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Multi-omic tumor data reveal diversity of molecular
mechanisms that correlate with survival
Daniele Ramazzotti 1,2, Avantika Lal 1, Bo Wang2, Serafim Batzoglou2,4 & Arend Sidow 1,3

Outcomes for cancer patients vary greatly even within the same tumor type, and char-

acterization of molecular subtypes of cancer holds important promise for improving prog-

nosis and personalized treatment. This promise has motivated recent efforts to produce large

amounts of multidimensional genomic (multi-omic) data, but current algorithms still face

challenges in the integrated analysis of such data. Here we present Cancer Integration via

Multikernel Learning (CIMLR), a new cancer subtyping method that integrates multi-omic

data to reveal molecular subtypes of cancer. We apply CIMLR to multi-omic data from 36

cancer types and show significant improvements in both computational efficiency and ability

to extract biologically meaningful cancer subtypes. The discovered subtypes exhibit sig-

nificant differences in patient survival for 27 of 36 cancer types. Our analysis reveals inte-

grated patterns of gene expression, methylation, point mutations, and copy number changes

in multiple cancers and highlights patterns specifically associated with poor patient

outcomes.
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Cancer is a heterogeneous disease that evolves through
many pathways, involving changes in the activity of
multiple oncogenes and tumor suppressor genes. The basis

for such changes is the vast number and diversity of somatic
alterations that produce complex molecular and cellular pheno-
types, influencing each individual tumor’s behavior and response
to treatment. Due to the diversity of mutations and molecular
mechanisms, outcomes vary greatly. It is therefore important to
identify cancer subtypes based on common molecular features,
and correlate those with outcomes. This will lead to an improved
understanding of the pathways by which cancer commonly
evolves, as well as better prognosis and personalized treatment.

Efforts to distinguish subtypes are complicated by the many
kinds of genomic changes that contribute to cancer. While gene
expression clustering is often used to discover subtypes (e.g., the
PAM50 subtypes1 of breast cancer), analysis of a single data type
does not typically capture the full complexity of a tumor genome
and its molecular phenotypes. For example, a copy number
change may be relevant only if it causes a gene expression change;
gene expression data ignores point mutations that alter the
function of the gene product; and point mutations in two dif-
ferent genes may have the same downstream effect, which may
become apparent only when also considering methylation or gene
expression. Therefore, comprehensive molecular subtyping
requires integration of multiple data types.

In order to use multiple data types for subtyping, some
approaches carry out separate clustering of each data type fol-
lowed by manual integration of the clusters2. However, clusters
based on different data may not be clearly correlated. More rig-
orous methods for integration include pathway analysis on multi-
omic data, followed by clustering on the inferred pathway
activities3, similarity network fusion (SNF)4, rank matrix factor-
ization5, and Bayesian consensus clustering6. There are also
several sparse clustering methods, such as iCluster+7, which
assume that only a small fraction of features are relevant. These
methods are either highly dependent on feature selection, or
enforce sparsity, thus neglecting potentially useful information. A
recent method, Perturbation clustering for data INtegration and
disease Subtyping (PINS)8, introduces a novel strategy of iden-
tifying clusters that are stable in response to repeated perturba-
tion of the data.

One drawback common to many of the more principled
methods is that they are computationally too intensive to be
routinely applied to large data sets, due to the need for parameter
selection or repeated perturbations. Moreover, they treat all data
types equally, which may not be biologically appropriate. As a
result, the discovered clusters often show poor association with
patient outcomes9,10. We therefore set out to develop a novel
method that does not have these drawbacks.

Cancer Integration via Multikernel LeaRning (CIMLR) is based
on Single-cell Interpretation via Multi-kernel LeaRning (SIMLR),
an algorithm for analysis of single-cell RNA-Seq data11. CIMLR
learns a measure of similarity between each pair of samples in a
multi-omic dataset by combining multiple gaussian kernels per
data type, corresponding to different, complementary repre-
sentations of the data. It enforces a block structure in the resulting
similarity matrix, which is then used for dimension reduction and
k-means clustering. CIMLR is capable of incorporating complete
genomes and scaling to many data types, and does not assume
equal importance for each data type. As such, it is well suited to
modeling the heterogeneity of cancer data.

Here, we apply CIMLR to discover integrative subtypes within
36 types of cancer. We recover known as well as novel subtypes,
and show that our method outperforms current state-of-the-art
tools in speed, accuracy, and prediction of patient survival. This
systematic subtype analysis, the most comprehensive to date,

provides valuable insights into the biology underlying tumor
variability.

Results
Subtyping of 36 cancer types using CIMLR. We carried out a
systematic subtype analysis using CIMLR (Fig. 1a) across all 32
cancer types available from TCGA, on a total of 6645 patients.
Four data types were considered: point mutations, copy number
alterations, promoter CpG methylation, and gene expression.

We evaluated the clusters produced by CIMLR based on (1)
survival analysis, (2) silhouette (a measure of cohesion and
separation of clusters12), (3) stability of the clusters, and (4)
significant differences in pathway activity between clusters
(Table 1, Supplementary Table 1, Supplementary Table 2). To
demonstrate the value of multi-omic subtyping, we compared the
performance of CIMLR using all four data types against analysis
using only methylation or expression (Table 1, Supplementary
Data 1). We also compared CIMLR to four existing methods for
integrative subtyping: iCluster+7, Bayesian consensus clustering6,
PINS8, and SNF4. CIMLR outperformed all other methods on all
tested metrics (Table 1, Supplementary Data 2). In particular, the
clusters obtained using CIMLR show significant differences in
patient survival in 23 of 32 cancer types from TCGA (Fig. 1b),
exceeding the performance of all other approaches.

Additionally, we applied CIMLR to four types of pediatric
cancers using data from the TARGET initiative13. Remarkably,
the clusters obtained by CIMLR present significant differences in
overall survival for all four pediatric tumor types (Fig. 1b,
Supplementary Table 3), exceeding the performance of other
approaches (Table 1, Supplementary Data 3, Supplementary
Data 4).

