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Objective: To develop and evaluate a deep learning model (DLM) for predicting the risk
stratification of gastrointestinal stromal tumors (GISTs).

Methods: Preoperative contrast-enhanced CT images of 733 patients with GISTs were
retrospectively obtained from two centers between January 2011 and June 2020. The
datasets were split into training (n = 241), testing (n = 104), and external validation cohorts
(n = 388). A DLM for predicting the risk stratification of GISTs was developed using a
convolutional neural network and evaluated in the testing and external validation cohorts.
The performance of the DLM was compared with that of radiomics model by using the
area under the receiver operating characteristic curves (AUROCs) and the Obuchowski
index. The attention area of the DLM was visualized as a heatmap by gradient-weighted
class activation mapping.

Results: In the testing cohort, the DLM had AUROCs of 0.90 (95% confidence interval [CI]:
0.84, 0.96), 0.80 (95% CI: 0.72, 0.88), and 0.89 (95% CI: 0.83, 0.95) for low-malignant,
intermediate-malignant, and high-malignant GISTs, respectively. In the external validation
cohort, the AUROCs of the DLM were 0.87 (95% CI: 0.83, 0.91), 0.64 (95% CI: 0.60, 0.68),
and 0.85 (95%CI: 0.81, 0.89) for low-malignant, intermediate-malignant, and high-malignant
GISTs, respectively. The DLM (Obuchowski index: training, 0.84; external validation, 0.79)
outperformed the radiomics model (Obuchowski index: training, 0.77; external validation,
0.77) for predicting risk stratification of GISTs. The relevant subregions were successfully
highlighted with attention heatmap on the CT images for further clinical review.

Conclusion: The DLM showed good performance for predicting the risk stratification of
GISTs using CT images and achieved better performance than that of radiomics model.

Keywords: gastrointestinal stromal tumors, risk assessment, deep learning, tomography, X-ray computed,
prediction model
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INTRODUCTION

Gastrointestinal stromal tumors (GISTs) are mesenchymal
neoplasms that mostly originate from the gastrointestinal tract
with variable malignant potential, which ranges from small
lesions with a benign behavior to aggressive sarcomas (1) and
account for 1% to 2% of gastrointestinal neoplasms (2). The
prevalence of GISTs is about 130 cases per million population (1,
3, 4). Evaluation of malignancy risk of GISTs is mainly based on
tumor size, location, and mitotic count through postoperative
specimens. These factors are combined in the National Institutes
of Health (NIH) risk category criteria (5), which stratify GISTs
into four risk categories: very low, low, intermediate, and high-
risk tumors. An accurate preoperative categorization of risk
classification can provide valuable information for evaluating
the adequacy of surgical resection and the need for adjuvant
treatment (6, 7).

Contrast-enhanced CT is widely recognized as the main
imaging method for the diagnosis, characterization, and
evaluation of curative effect in GIST patients (8, 9). In recent
years, multiple researches have evaluated the predictive CT
imaging features of the risk stratification of GISTs (10–13).
However, these subjective assessments are likely affected by the
individual experience and heterogeneous definition of imaging
features (14–17). Radiomics, which transforms medical images
into mineable high-dimensional data, allows to quantify lesion
heterogeneity, which cannot be evaluated by the naked eye (18,
19). Several studies have shown that radiomics based on CT scan
was of certain value for the prediction of malignancy in GISTs
(20–24).

Nevertheless, the radiomics approach depends heavily on
handcrafted feature engineering, which is vulnerable to human
biases and may result in a high superfluity of information (25).
Deep learning, as one of the powerful algorithms of
representation learning, has recently been widely applied in the
Frontiers in Oncology | www.frontiersin.org 2
field of diagnostic imaging and prediction owing to their
advantages of being fast, accurate, and reproducible (26, 27).
Theoretically, the risk stratification of GISTs by deep learning
may yield a great diagnostic approach. However, to the best of
our knowledge, this is the first-ever study that investigates
whether deep learning could be used as a tool to predict risk
stratification in GISTs.

