97]. Indeed, high
levels of angiogenic factors in serum and tumors are associated with worse outcomes in GC patients.
VEGF-A, the most extensively studied angiogenic factor, appears to be a useful biomarker for disease
progression and remission, but not for diagnosis [96].

5. The CCL5/CCR5 Axis in GC Development and/or Progression

GC is a common gastrointestinal tumor characterized by rapid lesion development and poor
prognosis. Diagnosis of GC is difficult because most patients are asymptomatic in the early stages of
disease, which leads to a delay in treatment [81]. Therefore, early diagnosis of GC is essential, and
cytokines detection is now regarded as a potential diagnostic tool.

Existing literature highlights the fundamental role of CCL5 in GC progression. GC patients
have significantly higher serum CCL5 levels compared with control groups [47,98]. The overall
survival of patients with CCL5 levels higher than 71 pg/mL was found to be significantly lower
than that of patients with less CCL5 [47,99]. Higher CCL5 levels were associated with lower
histological differentiation, higher depth of tumor invasion, more frequent lymph nodes involvement,
and advanced tumor stage [99]. More recently, a retrospective analysis of 105 patients with GC
demonstrated that increased CCL5 serum levels correlated with more advanced T and N stages,
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poorly- or undifferentiated histological types, peritoneal metastasis, higher rates of residual tumor,
and shorter survival [100].

Patients in the high CCL5 group also had stronger CCL5 immunohistochemistry (IHC) staining in
tumor tissues [47,98] and in metastatic lymph nodes [101]. Thus, high CCL5 serum levels, along with
strong IHC (CCL5) staining and poorly- or undifferentiated cancer, may be used to predict peritoneal
dissemination and a poorer prognosis [100].

A novel prognostic gene expression risk score, including the expression of CCL5, CTNNB1,
EXOSC3, LZTR1, and clinical parameters, was recently established and validated for perioperative
chemotherapy treatment of GC [102]. CCL5 was also included among genomic markers that could be
useful predictors of chemotherapy efficacy for better prognosis and survival outcomes in GC [103].
High expression of the CCL5 and CXCL12 genes in Lauren’s diffuse type of GC and increased expression
of ADAMTS1, CXCL12, and CCL19 genes were found in peritoneal metastasis, suggesting their
involvement in tumor progression [103].

Human GC cell lines characterized by a high metastatic potential have increased CCL5 expression
levels [104]. In vitro studies demonstrated that supernatants from highly metastatic GC cell lines
increased CCL5 expression in PBMCs. In turn, GC cells cultured with PBMCs had higher invasion
properties, and this process was inhibited by neutralizing anti-CCL5 antibodies [105].

Sugasawa et al. [106] demonstrated that CCL5 is expressed by TILs (CD4+ rather than CD8+

cells) and CCR5 is expressed by GC cells. CD4+ cells, but not CD8+ cells, cocultured with GC
cells (MKN45 and KATO III cell lines) remarkably enhanced CCL5 production in a direct cell–cell
contact manner [106]. Treatment of GC cells with CCL5 increased the proliferation and cocultivation
of CCL5-treated GC cells, and PBMCs decreased the proportion of CD8+ cells but not CD4+ cells,
suggesting a Fas-FasL-mediated apoptosis in CD8+ cells. In immunodeficient mice coinjected with
KATO III and PBMCs, neutralization of CCL5 decreased tumor growth, suggesting that GC cells may
induce CD4+ T cells to secrete the tumor-promoting CCL5 and may inhibit the anticancer activity of
CD8+ cells [106].

CAFs represent the prominent stromal cellular components in the GC TME [92,107].
The Krüppel-like factor (KLF) KLF5 is a DNA-binding transcriptional regulator that is involved
in the tumor-initiating properties of cancer stem-like cells, migration, and drug resistance [108]. In GC
patients, high levels of KLF5 in CAFs were closely associated with clinical pathological features such
as tumor size, invasion depth, cell grade, and lymph node metastasis, as well as poor prognosis [109].
Yang T et al. demonstrated that the upregulation of KLF5 in CAFs promoted tumor growth, migration,
and invasion of GC cells in vitro and in vivo. The major factor contributing to these effects was the
increased secretion of CCL5 due to KFL5 in CAFs. Moreover, they found that CCR5 expression in
GC cells was activated by CCL5 produced by CAFs. Since the downregulation of KLF5 in CAFs
inhibited GC cell progression, KLF5 and/or the CCL5/CCR5 axis may represent promising targets for
the treatment of GC [109].

Monocytes/macrophages, which are crucial drivers of tumor progression, express the CCR5
receptor [30]. Consistently, a significant positive correlation was found between the expression of
CCL5 and CD68 (macrophage marker) in GC tissues [85]. High levels of CCL5 and CD68 are associated
with tumor size, degree of tumor invasion, lymphatic metastasis, pathological grading, and tumor
thrombus, but are unrelated to patient age and gender [85].

In addition, Ding et al. also [98] found that CCL5 and CD68 expression are positively correlated,
were highly expressed in GC tissues, and were associated with the depth of invasion, lymph node
metastasis, TNM staging, and tumor differentiation. In vitro experiments demonstrated that the
co-cultivation of GC cells with THP-1 used as a model for monocytes/macrophages, increased
CCL5, MMP2, and MMP9 in THP-1 cells [98] and increased proliferation, clone-forming ability,
and movement/migration in GC cells (also enhanced by exogenous CCL5) [98]. Thus, the authors
suggested that, by secreting CCL5, TAMs promote GC cell proliferation, invasion, and metastasis.
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In conclusion, CCL5 may represent a marker of GC staging, disease progression, and a new
therapeutic target [98].