CIMLR learns weights for each data type instead of assigning
equal importance to each. We note that the contributions of each
data type, measured as the fraction of total kernel weight
contributed by kernels based on that data type, are very different
between cancers (Fig. 1b). While expression and methylation each
contribute 30–50% of the kernel weight in almost all cancers, the
contributions of point mutations and copy number are highly
variable. We observe some association between these kernel
weights and the C/M classification of cancers14, with M-type
cancers, such as endometrial and colorectal cancers having high
contributions from point mutations while copy number changes
contribute more to subtyping of some C-type cancers, such as
ovarian cancer. CIMLR can thus give us insight into which data
types are most informative for subtyping in different cancers.

Finally, all other approaches except SNF proved impractically
time-consuming and computationally intensive to run (on the
order of days using 64 cores for a single configuration), while
CIMLR takes minutes to run on a laptop for each cancer type. In
summary, we find that multi-omic data integration using CIMLR
is the most effective method for integrative subtyping based on
technical performance, discovery of clinical and biological
differences, and practical usability.

Biological validation of CIMLR on lower-grade gliomas.
Lower-grade (also called low-grade) gliomas are a well-studied
example for genomic subtyping, which is why we chose it for
validation of CIMLR via reproduction of known results. Three
subtypes of lower-grade gliomas have been characterized15, based
on IDH1/2 point mutations and chromosome 1p/19q codeletion.

CIMLR finds 3 to be the best number of clusters for lower-
grade gliomas, with additional peaks at 7 and 13 (Fig. 2a). The
three clusters show strong separation (Fig. 2b) and correspond to
the known molecular subtypes. Cluster 1 is composed almost
entirely of IDH-wild type samples with a loss of chromosome 10
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and gain of chromosome 7. Cluster 2 (non-codel) is composed of
mostly IDH mutant samples with additional point mutations in
TP53 and ATRX. Cluster 3 (codel) is composed of IDH mutant
tumors with a chromosome 1p/19q codeletion (Fig. 2c). The
IDH-wild type cluster has the worst overall and disease-specific
survival, followed by the non-codel cluster (Fig. 2d).

A recent study2 comprising lower-grade gliomas and glioblas-
tomas hinted at a finer classification of these tumors, finding a
CIMP-low subgroup of IDH mutant non-codel tumors, with
lower methylation and worse survival than the rest of the non-

codel group. The codel group, on the other hand, was not divided
further. To further characterize lower-grade gliomas, we inves-
tigated the results by CIMLR for seven clusters, which are near-
perfect subsets of the three major clusters (Fig. 2e). We find that
the codel and non-codel groups are divided into three subclusters
each. In both groups, there are two CIMP-high subclusters and
one CIMP-low subcluster (Fig. 2f).

We examined the subclusters of cluster 2. Subcluster 2c is
characterized by reduced methylation (Fig. 2f), similar to the
CIMP-low subgroup described previously2. The three subclusters
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Fig. 1 CIMLR overview and survival analysis. a CIMLR workflow. Each data type is arranged as a matrix where rows are patients and columns are genes. All
matrices are then normalized so that values range from 0 to 1, so that all data types have the same range. For each data type, CIMLR learns weights for
multiple kernels (each kernel is a measure of patient-to-patient distance). The number of clusters C is determined by a heuristic based on the gap statistic.
The method then combines the multiple kernels into a symmetric similarity matrix with C blocks, where each block is a set of patients highly similar to each
other. The learned similarity matrix is then used for dimension reduction and clustering into subtypes. The clusters are evaluated by visualization as a 2-D
scatter plot and survival analysis. The molecular features significantly enriched in each cluster are listed, and finally, pathway activity is compared. b Left:
Contributions (measured as fraction of total kernel weight) by each data type. Right: Results of survival analysis on the best clusters for 36 cancer types.
Gray bars represent the 27 cancer types for which significant differences in patient survival were obtained between clusters; black bars represent the
remaining cancers. *PFI; **DSS; ***DFI. Otherwise: overall survival
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have significantly different overall (log-rank p= 0.043) and
disease-specific (log-rank p= 0.012) survival (Fig. 2g). Analysis
of pathway activity scores16 showed that they have significantly
different activity of the PI3K, MAPK, and hypoxia pathways
(Fig. 2h). Further, subcluster 2a, which has the worst survival
outcomes, is associated with more copy number changes than 2b
or 2c; 68% of samples in 2a have a partial loss of 19q
(19q13.31–13.43), unlike the complete-arm loss in the codel
group. 57% have a loss of 11p (Fig. 2i), including the tumor

suppressor TRIM3, which also showed reduced expression in the
same samples. TRIM3 loss has been associated with increased
proliferation and stem cell-like properties of glioblastomas17.

Thus, CIMLR reproduces known molecular subtypes and also
reveals novel subgroups within lower-grade gliomas. This
provides empirical evidence that CIMLR can discover meaningful
and robust biological subtypes using multi-omic data. We
therefore evaluated the clusters found by CIMLR for all cancer
types. To characterize the biological changes that lead to survival
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Fig. 2 Validation of CIMLR on 282 lower-grade gliomas. a Plot of separation cost (y-axis) showing 3 as the best number of clusters and 7 and 13 as
secondary peaks. b 2-D visualization of the three clusters. c Differences in molecular features between the three clusters. Each column represents a
sample. Point mutations are represented by green bars, copy number losses by blue bars and gains by red bars. d Kaplan–Meier curves showing overall
survival for the three clusters. e Bar plot showing the further separation of the three clusters into seven subclusters. f Boxplots showing average
methylation beta value (y-axis) for patients belonging to each of the seven subclusters (x-axis). g Kaplan–Meier curves showing disease-specific survival
for the three subclusters of cluster 2. h Boxplots showing the pathway activity16 for PI3K, MAPK and Hypoxia pathways, for patients belonging to the three
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Table 1 Comparison of CIMLR with other integrative subtyping methods across 36 cancer types

CIMLR (multi-omic) CIMLR
(methylation only)