Moreover, most of the existing studies assessing the risk
stratification of GISTs are based on single-center data, which
introduce bias to a model and limit its applicability. In this
multicenter study, we further investigate if a quantitative CT-
based deep learning approach can objectively predict the risk
stratification of GISTs, by developing and validating a deep
learning-based model on a large collection of patient data from
two different institutions.
MATERIALS AND METHODS

Characteristics of Patients
This two-center retrospective study was approved by the
institutional review board of both Shandong Provincial Hospital
and The Affiliated Hospital of Qingdao University. Patient
informed consent was waived for this retrospective analysis.

The inclusion and exclusion criteria of the patients are presented
in SupplementaryMaterial 1.1. From January 2011 to June 2020, a
total of 733 patients (352 men; mean age, 59.8 ± 10.1 years) with
GISTs were enrolled in this retrospective study. The study
population flow chart is illustrated in Figure 1. Demographic and
clinicopathologic characteristics, including age, gender, tumor
location, tumor size, and mitotic count, were derived from
medical records. The modified NIH criteria were used to stratify
the malignant potential of GISTs (5), as a verification of our model
(Supplementary Table 1). According to risk categories, the patients
in this study were divided into the low-malignant (very low and low
FIGURE 1 | Flow chart of patient inclusion and exclusion.
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risk), intermediate-malignant (intermediate risk), and high-
malignant (high risk) potential groups.

CT Image Acquisition and
Tumor Segmentation
All 733 patients underwent abdominal contrast-enhanced CT
examination covering the whole tumor. CT image acquisition
and retrieval procedure are described in Supplementary
Material 1.2. The regions of interest (ROIs) containing the
entire tumor were manually drawn on each CT image slice in
arterial, venous, and delayed phases with ITK-SNAP software
(Version 3.6.0, www.itksnap.org). The ROIs were drawn by one
radiologist and confirmed by another (BK and XW, with 6 and
20 years of experience, respectively, in abdominal imaging); both
were aware of the diagnosis of GISTs but blinded to the NIH risk
stratification. Besides, we randomly selected 30 patients with
three-phase CT image segmentation, and we compared the inter-
reader agreement for image segmentation by Dice similarity
coefficient (DSC).

Image Preprocessing
Data augmentation has been proven to help prevent network
overfitting and memorization of the exact details of the training
images. In our study, the following augmentations are applied:
rotation, scaling, and flipping (Supplementary Material 1.3).

Due to the imbalance of class number used in this study, the
information of the rare class may be ignored because it might be
underrepresented during training. To handle this problem, a
strategy of oversampling the rare classes was applied.
Frontiers in Oncology | www.frontiersin.org 3
In our dataset, the tumor size ranges from 10 to 240 mm
(Supplementary Figure 2), which made it challenging to crop
the ROIs containing the complete tumor from the original
images using a suitable patch size. Therefore, we proposed an
adaptive strategy according to the tumor size to preprocess the
samples (Supplementary Material 1.3), which could ensure that
the patches can contain the complete tumor region for big
tumors and not overscale for small tumors. Next, each input
patch was first normalized by Z-score standardization method,
where the voxel intensity was subtracted by 40 and then divided
by 250 and subsequently clipped to an intensity range of [−1, 1].

Development of the Deep Learning Model
The training of the deep learning model (DLM) involved two
steps: 1) tumor feature extraction and tumor classification; and 2)
multi-sequence-based feature fusion and patient diagnosis. A
detailed framework is described in Figure 2. Residual neural
network (ResNet) was applied to train the image data and to
build our neural network model (Supplementary Material 1.4).
To provide more insight for model decisions, an attention
heatmap of the GISTs was generated by gradient-weighted class
activation mapping (CAM) and then superimposed on the
original CT images so that the location of the actual tumor and
the region highlighted by the model could be compared.