6. Possible Clinical Applications of MVC in GC

The CCL5/CCR5 axis is a potential therapeutic target in different cancer types. Since several
studies have demonstrated its involvement in GC progression [48,101,106,110], counteracting the
pro-tumorigenic effects of the CCL5/CCR5 axis with CCR5-antagonists, such as MVC [53,111], or
alternatively, with drugs that are capable to of decreasing CCL5 secretion [69] may be a new therapeutic
options for GC treatment.

By using anti-CCL5 antibodies, Cao et al. [92] reverted chemotaxis of GC cells induced by protein
extracts from GC lymph nodes harboring metastasis, suggesting that CCL5 and CCR5 contribute to
the migration of GC cells from primary to metastatic sites.

In another study, Mencarelli et al. demonstrated that MKN45, MKN74, and KATOIII GC cell
lines at different stages of differentiation expressed both CCR5 and CCL5 and that MVC reduced
tumor cell migration induced by CCL5 and adhesion to the explanted murine peritoneum [110]. MVC
treatment decreased tumor xenograft growth of MKN45 GC cells and the extent of peritoneal disease
and increased mice survival. Thus, the CCR5/CCR5-ligand axis seems to be involved in GC cell
dissemination, suggesting anticancer potential of CCR5 antagonists [110].

Consistently, DT-13, a saponin of dwarf lilyturf tuber (Table 1), was found to inhibit BGC-823 and
HGC-27 GC cell lines migration through downregulation of both CCR5 and CCL5 expression [64].

More recently, using CCR5 antagonists, Wang et al. demonstrated the involvement of CCL5/CCR5
signaling in the cross-talk between GC cells and TAMs leading to tumor growth [112], providing an
additional link between inflammation and GC. Chronic inflammation can promote tumor progression
via aberrant DNA methylation, an epigenetic modification [113] in neoplastic cells. DNA methylation
is catalyzed by enzymes of the DNA methyltransferase (DNMT) family, including DNMT1, the major
DNMT in adult cells, highly expressed in GC [114]. Gelsolin (GSN) is an actin-binding protein
that controls actin filament assembly and disassembly. Its expression is downregulated in many
cancers, including GC tissues, which suggests that it has a potential role in tumor suppression [112].
GSN staining in gastric tumors revealed high GSN expression in early-stage GC compared with
advanced-stage tumors [112]. GSN decrease was mediated by DNMT1 promoter methylation and low
GSN levels, associated with high DNMT1, and predicted poor survival in GC.

Wang et al. [112] found that TAMs infiltration in GC tissues correlated with high DNMT1
expression. Consistently, co-culture experiments demonstrated that M2-like macrophages suppressed
GSN expression in GC cells by upregulating DNMT1. Using anti-CCL5 neutralizing antibodies
and the CCR5 antagonist MVC, Wang et al. [112] demonstrated that co-cultivation of GC cells
with macrophages increased the secretion of several cytokines, but only CCL5 (secreted by M2-like
macrophages) stimulated DNMT1 expression. Moreover, treatment with 5-AZA, a potent DNMT1
inhibitor, or with the CCR5-antagonist MVC slowed GC tumor xenograft growth, revealing the
antitumor effects of DNMT1 suppression by the inhibition of CCR5 engagement in GC. Thus, MVC,
which is capable of disrupting CCL5/CCR5 interactions, may represent a new potential therapeutic
option to counteract TAM-induced tumorigenesis [112].

A schematic view of the CCL5 functions in GC and possible clinical applications of MVC are
shown in Figure 2.
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Figure 2. A schematic representation of the proposed role of CCL5 in gastric cancer (GC). (1) By
activating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Helicobacter pylori
may induce CCL5 expression in GC cells. (2) By secreting CCL5, M2-TAMs may activate signal
transducer and activator of transcription 3 (STAT3) and DNA methyltransferase (DNMT) and inhibit
gelsolin (GSN) expression, leading to enhanced GC cancer cell proliferation and invasion/metastasis
formation. CCL5 up-regulation (3) Krüppel-like factors 5 (KLF5) overexpression in CAFs enhances
the secretion of CCL5, which induces GC cell invasion and proliferation. (4) By secreting CCL5, CD4+
tumor-associated lymphocytes (TILs) may enhance GC cell proliferation and invasion. (5) By secreting
CCL5, GC cells may recruit T-regulatory cells (T-regs), monocytes, and macrophages in the TME.
(6) Increased CCL5 in GC metastatic tissues and serum may enhance GC cell invasion. Thin up-arrow,
CCL5 up-regulation; red cross, inhibition; curved arrow, binding of CCL5 to CCR5 (3, 4); curved arrow,
cell migration to GC cells (5).

7. Conclusions

Collectively, several studies suggest that the CCL5/CCR5 axis is associated with GC progression
due to increased growth and metastasis formation, though we cannot rule out a role of CCL5 also in
the formation of an immunosuppressive TME [32,53]. Our current knowledge leads us to suggest the
CCL5/CCR5 axis as a potential therapeutic target in GC.
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