CIMLR
(expression only)

iCluster+7 BayesCC6 PINS8 SNF4

TCGA (32 cancers)
Overall survival 19 12 12 14 10 12 12
All survival metrics 23 14 20 18 11 17 16
Silhouette 0.81 ± 0.22 0.81 ± 0.09 0.84 ± 0.09 −0.07 ± 0.54 0.09 ± 0.08 0.00 ± 0.07 0.00 ± 0.00
Stability 0.89 ± 0.08 0.91 ± 0.05 0.91 ± 0.04 0.25 ± 0.32 NA NA NA
Pathway activity 26 24 26 17 21 26 25
TARGET13 (4 cancers)
Overall survival 4 2 3 1 0 1 3
Silhouette 0.86 ± 0.05 0.83 ± 0.08 0.84 ± 0.09 0.26 +/- 0.16 0.09 ± 0.11 0.06 ± 0.10 −0.20 ± 0.03
Stability 0.94 ± 0.04 0.95 ± 0.06 0.93 ± 0.05 0.68 +/- 0.14 NA NA NA
All (36 cancers)
All survival metrics 27 16 23 19 11 18 19

Overall survival: Number of cancer types for which a significant (log-rank p < 0.05) difference in overall survival was observed between clusters. All survival metrics: number of cancer types for which a
significant (log-rank p < 0.05) difference in any available survival metric was observed between clusters. Stability: normalized mutual information (NMI) of the clusters discovered by repeated k-means
clustering (for methods that use k-means clustering). Pathway activity: Number of cancer types for which a significant (Kruskal–Wallis p < 0.05) difference in the activity of any of 11 cancer-associated
signaling pathways was observed between clusters. Data for pathway activity was available for 27 cancer types16. See Methods for details of calculations. Silhouette and stability are reported as mean ±
standard deviation
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differences between clusters, we identified genetic alterations that
were enriched in specific clusters, and used gene set enrichment
analysis (GSEA) and PROGENy16 to identify cancer-related
biological pathways that were activated differently between
clusters. Below we present results for eight cancers where we
obtain a significant difference in survival and improve over
previous clustering studies.

Liver hepatocellular carcinoma. Hepatocellular carcinoma is
associated with several risk factors including chronic hepatitis B
virus (HBV) and hepatitis C virus (HCV) infection, and alcohol
consumption. iCluster+ has been used to find three integrative
subtypes18; however, there was no significant difference in patient
outcomes, although some differences were seen in an external
cohort that was tracked over a longer time. CIMLR separates 359
liver hepatocellular carcinomas into eight clusters, associated with
significant differences in overall (Fig. 3a) and disease-specific
survival within the cohort.

Clusters 1, 2, and 3 have relatively high overall and disease-
specific survival. We do not observe any common point
mutations or copy number changes in cluster 1 (Fig. 3b);
however, this may be due to the low purity and higher immune
infiltration of these tumors19. Cluster 2 is associated with HBV
infection (60% samples) and Asian ethnicity. Although most of
these tumors are wild-type for TP53, they show gain and
increased expression of MDM4, which encodes a p53 repressor,
and low p53 pathway activity16 (Fig. 3c). This cluster has a
universal loss on chromosome 1p including the succinate
dehydrogenase gene SDHB, accompanied by reduced SDHB
expression. Reduced SDHB blocks respiration leading to a
metabolic shift toward glycolysis; the accumulation of succinate
also inhibits demethylases leading to a CIMP (high methylation)
phenotype20, which we observe in this cluster (Fig. 3d). This
cluster also displays losses on chromosome 16, including the
tumor suppressors CYLD and TSC2, and the DNA repair gene
PALB2, as well as reduced expression of all three. It is also
enriched (28% samples) for mutations in AXIN1, a tumor
suppressor gene that regulates the Wnt signaling pathway. GSEA
shows that this cluster is enriched for tumors with reduced
expression of genes for oxidative phosphorylation and the G1/S
checkpoint.

Cluster 3 is enriched for mutations in CTNNB1 (beta-catenin).
While CTNNB1 mutations are also common in other clusters, the
tumors in cluster 3 also display high expression of GLUL
(Glutamine synthase), a well-characterized target of beta-
catenin21, suggesting that beta-catenin activation leads to
glutamine synthesis and cellular proliferation in these tumors.

Patients in cluster 6 are more likely to be female (Fisher’s test p
= 0.001), non-drinkers, and do not have HBV or HCV infection.
This cluster is enriched for mutations in the tumor suppressor
BAP1, which is involved in chromatin remodeling as well as
double-strand break repair (42% samples). 63% of samples also
share a loss of BAP1 on 3p, along with reduced expression. These
tumors have high DNA methylation, a phenotype previously
associated with BAP1 mutations in renal cancers22, and
frequently lack the 8p loss/8q gain that is seen in other clusters.
In addition, they show strongly reduced expression of genes for
normal hepatocyte functions, such as bile acid metabolism, fatty
acid metabolism, xenobiotic metabolism, and coagulation.

Clusters 4, 7, and 8 are associated with TP53 point mutations,
as well as losses on 13q (RB1) and 17p (MAP2K4, TP53).
However, clusters 7 and 8 have significantly worse overall survival
than cluster 4 (log-rank p= 0.045 and p= 0.036 respectively).
Both show increased expression of Myc and E2F target genes, as
well as genes involved in mTORC1 signaling and the mitotic

spindle. In addition, cluster 8 shows reduced expression of genes
involved in normal hepatocyte function (as seen in cluster 6),
higher immune infiltration and macrovascular invasion. p53 and
PI3K pathway activities16 are significantly associated with the
clusters (p < 10−12 for both, Kruskal–Wallis test), with cluster
8 showing the lowest p53 activity and highest PI3K activity.

Lung adenocarcinoma. Lung adenocarcinoma, often caused by
smoking, is the leading cause of cancer death globally. Previous
studies identified transcriptional23 and histological24 subtypes, as
well as six integrated clusters9, which, however, showed no sig-
nificant association with patient survival. CIMLR separates 188
lung adenocarcinomas into eight clusters, significantly associated
with overall and disease-specific survival (Fig. 3e).