Deep Learning Network for Extracting Risk
Stratification-Related Features
In the training stage, we propose to treat the arterial, venous, and
delayed phase images as independent samples to optimize the
FIGURE 2 | The overall gastrointestinal stromal tumors risk stratification framework. CAM, class activation mapping; A, arterial phase; V, venous phase; D, delayed
phase; FC, fully connected layer; GAP, global average pooling layer.
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network in the tumor level. We extracted deep features from the
three-phase images of each patient by using 3D SE-Residual
Network (28) to learn the GIST risk stratification-related features
(Figure 3). In this scheme, a total of 723 tumor samples (141 × 3
for low-malignant, 43 × 3 for intermediate-malignant, and 57 × 3
for high-malignant) were used as training data in the feature
extractor network.

The Decision Network for Patient Diagnosis
The three-phase deep learning features extracted by the network
are concatenated as a column feature vector, which is then
addressed to the classification network for training.

Training Details
The network architecture is implemented in PyTorch and
trained using NVIDIA Apex for less memory consumption
and faster computation. In our experiments, all the models are
trained from scratch, in four NVIDIA TITAN RTX graphics
processing units, and the inference time for one sample is
approximately 4.6 s in one NVIDIA TITAN RTX GPU.

Ablation Study
To evaluate the impact of hyperparameters, such as the different
loss function combinations on the model classification
performance, we adopted a strategy to gradually add the loss
Frontiers in Oncology | www.frontiersin.org 4
function to assess the different loss functions’ contribution to
the model.

Development of the Radiomics Model
In the radiomics model construction, a total of 2,600 quantitative
radiomics features were extracted from each tumor in each phase
using Pyradiomics package in Python software (29). Details of
the radiomics features are shown in Supplementary Material
1.5. The three-phase extracted features were subsequently
combined for model construction. Considering the relatively
large number of features, the least absolute shrinkage and
selection operator (LASSO) regression model was performed to
select the most valuable features in the training cohort. The
support vector machine (SVM) classifier was then used to
develop the radiomics model with a five-fold cross-validation
strategy in the training set. For the SVM classifier, a radial basis
function (RBF) kernel is used, and the hyperparameters were
automatically optimized for the best performance in the training
set by using Bayesian optimization method, instead of randomly
predefining hyperparameters as in conventional classifiers.

Statistical Analysis
Statistical analyses were conducted with R Studio (version
1.3.959) and Python (version 3.7) with p-value of less than
0.05 considered as statistical significance. To evaluate the
FIGURE 3 | The structure of 3D SE-Residual Network.
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performances of DLM and radiomics model, we adopted five
different metrics: areas under the receiver operating
characteristic curves (AUROCs), accuracy (ACC), sensitivity
(SEN), specificity (SPE), and F1 score (F1). AUROCs with 95%
confidence interval (CI) were calculated. Moreover, the
Obuchowski index was used to evaluate the significant level of
difference in diagnostic accuracy of DLM and radiomics model,
which is a non-parametric estimation method of the AUROCs
adapted for ordinal or nominal scale.
RESULTS

Patient Characteristics
A total of 733 GIST patients were split into three independent
cohorts: the training, testing, and external validation cohorts.
Three hundred forty-five patients (152 men; mean age, 59.1 ±
10.3 years) from Shandong Provincial Hospital diagnosed
between June 2013 to June 2020 were randomly assigned to
either the training cohort [241 patients (99 men; mean age,
59.2 ± 10.5 years)] and or the testing cohort [104 patients (53
men; mean age, 58.9 ± 9.8 years)] in a 7:3 ratio, using a stratified
random split in patient level. The external validation cohort
consisted of 388 patients (200 men; mean age, 60.4 ± 9.9 years)
diagnosed with GIST from The Affiliated Hospital of Qingdao
University between January 2011 and October 2019. In the
training cohort, 141 (58.5%) were low-malignant GISTs, 43
(17.8%) were intermediate-malignant GISTs, and 57 (23.7%)
were high-malignant GISTs. In the testing cohort, 61 (58.7%)
were low-malignant GISTs, 18 (17.3%) were intermediate-
malignant GISTs, and 25 (24.0%) were high-malignant GISTs.
In the external validation cohort, 137 (35.3%) were low-
malignant GISTs, 67 (17.3%) were intermediate-malignant
GISTs, and 184 (47.4%) were high-malignant GISTs. Patient
characteristics in the training, testing, and external validation
cohorts are presented in Table 1.