Clusters 1–3 are predominantly wild-type for TP53, whereas
the remaining clusters (4–8) are associated with TP53 mutations
(Fig. 3f). In general, the TP53 mutant clusters are associated with
worse survival outcomes; the exception is cluster 4, which has
significantly better overall and disease-specific survival outcomes
than the other TP53-mutant clusters, comparable to clusters 1–3
(Fig. 3h).

Cluster 1 is characterized by loss of 19p, including the tumor
suppressor STK11; this is associated with reduced STK11
expression. It is enriched for point mutations in STK11 and
KEAP1, as well as high expression of CCND3 (cyclin D3), the
transcriptional regulator MUC1, the Wnt pathway activator
PYGO2 and the p53 inhibitor MDM4. In addition, it shows low
DNA methylation (Fig. 3g), high expression of genes for fatty acid
metabolism and peroxisome function, and low expression of
genes involved in apoptosis and the G2/M checkpoint.

Cluster 3, like cluster 1, has low methylation, and is associated
with STK11 loss and point mutations. In addition, it is enriched
for point mutations in ATM and KRAS. It has a gain on 14q and
losses on 1p, 21q (BTG3, PRMT2, HMGN1), and 15q (FAN1), as
well as reduced expression of those genes. This cluster is
associated with high expression of the oncogene KIT and the
chromatin modifiers CHD7 and SUDS3, as well as high
expression of genes involved in membrane fusion and budding,
and the unfolded protein response.

Among the five TP53-mutated clusters, cluster 4, which has the
best outcomes, has a loss on chromosome 15, as well as low
expression of genes involved in DNA repair and oxidative
phosphorylation. Interestingly, tumors in this cluster are enriched
for splice-site mutations in TP53 (20% of TP53 mutations in this
cluster), and mutations in exon 4 of TP53 (25%), whereas the
other clusters are dominated by missense and nonsense
mutations in exons 5–10. However, neither exon 4 nor splice
site mutations, nor both combined, were significantly associated
with survival in this dataset.

Cluster 6 is a small cluster of 14 samples, associated with high
DNA methylation, KRAS mutations and increased expression of
the chromatin remodeling factor SATB2. Finally, cluster 8 shows
the worst overall survival; it is associated with males, a high rate
of point mutations, and low methylation. In addition to TP53
point mutations, it has a loss of 19p (MAP2K7, STK11; >50%
samples also have reduced expression of both these genes), high
expression of the RNA methyltransferase NSUN2, and high
expression of genes for the mitotic spindle, Myc targets, E2F
targets, and mTORC1 signaling.

Head and neck squamous cell carcinoma. Head and neck
squamous cell carcinomas (HNSCCs) are very heterogeneous in
etiology and phenotype. They are stratified by tumor site, stage
and histology, and human papilloma virus (HPV) has been
associated with better patient outcomes25.
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We separate 495 HNSCCs into eight subtypes, which are
significantly associated with overall (Fig. 4a) and disease-specific
survival. Tumors in clusters 1 and 2 are predominantly HPV+
and TP53 wild-type (Fig. 4f). They are found mostly in the
tonsils and base of tongue (Fig. 4e), and share a loss on 11q.

These HPV+ clusters have significantly higher overall (log-rank
p= 6.1 × 10−3) and disease-specific (log-rank p= 2.1 × 10−3)
survival than the remaining clusters.

However, cluster 2 has significantly worse disease-specific
survival than cluster 1 (Fig. 4b), and differs in gene expression.
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While cluster 1 is associated with high expression of 59 genes
including the oncogenes DEK and PIK3CA, cluster 2 shows
elevated NFKB2 expression, and reduced expression of CDH1 and
MAP2K4. GSEA shows that tumors in cluster 2 also show
reduced expression of genes involved in PI3K/AKT/mTOR
signaling. Consistent with these features, cluster 2 has signifi-
cantly higher NFkB pathway activity than cluster 1, whereas
cluster 1 has significantly higher activity of the PI3K pathway16

(Fig. 4c). Finally, 62% of the samples in cluster 2 have loss of
chromosome 3p, compared to 27% of cluster 1. 3p loss, occurring
jointly with HPV status, has been associated with worse
prognosis26.

The remaining six clusters are HPV-negative and tend to have
point mutations in TP53. We do not find significant survival
differences within this group, although they differ in molecular
features. Cluster 4 has high DNA methylation (Fig. 4d) and is
enriched for females and nonsmokers. This cluster lacks the
common 3q gain but is enriched for point mutations in CASP8,
FAT1, HRAS, HUWE1 and the histone methyltransferase
KMT2B. Clusters 5, 6, 7 and 8 all have high genomic instability.
However, cluster 5 is associated with loss of function of the
histone methyltransferase NSD1; 68% of the samples have a point
mutation in NSD1 while an additional 6% have homozygous
deletion of this gene. Tumors in this cluster are hypomethylated,
a pattern previously associated with NSD1 loss27, and have losses
on 13q and 9p.

Cluster 8, which has the highest genomic instability, is enriched
for a gain on 7q (including SMURF1; also increased in
expression) and a loss on 4q, and high expression of 35 genes
including PIK3CA and the transcriptional regulator YEATS2, as
well as low expression of the ubiquitin-conjugating enzyme
UBE2D3, a phenotype linked to cell cycle progression, reduced
apoptosis, and telomere stability28.

Clear cell renal cell carcinoma. Clear cell renal cell carcinomas
are the most common kidney cancers. Common genetic altera-
tions include mutations in VHL and PBRM1, 3p loss and 5q gain.
Using 260 clear cell renal cell carcinoma samples, CIMLR finds
two cluster number peaks, at 4 and 10.