Diagnostic Performance of the Deep
Learning Model
The DLM achieved good performance in assessing risk
stratification of GISTs with the use of CT images, with the
overall AUROCs of 0.90 (95% CI: 0.84, 0.96) in the testing cohort
and 0.81 (95% CI: 0.77, 0.85) in the external validation cohort.
The ROCs are shown in Figures 4A, B.

The AUROCs for each grade were calculated to compare the
model’s performance for each tumor risk stratification (Table 2
and Supplementary Results 2.1). In the testing cohort, the ACC
and AUROCs for each stratification was 86% (89 of 104, 95% CI:
80%, 92%) and 0.90 (95% CI: 0.84, 0.96) for low-malignant
GISTs, 87% (90 of 104, 95% CI: 81%, 92%) and 0.80 (95% CI:
0.72, 0.88) for intermediate-malignant GISTs, and 91% (95 of
104, 95% CI: 86%, 97%) and 0.89 (95% CI: 0.83, 0.95) for high-
malignant GISTs. In the external validation cohort, the ACC and
AUROCs for each stratification was 81% (315 of 388, 95% CI:
77%, 85%) and 0.87 (95% CI: 0.83, 0.91) for low-malignant
GISTs, 75% (292 of 388, 95% CI: 71%, 79%) and 0.64 (95% CI:
Frontiers in Oncology | www.frontiersin.org 5
0.60, 0.68) for intermediate-malignant GISTs, and 77% (299 of
388, 95% CI: 73%, 81%) and 0.85 (95% CI: 0.81, 0.89) for high-
malignant GISTs. The clinical validation results for the testing
and external validation cohorts were summarized as confusion
matrices for the GIST risk stratification predicted by the DLM
compared with the pathologic risk stratification (Figure 5).

Most stratification discrepancies occurred between the
intermediate-malignant and non-intermediate-malignant
GISTs. Due to the imbalanced number between the
intermediate-malignant and non-intermediate GISTs (43 vs.
198) in the training dataset, the model training process may
not fully be learned for the intermediate-malignant GISTs, which
may lead to the DLM overfitting in the intermediate-malignant
GISTs. Nevertheless, the DLM is able to discriminate the low-
malignant GISTs and the high-malignant GISTs well. Taken
together, the results achieve a great degree of agreement in the
testing and external validation cohorts, which indicates the
strong generalization capability of our proposed model.

A total of five loss functions were applied to optimize our
grading model. The ablation experiments of loss function are
shown in Supplementary Results 2.2.

The Visualization of the Deep Learning
Model
As shown in Figure 6, the attention heatmap highlights the
relevant subregions for further clinical review, which indicates
that the abnormal characteristics of the tumor have been learned
by the DLM and used as the basis for its stratification of GIST
risk categories.

Comparison Between the Deep
Learning Model and Radiomics Model
The DSC value of the arterial, venous, and delayed phases is
0.969, 0.973, and 0.967, respectively, which indicates that the two
radiologists have a good agreement in the image segmentation.
TABLE 1 | Characteristics of patients.

Characteristic Training cohort Testing
cohort

External validation cohort

No. of patients 241 104 388
Age* (years) 59.2 ± 10.5

(19–82)
58.9 ± 9.8
(28–80)

60.4 ± 9.9
(21–83)

Gender
Male 99 (41.1) 53 (51.0) 200 (51.5)
Female 142 (58.9) 51 (49.0) 188 (48.5)

Site
Gastric 192 (79.7) 86 (82.7) 236 (60.8)
Non-gastric 49 (20.3) 18 (17.3) 152 (39.2)

Size (cm)
<2 44 (18.3) 20 (19.2) 19 (4.9)
2.1–5.0 122 (50.6) 53 (51.0) 148 (38.1)
5.1–10.0 59 (24.5) 25 (24.0) 138 (35.6)
>10 16 (6.6) 6 (5.8) 83 (21.4)