The four major clusters show significant differences in overall
(Fig. 5a) and disease-specific survival. Clusters 1 and 2 have the
best survival outcomes; cluster 2 shows higher genomic
instability, particularly a gain on chromosome 7 (Fig. 5b). Cluster
3 has significantly worse survival outcomes than clusters 1 and 2
(log-rank p= 0.022), and is characterized by a loss on chromo-
some 14, including the tumor suppressor WDR20, which also
shows reduced expression; this gene suppresses growth and
apoptosis in renal cancer cell lines29. Cluster 4 is a small cluster
with significantly worse overall and disease-specific survival than
the other three clusters. These tumors have only one point
mutation each in coding regions (mostly in VHL) (Fig. 5c), high

hypoxia pathway activity16 (Fig. 5d), low expression of the
chromatin modifier SETD2, and high expression of the helicase
DDX11, which is overexpressed in multiple cancers and
associated with proliferation and survival in melanomas30.

On examining the split into 10 clusters, we found that several
of these were subsets of the four major clusters. Interestingly, a
subset of cluster 1, characterized by fewer copy number
alterations, shows significantly worse overall (Fig. 5e) and
disease-specific (log-rank p= 0.013) survival than the rest of
cluster 1. We also identified a subcluster within cluster 3 which
shows significantly better overall (Fig. 5f), and disease-specific
(log-rank p= 0.004) survival than the rest of cluster 3. This low-
CNA group lacks a loss on chromosome 9 (including NOTCH1
and the tumor suppressor TSC1) which is present in the rest of
the cluster. Instead, it has reduced expression of several genes
involved in DNA repair (CCNK, MLH3, MTA1, APEX1).

Cutaneous melanoma. Cutaneous melanoma is particularly dif-
ficult to subtype since it frequently has a high mutational burden.
These tumors have been classified on the basis of common
mutations; however, this classification is not predictive of patient
outcomes10. Instead, CIMLR separates 262 cutaneous melanomas
into four clusters significantly associated with overall and disease-
specific survival, and a second-best split at 10. Clusters 1, 2, and 3
are not significantly different in terms of survival; however,
cluster 4 has significantly worse overall and disease-specific sur-
vival than all other clusters (Fig. 5g).

Cluster 1 is characterized by relatively low purity and high
immune cell infiltration (Fig. 5h). Cluster 2 has high expression of
genes involved in mTORC1 signaling and DNA synthesis. While
the outcomes for these patients are similar, on examining the split
into 10 clusters, we identify a subcluster (2a) that has significantly
worse disease-specific survival than the rest of cluster 2, and is in
fact comparable to cluster 4 (Fig. 5i). This subcluster has a
distinctive expression pattern, which does not appear to be driven
by copy number. This includes high expression of genes for
autophagy, organelle fusion and protein transport, and low
expression of genes involved in the G2/M checkpoint, splicing,
DNA repair, RNA metabolism, and chromatin remodeling.

Cluster 3 is differentiated by a loss of 47 genes on chromosome
6q and by reduced expression of genes involved in oxidative
phosphorylation. Finally, cluster 4 is distinguished by a low point
mutation burden (~80 coding mutations per tumor) (Fig. 5j), as
well as high expression of three genes (BTBD9, CDYL, TFAP2A)
and high methylation at 100 promoters.

Breast cancer. Breast cancers are frequently classified by intrinsic
subtypes1 or by ER, PR, and HER2 receptors. Another classifi-
cation, IntClust31, comprises 10 clusters based on copy number
and expression. CIMLR separates 663 breast tumors into 13
clusters, which are significantly different in overall (Fig. 6a) and

Fig. 3 Liver hepatocellular carcinomas and lung adenocarcinomas. a Kaplan–Meier curves showing overall survival for eight clusters of liver hepatocellular
carcinoma. b Selected clinical and molecular features that differentiate the eight clusters of liver hepatocellular carcinoma. Each column represents a
patient. For gender, alcohol, HBV, and HCV, gray bars represent missing data. Black bars represent females, alcohol consumption, HBV or HCV infection.
Tumor purity is shown along a white (low) to black (high) spectrum. Copy number alterations (CNA) and RNA expression are shown along a blue (low) to
red (high) spectrum. c Boxplots showing pathway activities16 for PI3K and p53 pathways, for each of the eight clusters of liver hepatocellular carcinoma.
d Boxplots showing average methylation beta value (y-axis) for patients belonging to each of the eight clusters of liver hepatocellular carcinoma (x-axis).
e Kaplan–Meier curves showing overall survival for eight clusters of lung adenocarcinoma. f Selected clinical and molecular features that differentiate the
eight clusters of lung adenocarcinoma. Each column represents a patient. For gender and smoking, gray bars represent missing data. Black bars represent
females and smokers respectively. Tumor purity is shown along a white (low) to black (high) spectrum. RNA expression is shown along a blue (low) to red
(high) spectrum. g Boxplots showing average methylation beta value (y-axis) for patients belonging to each of the eight clusters of lung adenocarcinoma.
h Kaplan–Meier curves showing overall survival for the five clusters associated with TP53 mutations in lung adenocarcinoma. All p-values are calculated
using the log-rank test. For all boxplots, the center line represents the median, box edges represent first and third quartiles, and whiskers represent ±1.5 IQR
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disease-specific survival. Ten of these are predominantly ER+
while three are predominantly triple-negative (Fig. 6c and d).
There are significant differences in survival within each group
and we examine them separately.

Among the predominantly ER+ clusters, Clusters 1, 2, and
3 share a loss on 11q that includes SDHD, ATM, ARHGEF12, and

EI24. Cluster 1 has the best survival outcomes and is enriched for
point mutations in GATA3 (71% samples). On the other hand,
clusters 2 and 3 are enriched for HER2+ tumors and have gains
on 17q and 20, as well as a loss on 17p, including RPA1, which
encodes an ssDNA-stabilizing protein. In addition, Cluster 3 has
a gain on 16p, which is shared by clusters 4 and 5, and is enriched
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for patients with African ancestry. Cluster 12 is a small cluster of
11 patients that display global DNA hypermethylation (Fig. 6b)
and high expression of genes for telomere maintenance.