Mitotic count
≤5/50 193 (80.1) 82 (78.8) 247 (63.7)
6–10 27 (11.2) 12 (11.5) 73 (18.8)
>10 21 (8.7) 10 (9.6) 68 (17.5)
Sep
tember 2021 |
Unless otherwise specified, data in parentheses are percentages.
*Numbers in parentheses are the range.
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One hundred sixty-one radiomics features were selected by
LASSO, which were then enrolled to build the radiomics model.
Thirty-seven features with feature importance ranking over 3 in
five-fold are shown in Supplementary Figure 3. As shown in
Table 3, the overall ACC of the testing and external validation
cohorts is 75% (95% CI: 67%, 83%) and 68% (95% CI: 64%, 72%),
respectively. The ROCs of the radiomics model used to evaluate
the classification performance are shown in Figures 4C, D. In the
testing cohort, the AUROCs for each stratification were 0.90
Frontiers in Oncology | www.frontiersin.org 6
(95% CI: 0.84, 0.96) for low-malignant, 0.76 (95% CI: 0.68, 0.84)
for intermediate-malignant, and 0.86 (95% CI: 0.80, 0.92) for
high-malignant GISTs. In the external validation cohort, the
AUROCs for each stratification were 0.89 (95% CI: 0.85, 0.93) for
low-malignant, 0.57 (95% CI: 0.51, 0.63) for intermediate-
malignant, and 0.87 (95% CI: 0.83, 0.91) for high-
malignant GISTs.

Comparison of the performance of the DLM with the
radiomics model revealed that the DLM displayed higher
A B

C D

FIGURE 4 | ROC curves of the DLM and radiomics model. (A) ROC curve of the DLM for the testing cohort. (B) ROC curve of the DLM for the independent external
validation cohort. (C) ROC curve of the radiomics model for the testing cohort. (D) ROC curve of the radiomics model for the independent external validation cohort.
ROC, receiver operating characteristic; AUC, area under the curve; DLM, deep learning model.
TABLE 2 | Predictive performance of DLM in the testing and external validation cohorts.

Results Accuracy (%) Sensitivity (%) Specificity (%) F1 score (%)

Testing cohort
Low-malignant 86 (89/104) [80, 92] 93 (57/61) [87, 99] 74 (32/43) [61, 88] 88
Intermediate-malignant 87 (90/104) [81, 92] 50 (9/18) [27, 74] 94 (81/86) [88, 100] 56
High-malignant 91 (95/104) [86, 97] 76 (19/25) [58, 94] 96 (76/79) [92, 100] 81
Overall result 82 73 88 75
External validation cohort
Low-malignant 81 (315/388) [77, 85] 72 (98/137) [64, 79] 86 (217/251) [83, 90] 73
Intermediate-malignant 75 (292/388) [71, 79] 24 (16/67) [14, 34] 86 (276/321) [82, 90] 25
High-malignant 77 (299/388) [73, 81] 79 (145/184) [73, 85] 75 (154/204) [70, 81] 77
Overall result 67 58 83 58
September 2021 | Volume 11 |
Unless otherwise specified, data are percentages, with numbers of images in parentheses and 95% confidence intervals in brackets.
DLM, deep learning model.
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A B

FIGURE 5 | Confusion matrix of the DLM for risk stratification of gastrointestinal stromal tumors. (A) Confusion matrix for the testing cohort. (B) Confusion matrix for
the independent external validation cohort. DLM, deep learning model.
A B C

FIGURE 6 | Attention heatmap drawn by gradient-weighted class activation mapping for the model interpretation. (A) CT images, tumor segmentations, and
corresponding attention heatmaps in a 60-year-old woman with low-malignant GIST (the first column is arterial phase, the second column is venous phase, and the
third column is delayed phase). (B) CT images, tumor segmentations, and corresponding attention heatmaps in a 66-year-old woman with intermediate-malignant
GIST. (C) CT images, tumor segmentations, and corresponding attention heatmaps in a 43-year-old woman with high-malignant GIST. The red and yellow regions
represent areas activated by the DLM and have the greatest predictive significance; the blue backgrounds reflect areas with weaker predictive values. GIST,
gastrointestinal stromal tumor; DLM, deep learning model.
TABLE 3 | Predictive performance of radiomics model in the testing and external validation cohorts.