Cluster 11 has significantly worse survival outcomes than the
other predominantly ER+ clusters (except clusters 4 and 12
which have small sample size). This cluster is differentiated from
the other ER+ clusters by methylation (it shows significant
hypermethylation of 128 promoters and hypomethylation of 186
promoters) and by higher MAPK pathway activity16. It has low
expression of NEURL4; this gene encodes a regulator of
centrosome organization and its depletion results in mitotic
abnormalities in human cell lines32. This cluster also has high
expression of TAF2, encoding a transcriptional regulator
associated with dedifferentiation and proliferation in ovarian
cancer33.

Three clusters—7, 8, and 13—are dominated by triple-negative
tumors. All three are characterized by TP53 mutations and
similar patterns of copy number changes, expression and
methylation, and clusters 8 and 13 are enriched for patients with
African ancestry. However, cluster 13 has significantly worse
survival outcomes than clusters 7 and 8 (log-rank p= 0.031 and
p= 0.045, respectively, for disease-specific survival). This cluster
is differentiated from clusters 7 and 8 by elevated expression of
230 genes and reduced expression of 442 genes including the
tumor suppressors APC, CREB1, NCOR1, and NUP98. In
addition, it has significantly higher VEGF activity than clusters
7 and 816, suggesting higher angiogenesis. It is notable that the six
ER+ tumors in this cluster share the expression changes
described above.

Prostate cancer. CIMLR finds three clusters in a dataset of 490
primary prostate tumors. For this cancer, we do not consider
overall survival as very few patients died during the 10-year fol-
low-up period; instead, we observe significant differences in
progression-free interval (Fig. 6e) and disease-free interval.

Clusters 1 and 2 differ primarily in expression, as well as
methylation of 13 promoters. Cluster 3 has significantly worse
outcomes than both clusters 1 and 2. It is characterized by high
genomic instability (Fig. 6f), including loss of the tumor
suppressor TRIM35 on chromosome 8, reduced expression of
the tumor suppressor RHOBTB2, and high promoter methylation
(Fig. 6g). It also has higher activity of the VEGF pathway and
lower activity of the apoptotic Trail pathway (Fig. 6h). 63% of the
samples in this cluster have p53 mutation and/or loss, and the
cluster has lower p53 pathway activity than the others16.

Apart from the detailed analysis for eight cancers presented
above, we provide clustering results for all cancers (Supplemen-
tary Data 7, Supplementary Data 8), and summarize the main
features of the clusters for each cancer (Supplementary Note 2,
Supplementary Figs. 1–36).

CIMLR validation on unseen data. For five cancers, we were able
to find sufficient additional multi-omic data to validate our bio-
logical findings. For lower-grade glioma, clear cell renal cell

carcinoma, cutaneous melanoma and breast cancer, we obtained
new unseen samples recently released by TCGA34. For prostate
cancer, we used a non-TCGA dataset35. For each cancer, we
classified the tumors in the new dataset into high-risk and low-
risk groups based on the original clusters, using genomic features
that differed significantly between clusters. We then assessed
whether the survival differences discovered in the original dataset
were reproduced in the test data (Table 2).

For example, for lower-grade gliomas, we classified 226 tumors
into the three major clusters found by CIMLR and validated that
Cluster 1 has lower survival than the rest of the population. We
then selected the tumors predicted to belong to cluster 2 and
classified them into high-risk (subcluster 2a) and low-risk
(subclusters 2b+ 2c) groups. Our novel finding that tumors of
subcluster 2a have worse overall survival outcomes than the rest
of this cluster was validated in this dataset. For clear cell renal cell
carcinoma, we classified 138 samples as high (cluster 4),
intermediate (cluster 3) or low-risk (cluster 1+ cluster 2). Only
two samples in the validation set were classified into the high-risk
group (cluster 4). However, samples classified as intermediate risk
(cluster 3) had significantly worse overall survival than samples
classified as low-risk. Similarly, we validated worse survival
outcomes for cluster 4 in cutaneous melanoma, cluster 11 for
non-triple negative breast cancers, and cluster 3 for prostate
cancer, in their respective external datasets. This analysis
demonstrates that the survival differences discovered by CIMLR
are reproducible and potentially clinically useful.

Further, in order to ask whether multi-omic subtyping results
in prognostic value beyond clinical variables commonly employed
to predict survival, we also evaluated the prognostic value of the
CIMLR clusters using Cox proportional hazard regression in both
the discovery and validation sets. We found that CIMLR clusters
were associated with significant hazard ratios and high con-
cordance index (CI)36 values. We also note that CI values were
similar in each of the matched discovery and validation sets.
Moreover, in 11 cancers in the discovery sets, as well as 3 of the
external validation sets, CIMLR clusters were associated with
significant hazard even after adjusting for common clinical
variables (Supplementary Note 1, Supplementary Data 5, Supple-
mentary Data 6). These results provide strong evidence that
multi-omic subtyping using CIMLR offers significant prognostic
value beyond that of commonly used clinical features.

Discussion
The importance of integrative cancer subtyping has been recog-
nized for several years, and multiple algorithms have been
developed to exploit the growing amount of available multi-
dimensional data4–8. CIMLR addresses many of the weaknesses
of current integrative subtyping algorithms, outperforming all
tested methods in terms of cluster separation and stability. Fur-
thermore, most of the alternative algorithms proved impractically
time-consuming and computationally intensive to run on the
considerable volume of data analyzed in this study. As the
amount of genomic data is growing rapidly and more types of

Fig. 4 Head and neck squamous cell carcinomas. a Kaplan–Meier curves showing overall survival for the eight clusters of head and neck squamous cell
carcinomas. p-Value was calculated by the log-rank test. b Kaplan–Meier curves showing disease-specific survival for clusters 1 and 2. p-Value was
calculated by the log-rank test. c Boxplots showing pathway activities16 for PI3K and NFkB pathways in clusters 1 and 2. p-Values were calculated using the
Wilcoxon test (one-sided). d Boxplot showing average methylation beta value (y-axis) for patients belonging to each of the eight clusters. e Bar chart
showing the fraction of tumors (y-axis) in each cluster (x-axis) according to the primary site of the tumor. f Selected clinical and molecular features that
differentiate the eight clusters. Each column represents a patient. For gender, smoking and HPV, gray bars represent missing data. Black bars represent
females, smokers, and HPV infection. Tumor purity is shown along a white (low) to black (high) spectrum. Copy number alterations (CNA) and RNA
expression are shown along a blue (low) to red (high) spectrum. For all boxplots, the center line represents the median, box edges represent first and third
quartiles, and whiskers represent ± 1.5 IQR
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data are becoming available (such as gene fusions, structural
variants, proteomes, miRNA, and ATAC-Seq), efficient methods
are essential. Of the available methods, CIMLR is not only
superior in terms of performance but is also capable of practically
scaling to large-scale analyses with many more data types. We
therefore anticipate significant use of this method in the future.

The subtyping achieved by CIMLR demonstrates both biological
and clinical relevance. The discovered clusters exhibit significant
differences in the activity of oncogenic and tumor suppressor path-
ways, and show significant differences in patient survival in 27 of 36
cancer types. The discovered subtypes provide valuable biological
insights and are more predictive of survival than other commonly
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used classifications. For example, for thymomas the CIMLR subtypes
perform better at predicting survival than histological classification
(Supplementary Note 2), while the CIMLR subtypes of cutaneous
melanoma are much better at predicting survival than classification
based on BRAF, RAS, and NF1 mutations.

For head and neck squamous cell carcinomas, we separate
HPV+ tumors into two groups with significantly different survival
outcomes and pathway activity; a previous subtyping attempt
using gene expression did not predict survival37. Similarly, in clear
cell renal carcinomas, where chromosome 14 loss has been asso-
ciated with poor prognosis38, we not only find a cluster enriched
for chromosome 14 loss but show that this is divided into two
subclusters only one of which is associated with poor prognosis. In
breast cancer, we separate triple-negative cancers for the first time
into three clusters, one of which is considerably more aggressive
than the others and is associated with reduced expression of
several tumor suppressor genes. Finally, we validate several of the
survival differences discovered by CIMLR in external datasets,
showing that CIMLR discovers molecular subtypes associated with
robust, reproducible clinical outcomes.

Our results demonstrate the value of machine learning-
based multi-omic subtyping in cancer, and the need for more
effective and practically usable algorithms. As more data
becomes available, the predictive power of CIMLR and related
approaches will continue to increase. We expect that subtyp-
ing will be useful in stratifying patients for prediction of
outcomes and drug response to improve personalized treat-
ment. In addition, our work can be used as a resource for
future studies aimed at understanding the biology and evo-
lution of these cancers.

Methods
Data preprocessing. We considered all the 32 cancer types studied by TCGA and
collected, for each of them, multi-omic data comprising somatic point mutations
(as TCGA Mutation Annotation Format files and converted to binary values, 0 to
report absence of a mutation in a gene and 1 to report its presence), copy number
alterations (log2 ratios between tumor and normal tissue), methylation (beta-
values, i.e. continuous values between 0 and 1), and expression (z-scores nor-
malized to normal tissue or to tumors with diploid genomes). For the TARGET
data, we considered four pediatric tumors: acute myeloid leukemia, Wilms tumor,
neuroblastoma, and osteosarcoma. For each of them we collected multi-omic data
comprising copy number alterations (log2 ratios between tumor and normal tis-
sue), methylation, and RNA expression.

Moreover, we removed extreme values for both copy number log2 ratios and
expression z-scores by setting values greater than 10 to 10 and values lower than
−10 to −10. We refer to TCGA guidelines for a detailed description of the data
obtained from the consortium at the following Website: https://wiki.nci.nih.gov/
display/TCGA. All the considered data were within the Open Access Data Tier.

Each data type was modeled as a matrix N ×M, where N represents the samples,
i.e., the patients, and M a set of genes. Each data matrix was normalized so that
values ranged between 0 and 1.

CIMLR. We extended the original implementation of SIMLR11 to use multi-omic
data. The version of SIMLR adopted here is the default version rather than the
large-scale version which leaves out the similarity enhancement by diffusion step.

The original method11 takes as input a dataset where rows are samples and
columns are genes, and constructs a set of Gaussian kernels for the dataset by
fitting multiple hyperparameters. Gaussian kernels are defined as follows:

K xi; xj
� �

¼ 1

ϵij
ffiffiffiffiffi
2π

p exp �
xi � xj

���
���
2

2

2ϵ2ij

0
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1
CA ð1Þ

where xi and xj denote the ith and jth rows (i.e., samples) of the input data and ϵ2ij is
the variance.

For CIMLR, we represented each of the data types as a patient × gene matrix.
We then performed the above procedure for each data type independently, to
obtain a set of 55 gaussian kernels with different variance per data type. The
number of 55 kernels per data type was empirically derived (Supplementary
Table 4, Supplementary Fig. 37).

Then, we solved the same optimization problem described in SIMLR11, but
considering the Gaussian kernels for all the data types together to build one
patient × patient similarity matrix. This optimization problem is defined as follows:

minimizeS;L;w �P
i;j;l

wlKl xi; xj
� �

Sij þ β Sk k2Fþγ tr LT IN � Sð ÞLð Þ þ ρ
P
l
wl logwl

subject to LTL ¼ IC ;
P
l
wl ¼ 1;wl � 0;

P
j
Sij ¼ 1; and Sij � 0:

ð2Þ

Here, N is the number of patients, C is the number of clusters, i is the row
(sample) index, j is the column (gene) index, and l is the kernel index which ranges
from 1 to (55 × number of data types). In the optimization framework, we solve for
S, i.e., the N ×N similarities matrix; moreover, wl represents the weight of each
Gaussian kernel, IN and IC are N ×N and C × C identity matrices, β and γ are non-
negative tuning parameters, Sk kF is the Frobenius norm of S, and L is an auxiliary
low-dimensional matrix enforcing the low rank constraint on S.