Results Accuracy (%) Sensitivity (%) Specificity (%) F1 score (%)

Testing cohort
Low-malignant 83 (86/104) [75, 91] 98 (60/61) [94, 100] 60 (26/43) [47, 74] 87
Intermediate-malignant 84 (87/104) [76, 92] 6 (1/18) [2, 10] 100 (86/86) [100, 100] 11
High-malignant 84 (87/104) [76, 92] 68 (17/25) [50, 86] 89 (70/79) [81, 96] 67
Overall result 75 57 83 55
External validation cohort
Low-malignant 80 (311/388) [76, 84] 87 (119/137) [81, 93] 77 (192/251) [71, 82] 76
Intermediate-malignant 80 (311/388) [76, 84] 9 (6/67) [3, 15] 95 (305/321) [93, 97] 14
High-malignant 76 (296/388) [72, 80] 76 (140/184) [70, 82] 77 (156/204) [71, 82] 75
Overall result 68 57 83 55
Frontiers in Oncology | www.frontiersin
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efficiency of diagnosis in the testing [AUROCs = 0.90 (95% CI,
0.84, 0.96) vs. 0.84 (95% CI, 0.76, 0.92)] and external validation
(AUROCs = 0.81 (95% CI: 0.77, 0.85) vs. 0.78 (95% CI, 0.74,
0.81)) cohorts. Besides, in the testing cohort, the Obuchowski
index value of DLM (Obuchowski index, 0.84) is significantly
better than that of the radiomics model (Obuchowski index,
0.77) (p < 0.05), while no significant difference is found between
the DLM (Obuchowski index, 0.79) and radiomics model
(Obuchowski index, 0.77) in the external validation cohort.
DISCUSSION

The findings of our study show that the DLM could accurately
predict the risk classification of GISTs with 0.90 AUROCs in the
testing cohort. The performance in the external validation cohort
was somewhat weaker but nevertheless very encouraging
(AUROCs = 0.81). The performance of our proposed DLM is
better than that of the radiomics model in both the testing and
external validation cohorts, indicating that the DLM could mine
more image features useful for assessing the risk classification in
patients with GISTs. Our work represents an improved approach
to the assessment of risk stratification based on the CT images
from patients GISTs obtained before surgery and significantly
improves on current prediction methods that rely on
postoperative specimens.

To the best of our knowledge, this is the largest cohort study
using deep learning for GIST risk stratifications and the only one
distinguishing high-risk GISTs from intermediate-risk to low-
risk GISTs. With few exceptions, reported model performance
metrics in previous studies were focused on distinguishing low-
malignant-potential GISTs (very low risk and low risk) from
high-malignant-potential GISTs (intermediate risk and high
risk), thus limiting their clinical impact for identifying high-
risk GISTs (23). The European Society for Medical Oncology
guidelines recommend adjuvant therapy for patients with a
significant risk of relapse, with “room for shared decision-
making when the risk is intermediate” (30). Joensuu et al. (1)
reported that with modified NIH criteria, only high-risk patients
might be considered for adjuvant treatment. Therefore, it is
important to improve risk assessment in the high-risk GISTs to
make more informed treatment decisions. Zhou et al. (10)
indicated that the AUROCs of the multinomial logistic
regression model for three risk degrees of GISTs (high-risk,
intermediate-risk, and low-risk GISTs), established with three
subjective CT features, was 0.806 (95% CI: 0.727, 0.885). In our
study, the DLM demonstrated the AUROC value of 0.89 (95%
CI: 0.83, 0.95) in the testing cohort and 0.85 (95% CI: 0.81, 0.89)
in the external validation cohort for differentiating high-risk
GISTs from intermediate-risk to low-risk GISTs, showing better
performance than the subjective model.