Number of clusters. We also extended the method to estimate the best number of
clusters presented in SIMLR11 based on separation cost to multi-omics. For a given
value of C, we aim at finding an indication matrix Z(R)= XR, with X being the
matrix of the top eigenvectors of the similarity Laplacian and R a rotation matrix.
Let:

½MðRÞ�i ¼ maxj Z Rð Þ½ �i;j ð3Þ

Then, we can define the following cost function to be minimized:

J Rð Þ ¼
X
i;j

½ZðRÞ�2i;j
½MðRÞ�2i

ð4Þ

The best number of clusters is the one for which we obtain the largest drop in the
value of J(R) over the set of values we consider for C.

We considered 2–15 clusters for the cancer types where we had at least
150 samples, or a maximum of N/10 clusters (where N is the number of samples)
for smaller datasets.

Survival analysis. We used four outcome metrics provided by TCGA: overall
survival (OS), disease-specific survival (DSS), progression-free interval (PFI) and
disease-free interval (DFI), over a time interval of 10 years. For OS, we censored
data points corresponding to patients who died within 30 days or were over the age
of 80 at the beginning of the observation period. For TARGET, we only considered
OS data, censored in the same way as for TCGA. Clusters with only one sample
were removed prior to survival analysis. Associations between subtypes and out-
come were then calculated by Kaplan–Meier analysis using a log-rank test.

Fig. 5 Clear cell renal cell carcinomas and cutaneous melanomas a Kaplan–Meier curves showing overall survival for four clusters of clear cell renal cell
carcinoma. b Selected clinical and molecular features that differentiate the four clusters of clear cell renal cell carcinoma. Each column represents a patient.
Tumor purity is shown along a white (low) to black (high) spectrum. Copy number alterations (CNA) are shown along a blue (low) to red (high) spectrum.
c Boxplots showing the number of mutated genes in patients belonging to each of the four clusters of clear cell renal cell carcinoma. d Boxplots showing
pathway activity16 for hypoxia in the four clusters of clear cell renal cell carcinoma. e Kaplan–Meier curves showing overall survival for subsets of cluster 1.
f Kaplan–Meier curves showing overall survival for subsets of cluster 3. g Kaplan–Meier curves showing overall survival for the four clusters of cutaneous
melanoma. h Selected clinical and molecular features that differentiate the four clusters of cutaneous melanoma. Each column represents a patient. Tumor
purity is shown along a white (low) to black (high) spectrum. Copy number alterations (CNA), RNA expression and promoter methylation are shown along
a blue (low) to red (high) spectrum. i Kaplan–Meier curves showing disease-specific survival for patients belonging to cluster 2a and the remaining patients
belonging to cluster 2. j Boxplots showing the number of mutated genes in patients belonging to the four clusters of cutaneous melanoma. All p-values are
calculated using the log-rank test. For all boxplots, the center line represents the median, box edges represent first and third quartiles, and whiskers
represent ±1.5 IQR
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Cox regression analysis was performed to estimate hazard ratios associated with
individual clusters and to test whether significant associations between clusters and
survival outcomes remained after adjusting for common clinical features.
Univariate Cox regression was used to select significant (two-sided Wald test
p < 0.1) clinical features which were then included along with CIMLR clusters in a
multivariate Cox regression model. Patient age, gender, race, ethnicity, tumor stage,
and grade were taken into account where data was available. For prostate cancer,

Gleason score was taken into account. Five cancers with an insufficient number of
events to fit the Cox regression model were excluded from this analysis.

Survival analysis was carried out using the survival 2.41–3R package.

Significant feature selection. Molecular features significantly enriched in each
cluster were selected as follows. For each cluster, we carried out a hypergeometric
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test for enrichment of point mutations in each gene. We selected point mutations
with an FDR-adjusted p-value of less than 0.05.

To select genes significantly enriched for copy number alterations, we obtained
GISTIC thresholded copy number data for each sample from TCGA. We
considered a value ≥1 to represent gain of the gene and ≤−1 to be loss of the gene.
For each cluster, we used a hypergeometric test to assess whether the cluster was
significantly enriched for either loss or gain of the gene, and selected genes with an
FDR-adjusted p-value less than 0.05. For additional stringency and to select the
features that were most representative of an individual cluster, we further selected
only those genes that were altered in at least 2/3 of the samples in the cluster and
<1/3 of the samples in at least one other cluster.

To select expression changes that were significantly enriched within a cluster,
we considered a gene to be over-expressed when the z-score was ≥1, and under-
expressed if the z-score was ≤−1. For each cluster, we selected enriched genes using
the same criteria as for copy number.

For methylation, we considered a gene to be highly methylated when the beta-
value was ≥0.75 and unmethylated when the beta-value was ≤0.25. For each cluster,
we selected genes enriched for high or low methylation using the same criteria as
for copy number.

Classification of unseen data. To classify previously unseen samples into the
CIMLR clusters, we used random forest classifiers. Features were ranked on the
basis of the hypergeometric test described above and the threshold for selecting the
most significant features was tuned to obtain high (>80%) out-of-bag classification
accuracy on the discovery set. We used the ranger version 0.9.0 and caret version
6.0-79 R packages to train random forests and classify unseen samples. For all
cancers other than prostate cancer, all four input data types were used for classi-
fication. For prostate cancer, only expression and copy number data were available
for the validation set.

Pathway analysis and immune cell infiltration. GSEA was performed on each
cluster using the method of Segal et al.39. Gene sets (GO, Cancer Hallmarks,
KEGG, Reactome) were obtained from mSigDB40. PROGENy pathway activity
scores for 11 signaling pathways in TCGA patients were obtained from Schubert
et al.16. Estimates of tumor immune infiltration were obtained from Li et al.19. All
statistical analyses were carried out in R version 3.3.3.

Code availability. CIMLR is available for download at https://github.com/
danro9685/CIMLR. Both R and Matlab implementations are available. The Matlab
version was used in this paper.

Data availability
The authors confirm that all relevant data generated in this study are included in
the article and/or its supplementary information files.
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