Nevertheless, there exists a performance drop from the
primary cohort (training and testing cohorts) to the external
validation cohort, especially in the intermediate-malignant class
as accuracy from 87% to 75%. Two main factors may account for
the decreased performance: 1) for a three-class classification
Frontiers in Oncology | www.frontiersin.org 8
model, we adopted a one-vs.-rest method to evaluated the
performance, which means that when the intermediate-
malignant GISTs are masked as positive, the remaining two
groups are regarded as negative. The sample size of intermediate-
malignant GISTs is much less than that of the non-intermediate-
malignant data, at around 1:5 in all datasets. This may hinder its
performance, as the machine learning algorithms tend to be bias
towards the majority class while exhibiting poor performance for
the rest of the class. 2) There is a remarkable difference of CT
scanner distribution between the acquisition of the primary and
external validation cohorts, where future work could include a
large variety of images from different CT scanners to further
improve its generalizability. Deep learning (31) is a branch of
artificial intelligence in which computers are not explicitly
programmed but instead perform tasks by analyzing
relationships between existing data points. More recently, deep
learning algorithm-based image analysis has been applied to
establish a direct link between diagnostic images and disease
prediction (27, 32, 33). For example, Zhou et al. (34) recently
demonstrated that a DLM based on ultrasound (US) images
could provide an early diagnostic strategy for lymph node
metastasis in patients with breast cancer. Choi et al. (35)
showed that the deep learning system performed better than
radiologists in the staging of liver fibrosis with CT images. In our
study, we showed that a DLM with ResNet-based method was
able to predict the risk classification of GISTs. Furthermore, the
uninterpretable neural network system with applications in
medical imaging is usually dubbed “black box” medicine (36).
It is generally difficult to explain the internal relationship
between input data and the predictive labels. The method of
visualization with CAM can solve this problem by showing the
predictive parts of the image. In our study, the output of CAM
attention roughly covering the tumor indicates that the model
could exactly locate on the tumor and could make a reliable and
interpretable decision in the predictive ability.

In early studies, radiomics features were used for risk
stratification of GISTs (22, 37–41). Therefore, in addition to
deep learning, we also performed diagnosis using radiomics
model for comparison. In the current study, 161 radiomics
features were selected to build a radiomics model for
predicting the risk classification of GISTs, which achieved
acceptable performance in the testing (AUROCs = 0.84, 95%
CI: 0.76–0.92) and external validation (AUROCs = 0.78, 95% CI:
0.74–0.81) cohorts. Our accuracy was comparable with that of
Zhang et al. (21), who reported that the generated radiomics
model demonstrated favorable performance for the risk
stratifications of GISTs with an AUROC value of 0.809 (95%
CI: 0.777–0.841) in the validation cohort. However, the
handcrafted radiomics features can only reflect simple features
of relatively low order and may lack the specificity to assess the
risk classification (42). Notably, the proposed DLM (AUROCs;
testing, 0.90; external validation, 0.81) in our study outperformed
the radiomics model for risk classification of GISTs.

Our study has several limitations. First, this is a retrospective
study, and the data are not balanced for risk stratification. The
performance of the DLM may have been better if we had trained
September 2021 | Volume 11 | Article 750875
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the DLM with an ideal training set including a large amount of
CT data that were balanced across the different risk
stratifications. Second, the DLM is not a fully automated
model, as it requires manual tumor segmentation on the CT
images. Third, although we performed the clinical validation of
the DLM by using relatively large datasets, the generalizability of
this assessment tool needs to be evaluated further. Translating
technical success to meaningful clinical impact is the next major
challenge. Thorough evaluation and further improvement would
be required to evaluate the clinical benefits of the DLM in
predicting the risk stratification of patients with GISTs.

In conclusion, we developed a DLM for predicting risk
stratification on CT images in patients with GISTs. With
further validation in a larger population and model calibration,
our DLM has great potential to serve as an important decision
support tool in clinical applications.
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